RELATIONSHIPS BETWEEN MOISTURE CONTENT AND DIELECTRIC CONSTANT FOR SUBGRADE AND SUBBASE OF PAVEMENT COURSES

MOHAMMAD MOSIOUR RAHMAN

A thesis submitted in fulfillment of the requirements for the award of the degree of
Master of Philosophy

Faculty of Civil Engineering
Universiti Teknologi Malaysia

AUGUST 2017
Soil is used as bedding or support for all types of heavy structures, including roads, highways, and structural foundations. The strength parameter, California Bearing Ratio (CBR) is a vital consideration during the design stage of pavement and other superstructure. Moisture content in soil also plays an important role for values of CBR. In conventional methods, soil samples are taken from the field to the laboratory and moisture content is determined by standard oven drying method. These methods are laborious, time-consuming, and require excessive care and accuracy. In the presence of water, the soil shows strong dielectric performance. Microwave frequency can exploit the large contrast between the dielectric constant of free water and soil. The dielectric constant of the soil is directly correlated to soil moisture content. The dielectric constant of the soil varies with proportion of water substrate present in it. This research focused on using microwave techniques by considering frequency domain to determine moisture content of subgrade and subbase. Three samples were tested in this research: soil subgrade, sand subbase and blended subbase. Several laboratory tests such as determination of moisture content by conventional method, grain size analysis and Modified Proctor test were performed. The dielectric data measurements were taken for the three samples at operating frequency range from 1 MHz to 20 GHz. The values of dielectric constant, loss factor and conductivity of the samples were determined independently. The relation between dielectric constant, ε_r, and moisture content was established in polynomial formulation in this research. The dielectric constant of soil subgrade rose rapidly with the increase of moisture content. However for sand subbase, the dielectric constant rose slowly with the increase of moisture content. The conductivity of soil sample increased more rapidly with moisture changes than sand sample. It was observed that the soil sample was highly conductive while the sand sample had poor conductivity. This study was the first of its kind to apply microwave techniques for considering frequency domain in determining moisture content of pavement layers.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 4

1.3 Objectives 4

1.4 Scope of the Research 5

1.5 Significance of the Study 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Subbase or Subgrade Compaction 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Moisture in Pavement</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>The Dielectric Performance of the Subgrade Soil</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Dielectric Probes</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Dielectric Materials</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Microwaves and its Characteristics</td>
<td>19</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Frequency and Wavelength Definition</td>
<td>19</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Electromagnetic Waves</td>
<td>20</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Electromagnetic Radiation and Frequency Spectrum</td>
<td>20</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Selection of Microwave Frequency Range for Soil Testing</td>
<td>21</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Major Fields Covered by Microwave</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Interaction of Microwaves with Materials</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Permittivity and Permeability</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Propagation of Microwaves in Materials</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>Microwave Measurement System</td>
<td>26</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Network Analyzer</td>
<td>28</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Fixtures</td>
<td>29</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Software</td>
<td>29</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Contact and Non-Contact Measurement</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>Open Ended Coaxial Probe (OCP) Method</td>
<td>30</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Equivalent Circuit of Coaxial Probe</td>
<td>33</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Coaxial Probe Method for Measurement of Permittivity</td>
<td>35</td>
</tr>
<tr>
<td>2.13</td>
<td>Summary</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>RESEARCH METHODOLOGY</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
</tbody>
</table>
3.2 Operational Framework

3.3 Sample Preparation

3.3.1 Sample Preparation for Soil Subgrade and Sand Subbase

3.3.2 Sample Preparation for Blended Subbase

3.4 Open Ended Coaxial Experimental Set-up

3.4.1 Dielectric Data Measurement Procedure for Soil and Sand Sample

3.4.2 Variation of Dielectric Constant and Loss Factor over a Frequency Range of 1 MHz to 20 GHz

3.4.3 Variation of Dielectric Constant, Loss Factor and Conductivity with Various Moisture Content at Frequency of 2.4, 5.8, 10 and 18 GHz

3.5 Determination of Moisture Content and Dry Density by Nuclear Density Gauge

3.6 Determination of Moisture Content by Oven Dry Method

3.7 Modified Proctor Test

3.7.1 Test Procedure

3.8 Sieve Analysis Test

3.8.1 Test procedure

3.9 Summary

RESULT AND DISCUSSION

4.1 Introduction

4.2 Temperature, pH, Moisture Content and Unit Weight of the Sample

4.3 Sieve Analysis Test Result
4.4 Dielectric Data Measurement in different Moisture Content for Soil and Sand Sample

4.5 Variation of Dielectric Constant with Moisture Content for Soil and Sand Sample
 4.5.1 Soil Sample
 4.5.2 Sand Sample

4.6 Variation of Loss Factor with Moisture Content for Soil and Sand Sample
 4.6.1 Soil Sample
 4.6.2 Sand Sample

4.7 Variation of Conductivity with Moisture Content for Soil and Sand Sample
 4.7.1 Soil Sample
 4.7.2 Sand Sample

4.8 Various Test Results for Blended Subbase Sample
 4.8.1 Modified Proctor Test Result
 4.8.2 Determination of Moisture Content by Oven Dry Method
 4.8.3 Nuclear Density Gauge Test Result
 4.8.4 Dielectric Data Measurement for Blended Subbase Sample

4.9 Summary

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion
5.2 Recommendation

REFERENCES

Appendix A
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>List of Various Soil Moisture Measurement Techniques.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Specification of Pavement Layers</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Field Density Testing Methods</td>
<td>11</td>
</tr>
<tr>
<td>2.3.</td>
<td>List of Researches for Determining Moisture Contents of Various Materials Using Microwave Techniques</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>IEEE Frequency Spectrum</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Common Values for the Dielectric Constant</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Various Measurement Methods for Permittivity and Permeability</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Temperature, pH, Moisture Content and Unit Weight of the Sample</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Result of Sieve Analysis for Soil Sample</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Result of Sieve Analysis for Sand Sample</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Result of Sieve Analysis for Blended Subbase Sample (Fine Aggregates)</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Result of Sieve Analysis for Blended Subbase Sample (Coarse Aggregates)</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>List of Dielectric Data Measurement with different Moisture Content</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Relationship between Dielectric Constant and Moisture Content for Soil Sample</td>
<td>61</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.8</td>
<td>Relationship between Dielectric Constant and Moisture Content for Sand Sample</td>
<td>63</td>
</tr>
<tr>
<td>4.9</td>
<td>Relationship between Loss Factor and Moisture Content for Soil Sample</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>Relationship between Loss Factor and Moisture Content for Sand Sample</td>
<td>68</td>
</tr>
<tr>
<td>4.11</td>
<td>Relationship between Conductivity and Moisture Content for Soil Sample</td>
<td>70</td>
</tr>
<tr>
<td>4.12</td>
<td>Relationship between Conductivity and Moisture Content for Sand Sample</td>
<td>72</td>
</tr>
<tr>
<td>4.13</td>
<td>Nuclear Method Test Result</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flexible Pavement Cross Section</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Compaction Effect</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Real Part of the Dielectric Constant of the Soil obtained from three different Models</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Reflected and Transmitted Signals of Electromagnetic Waves</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Network Analyzer</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure and Electromagnetic Field of Coaxial Probe</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Coaxial Probe Method</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Dielectric Probe Configuration</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Equivalent Circuit of Open Ended Coaxial Probe</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Coaxial High Temperature Probe Details</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart for Research Methodology</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample Preparation</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow Chart for Sample Preparation and Dielectric Data Measurement</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow Chart for Sample Preparation and Dielectric Data Measurement</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental Set-up [Coaxial Probe, Network Analyzer and Computer Connection]</td>
<td>43</td>
</tr>
</tbody>
</table>
3.6 Calibration of Coaxial Probe with Water at 25 ± 1 °C 44

3.7 The dielectric Data Measurement for Compacted Sample 45

3.8 Replicates of Data 47

3.9 Moisture Content and Density Measured by Nuclear Density Gauge 49

3.10 Sieve Analysis Test 52

4.1 Particle Size Distribution for Soil Sample 56

4.2 Particle Size Distribution for Sand Sample 57

4.3 Particle Size Distribution for Blended Subbase Sample (Fine Aggregates) 58

4.4 Particle Size Distribution for Blended Subbase Sample (Coarse Aggregates) 59

4.5 Variations in Dielectric Constant with Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Soil Sample 62

4.6 Variations in Dielectric Constant with Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Sand Sample 65

4.7 Variation in Loss Factor and Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Soil Sample 67

4.8 Variation in Loss factor and Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Sand Sample 69

4.9 Variation in Conductivity and Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Soil Sample 71

4.10 Variation in Conductivity and Moisture Content at various Operating Frequencies: (a) 2.4 GHz, (b) 5.8 GHz, (c) 10 GHz and (d) 18 GHz for Sand Sample 73
4.11 Compaction Curve

4.12 Variation of Dielectric Constant with Frequency:
(a) Fine Aggregates Sample and (b) Blended Subbase Sample at 15.67% Moisture Content
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and</td>
</tr>
<tr>
<td></td>
<td>Transportation Officials</td>
</tr>
<tr>
<td>FDR</td>
<td>Frequency Domain Reflectometer</td>
</tr>
<tr>
<td>HMA</td>
<td>Hot Mix Asphalt</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Scientific and Medical</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>MUT</td>
<td>Material Under Test</td>
</tr>
<tr>
<td>mc</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>NDG</td>
<td>Nuclear Density Gauge</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Test</td>
</tr>
<tr>
<td>OCP</td>
<td>Open Ended Coaxial Probe</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SMCV</td>
<td>Volumetric Soil Moisture Content</td>
</tr>
<tr>
<td>TDR</td>
<td>Time Domain Reflectometer</td>
</tr>
<tr>
<td>TEM</td>
<td>Transverse Electromagnetic Mode</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector Network Analyzer</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage Standings Wave Ratio</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r'</td>
<td>Dielectric Constant</td>
</tr>
<tr>
<td>ε_r''</td>
<td>Loss Factor</td>
</tr>
<tr>
<td>σ</td>
<td>Conductivity</td>
</tr>
<tr>
<td>π</td>
<td>Pi</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>ω</td>
<td>Angular Frequency</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>η (or Z_0)</td>
<td>Impedance of the Free-Space</td>
</tr>
<tr>
<td>μ_0</td>
<td>Permeability of the Free-Space</td>
</tr>
<tr>
<td>c</td>
<td>Velocity of Light in Vacuum</td>
</tr>
<tr>
<td>V</td>
<td>Velocity of Wave in a Medium</td>
</tr>
<tr>
<td>γ</td>
<td>Complex Propagation Constant of the Medium</td>
</tr>
<tr>
<td>α</td>
<td>Rate of Decay with Distance, i.e. Attenuation Constant or Wave Absorption Coefficient</td>
</tr>
<tr>
<td>β</td>
<td>Phase Information for Electromagnetic Wave of Incidence</td>
</tr>
<tr>
<td>Y_L</td>
<td>Admittance of the Line</td>
</tr>
<tr>
<td>C_0</td>
<td>Electrical Capacitance of the Air</td>
</tr>
<tr>
<td>\tilde{Y}</td>
<td>Normalized Admittance</td>
</tr>
<tr>
<td>S_{11}^*</td>
<td>Reflection Coefficients</td>
</tr>
<tr>
<td>C_f</td>
<td>Fringe Field Capacitance</td>
</tr>
<tr>
<td>T</td>
<td>Measured Transmission</td>
</tr>
<tr>
<td>Γ</td>
<td>Reflection Coefficient</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nuclear Density Gauge Field Test Result</td>
<td>90</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The strength of pavement depends mainly on the strength of subgrade in a pavement structure. If the subgrade is weak the pavement top surface layer can be completely torn down even it is strong. The compacted subgrade strength depends on its moisture content which varies due to capillary action, flood, changes of water table and precipitation. The dry unit weight of the soil increases as moisture content increases in a certain limit, and beyond the limit, moisture content increase tends to reduce the dry unit weight.

The gravimetric method, nuclear method and time domain reflectometer (TDR) are currently available to monitor the moisture content (mc) of paving materials [1]. In gravimetric method, samples of soil are collected from field and their moisture content is determined in the laboratory by finding the weight loss after oven drying. These methods are laborious, slow and require more care for accuracy [2].

Traditionally, bulk density of compacted soil is measured by the sand replacement method and core cutter method. Recently the nuclear density gauge (NDG) is used to measure both dry density and moisture content of compacted
subbase and subgrade at the field. The nuclear density gauge cannot directly find the
percentage of compaction of the pavement layers. The percentage of compaction is
specified as ratio of dry density at field to maximum dry density at laboratory. The
nuclear gauge is also expensive and very costly to repair because it contains the
nuclear source. The nuclear density gauge also has radiation hazard and regulation
limitation for its radioactive sources. For that reason, researchers seek alternative
safe procedure to measured moisture content \(mc \) and density of the pavement layers
[3].

Agricultural researchers have been using time domain reflectometer (TDR)
techniques effectively to find soil moisture in irrigation sector since 1970. The civil
engineers began their own research as they recognized the possible benefits of use
microwave technologies. Diefenderfer et al. used two TDR probes to monitor
moisture content \(mc \) in flexible pavement construction and pointed out that
accurate moisture content \(mc \) of different materials in the field can be measured
after preliminary laboratory calibration [1]. Xiong Yu et al. developed TDR method
over ASTM D6780 for in situ determination of moisture content and density of
subgrade soil [4]. The time domain reflectometer has limited probe length and needs
calibration before using the results [5].

Kirandeep Kaur et al. discussed in their review paper about various latest soil
moisture measurement techniques as shown in Table1.1 and mentioned that the
frequency domain reflectometer sensor is more accurate and cheaper than TDR [6].
Table 1.1: List of Various Soil Moisture Measurement Techniques [6]

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravimetric Method</td>
<td>- Precise, simple and low cost.</td>
<td>- Destructive test.</td>
</tr>
<tr>
<td></td>
<td>- Slow and laborious.</td>
<td></td>
</tr>
<tr>
<td>Time Domain Reflectometer (TDR)</td>
<td>- Precise and nonstop data collection.</td>
<td>- Compound electronic kit.</td>
</tr>
<tr>
<td></td>
<td>- Initial calibration not required.</td>
<td>- Expensive system.</td>
</tr>
<tr>
<td>Frequency Domain Reflectometer (FDR)</td>
<td>- More precise than TDR.</td>
<td>- Need extensive care.</td>
</tr>
<tr>
<td></td>
<td>- The probe is flexible.</td>
<td>- Air gaps can make error in readings.</td>
</tr>
<tr>
<td></td>
<td>- Less expensive compare to other methods.</td>
<td></td>
</tr>
<tr>
<td>Nuclear Density Gauge</td>
<td>- Rapid and dependable data.</td>
<td>- It contains radioactive element.</td>
</tr>
<tr>
<td></td>
<td>- Recurrent readings of soil.</td>
<td>- Extensive care to operate.</td>
</tr>
</tbody>
</table>

To increase road strength and decrease pavement thickness, subgrade material needs optimum compaction in road construction. The optimum compaction of soil is determined by the laboratory test. However, sometimes it is difficult to transfer the optimal compaction and moisture content data from laboratory to the field. There is a necessity for developing new testing method other than the conventional testing of highway materials [7]. The microwave techniques considering frequency domain are attractive alternative for determining soil moisture content (mc). In presence of water, the soil shows strong dielectric performance. Microwave frequency can exploit the large contrast between the dielectric constant of free water and soil. The dielectric properties of materials depend on microwave frequency, moisture content, bulk density and temperature [8].

The excessive water in pavement structure is one of the main reasons for the deterioration of existing pavement [1]. The United States of America expended 45 percent of its transportation cost on existing road repairs between 2009 and 2011, and 55 percent in new road construction [9]. The Malaysian road repair budget is 174 percent higher than the budget allocated for construction of new roads [7]. Therefore, determining and predicting of moisture content within the pavement system is very dominant.
The researchers established several empirical and semi-empirical formulas to investigate relation among dielectric constant and soil moisture content [10-16]. By using those models and formulas, the moisture content of the soil can be determined from dielectric constant with laboratory calibration.

1.2 Problem Statement

In pavement construction, compaction is a function of moisture content \((mc)\) of the soil. Water aids the subgrade and subbase materials in creating a strongly packed system during the compaction process. The Standard Proctor compaction test is performed at laboratory to determine optimum moisture content at which maximum dry unit weight is attained. The test uses a single identical compactive effort from hammer drops for all soil types. But different soil types need different degree of compactive effort and the test sometimes does not produce the optimum density and its related moisture content \((mc)\) [3]. This procedure is laborious, time-consuming, and requires excessive care and accuracy. Another challenge is transferring the optimal compaction and moisture content results from laboratory testing to the field. The nuclear density gauge (NDG) and time domain reflectometer (TDR) can provide maximum density and moisture content of the pavement layers at field. The nuclear density gauge (NDG) is very costly to repair because it contains the nuclear source and regulation limitations for its radioactive sources. The time domain reflectometer (TDR) gives less accurate test result and it is more expensive than frequency domain reflectometer (FDR).

1.3 Objective

The main objective of this study is to develop a laboratory based calibration equation for monitoring moisture content in subbase and subgrade layers by using microwave techniques. The study concentrates on the following objectives:
i. Develop a relation between dielectric constant, ε'_r and moisture content (mc) of subgrade and subbase for correlation.

ii. Compare the measured value of dielectric constant, ε'_r at field for the blended subbase sample with the established relation between dielectric constant, ε'_r and moisture content (mc).

iii. Determine the conductivity, σ of subbase sand and subgrade soil sample independently and evaluate the effect on texture of subbase and subgrade sample.

1.4 Scope of Research

To achieve the objectives of this study, the research emphasized the use of microwave techniques to determine the moisture content of the pavement layers. The nuclear density gauge was used in newly constructed road to find moisture content and dry density of the compacted blended subbase and the sample was collected. The soil subgrade and sand subbase compacted samples were prepared at laboratory. Several laboratory tests such as determination of moisture content by conventional method, grain size analysis and Modified Proctor test were carried out at geotechnical laboratory in Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), Malaysia. The dielectric data measurement was taken for these three pavement layers at microwave laboratory in the Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Malaysia.

Chapter 2 presents details on pavement structure, pavement compaction, dielectric performance of the subgrade soil, characteristics of microwaves, microwave measurement system for testing, interaction of microwaves with materials, propagation of microwave in materials and details of open ended coaxial probe method. Chapter 3 describes samples preparation, experimental set-up and various test procedures. Chapter 4 offers the presentation of data and its subsequent analysis. Chapter 5 presents the conclusion of the research and recommendation for further study.
1.5 Significance of the Study

The dialectic based method can predict pavement performance in moisture change and provide data for various researches. Many researchers from other industries such as agriculture, food, chemical, and mining use microwave technique to determine the moisture content of different materials. Further research is needed in civil engineering field for significance in the sense that it will:

i. Be an efficient and effective way to determine in-situ moisture content of the subgrade, subbase, and road-base.

ii. Be fast and non-destructive test.

iii. Minimize the need for sample preparation and laboratory process.

iv. It is a multidisciplinary topic encompassing microwave and civil engineering.

v. Be a suitable and low-cost measuring device for determination of moisture content for pavement courses, working in the frequency domain.
REFERENCES

Electromagnetics Research. 2011.

96. Agilent Technologies, I . Keysight 85070E Dielectric Probe Kit 200 MHz to 50 GHz. August, 2014: Published in USA.