ELECTRONIC AND CHEMICAL PROPERTIES OF CYANATED, HALOGENATED AND THIOPHENE-BASED LINEAR ACENE DERIVATIVES
BY FIRST-PRINCIPLES CALCULATIONS

AUWALU MUSA

UNIVERSITI TEKNOLOGI MALAYSIA
ELECTRONIC AND CHEMICAL PROPERTIES OF CYANATED, HALOGENATED AND THIOPHENE-BASED LINEAR ACENE DERIVATIVES
BY FIRST-PRINCIPLES CALCULATIONS

AUWALU MUSA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

JULY 2016
The work is dedicated to my parents, family and the humanity
ACKNOWLEDGEMENT

All praises and gratitude are to Allah, the most merciful and the most compassionate, this work is solely accomplished with his guidance. May the peace and blessing be upon to his prophet, Muhammad (peace be upon him). Firstly, I would like to express my sincere appreciation to my supervisor, Dr. Mohammad Alam Saeed, for giving me the opportunity to realize my ideas. I admire him for his patience and relentless encouragement that not only improved my skills in research but also helped me in my personal life. I am also very grateful to my co-supervisors, Dr. Amiruddin Bin Shaari and Prof. Dr. Riadh Sahnoun for their tireless advice toward the accomplishment of this work. I would like to thank all my colleagues, for their advice, friendliness and creating a good working environment during my study. I cannot forget to thank Dr. Ahmad Radzi Mat Isa, for his elderly advice and support all the time.

I would like to express my special appreciation to my father, Musa Muhammad and pray for my late mother, Fatima Umar, for their lifelong support and in numerous sacrifices to help me in achieving my goals. My sincere admiration goes to my dear wife, Fatima Sunusi Adamu, for her love, caring, understanding and patient during this research and always. My heartfelt thank goes to my daughters, Mufida, Sa’ada and Fatima, for their cherishing love and memorable time. In addition, more gratitude goes to all my brothers, sisters and their families for the encouragement and support throughout my academic life.

Finally, I sincerely thank the management of Bayero University, Kano (BUK) Nigeria, for the support, which facilitates me for the TETFund scholarship award (with reference No.: BUK/R/T-EPIC/SB4/A03) for my Ph.D. study.
ABSTRACT

Molecular modeling plays an essential role in searching for new and better organic electronic materials with excellent electronic and chemical properties to design organic electronic devices. In this research, we have studied some electronic, chemical and vibrational properties of linear acenes (from benzene to heptacene), and the additional effect of halogens, cyanate, and thiophene to linear acenes. The possible molecular properties of linear acenes and their derivatives as a function of a number of the fused benzene rings and the total number of carbons were studied. The computation is carried out using NWchem 6.3 code and Molden for molecular structure visualization. Hartree-Fock (HF), Density Functional Theory (DFT) and Möller-Plesset (MP2) level of the theories with B3LYP exchange functional using 6-311G, 6-311G (d,p), 6-311G* and aug-cc-pvdz basis sets are used for calculations. The ground state energy and band gap energy decrease with number of linear acene rings while the nuclear repulsion energy and Coulomb potential increase due to the accumulation of electrons in the bonding states. Additionally, \(\pi \)-bonding electrons increase the highest occupied molecular orbitals (HOMO) energy, and \(\pi^* \)-antibonding electrons decrease the lowest occupied molecular orbitals (LUMO) energy with the increase of the acene rings. The \(\pi \)-bonding electrons cause the resonance by delocalization of electrons around the linear acenes molecular structures. It was found that the band gap energy, chemical potential, \(\mu \) and global hardness, \(\eta \) decrease with the increase in the number of acene rings whereas the electronegativity \(\chi \), softness \(S \) and electrophilicity \(\omega \) increase with the number of linear acene rings. The results show good agreement with theoretical and experimental values. In addition, HOMO and LUMO orbitals energy, ionisation energy, electron affinity and global indices reveal that higher linear acene rings and their derivatives exhibit excellent electronic and chemical properties. However, due to high values of HOMO orbitals energy and low values of LUMO energy lead to low ionisation potential and high electron affinity across the acene derivatives which demonstrate that the materials have more potential application in organic light emitting diodes (OLEDs) and organic field effect transistors (OFETs) than in optical application.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Overview 1
1.2 Background of the Study 1
1.3 Problem Statement 4
1.4 Research Objectives 7
1.5 Scope of the Study 7
1.6 Significances and Original Contribution of the Study 8
1.7 Thesis Structure and Organization 10

2 LITERATURE REVIEW
2.1 Overview 11
2.2 Organic Molecular Structure Properties 11
2.3 Polarizability in Materials 12
2.4 Organic Semiconductor Materials (OSMs) 13
2.5 Linear Acenes and their Derivatives 15
 2.5.1 Experimental Reviews on Linear Acenes 16
 2.5.2 Theoretical Reviews on Linear Acenes 22
 2.5.3 Vibrational Frequencies of Linear Acenes 28
2.6 Heterocyclic Aromatic Rings 29

3 METHODOLOGY 31
3.1 Overview 31
3.2 Computational Methods and Flow Chart Description 31
3.3 Quantum Many-body Systems 34
3.4 Born-Oppenheimer Approximation 35
3.5 Hartree-Fock Theory 36
 3.5.1 Hartree-Fock Approximation explains 38
 3.5.2 Fock and Slater Approximation 39
 3.5.3 Slater Determinant 40
 3.5.4 Hartree-Fock Iterative Procedure 42
 3.5.5 Basis set Concept 43
 3.5.5.1 Plane Waves Basis set 44
 3.5.5.2 Pseudopotentials 44
3.6 Density Functional Theory (DFT) 45
 3.6.1 The Hohenburg-Kohn First Theorem 45
 3.6.2 The Kohn-Sham Equations 48
 3.6.3 Self-Consistent Field Method 50
 3.6.4 Exchange-Correlation Functional 52
 3.6.4.1 Local Density Approximation (LDA) 53
 3.6.4.2 Generalized Gradient Approximation (GGA) 54
 3.6.4.3 Meta-Generalized Gradient Approximation (Meta GGA) 55
 3.6.4.4 Hybrids DFT with Exact Exchange 56
3.7 Hartree-Fock and Density Functional Theory Differences 57
3.8 Quantum Chemical Indices 58
3.9 NWChem Code Description 61
3.10 Molecular Energy Minimization 62

4 RESULTS AND DISCUSSIONS 65
4.1 Overview 65
4.2 Ground State Energy of Linear Acenes (n = 1 to 7) and their Derivatives 65
 4.2.1 Ground State energy of Linear Acenes 66
 4.2.2 Ground State energy of DTh-Ac Molecules 71
 4.2.3 Ground State Energy of Linear Acene Derivatives 73
4.3 Electronic Properties of Linear Acenes and their Derivatives 76
 4.3.1 Electronic Properties of Linear Acenes (n = 1 to 7) 78
 4.3.2 Electronic Properties of DTh-Ac Molecules 79
 4.3.3 Electronic Properties of Linear Acene Derivatives 83
 4.3.4 Molecular Polarizability 86
4.4 Electronic Excited State (S1) of Linear Acene Derivatives 88

5 CHEMICAL INDICES AND VIBRATIONAL SPECTRA 91
5.1 Overview 91
5.2 Chemical Indices of Linear Acenes (n = 1 to 7) and their Derivatives 91
 5.2.1 Chemical Properties of Linear Acenes 92
 5.2.2 Chemical Properties of DTh-Ac Molecules 100
 5.2.3 Chemical Properties of linear Acenes Derivatives 104
 5.2.4 Ionization Potential and Electronic Affinity 112
5.3 Vibrational Frequency of Acenes and Their Derivatives 117
 5.3.1 Stretching Vibrations 118
 5.3.2 Vibrational Spectra of Naphthalene and Its Derivatives 120
5.3.3 Vibrational Spectra of Anthracene and Its Derivatives 123
5.3.4 Vibrational Spectra of Tetracene and Its Derivatives 125
5.3.5 Vibrational Spectra of Pentacene and Its Derivatives 128
5.3.6 Vibrational Spectra of Hexacene and Its Derivatives 130

6 SUMMARY AND CONCLUSION 132
6.1 Overview 132
6.2 Summary of the work 132
6.3 Contribution to Knowledge 133
6.4 Conclusion 133
6.5 Research Limitation and Suggestion for Further Work 138

REFERENCES 139
Appendices A - G 153-233
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>NWchem input file commands structure</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Ground state energy of linear acenes (n = 1 to 7)</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Ground state energy, nuclear repulsion and Coulomb potential of linear acenes</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>GSE, Coulomb potential and nuclear repulsion energy</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>GSE variation among the linear acene derivatives</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Linear acenes (n = 1 to 7) HOMO and LUMO orbitals energy</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Band gap energy comparison among the linear acenes (n = 1 to 7)</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Predicted frontier orbitals and band gap energy for DTh-Ac molecules</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Frontier orbitals energy and band gap energy for acene derivatives</td>
<td>84</td>
</tr>
<tr>
<td>4.9</td>
<td>Polarizability variation among the linear acenes and their derivatives</td>
<td>87</td>
</tr>
<tr>
<td>4.10</td>
<td>Excited state (S1) E\text{HOMO}, E\text{LUMO} and E\text{gap} for linear acene derivatives</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Calculated chemical indices within the DFT-B3LYP theory and 6-311G /6-311G (d, p) basis sets</td>
<td>93</td>
</tr>
<tr>
<td>5.2</td>
<td>Calculated chemical indices within the B3LYP/6-311G* theory</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Calculated chemical potential (\mu) (eV) within the B3LYP/6-311G* theory</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Calculated global hardness (\eta) (eV) for acene derivatives</td>
<td>107</td>
</tr>
<tr>
<td>5.5</td>
<td>Calculated global softness (S) (eV(^{-1})) for acene derivatives</td>
<td>108</td>
</tr>
<tr>
<td>5.6</td>
<td>Calculated electrophilicity for acene derivatives</td>
<td>110</td>
</tr>
<tr>
<td>5.7</td>
<td>Calculated electronegativity (χ) for acene derivatives</td>
<td>111</td>
</tr>
<tr>
<td>5.8</td>
<td>Calculated electron affinity (EAs) and ionization potentials (IPs)</td>
<td>114</td>
</tr>
<tr>
<td>5.9</td>
<td>Calculated IPs and EAs within the DFT-B3LYP/6-311G* theory</td>
<td>116</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Demonstration of a flexible OLED device</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Energy levels diagram through bonding and antibonding state</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic diagram of linear acenes major applications</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>A schematic molecular structures of linear acenes (n = 1 to 7)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Buckybowls of sumanene and corannulene fused with the acenes</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodological flow chart diagram</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of SCF procedure for solving KS equation</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>PES in 3D with energy as the function of geometry</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Total energy versus the number of carbons for acene molecules</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Coulomb potential and nuclear repulsion variation with HOMOs energy</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Coulomb potential and nuclear repulsion variation with LUMOs energy</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Coulomb potential and nuclear repulsion variation with band gap energy</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Total GSE variation with the number electrons</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>GSE comparison between the theoretical and experimental work</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>Coulomb potential and nuclear repulsion energy variation among DTh-Ac molecules</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>Ground state energy variation among the linear acene derivatives</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>HOMO and LUMO orbitals energy variation with number of carbons</td>
<td>78</td>
</tr>
<tr>
<td>4.10</td>
<td>Band gap energy variation with number of carbons</td>
<td>79</td>
</tr>
<tr>
<td>4.11</td>
<td>Frontier orbitals energy variation with number of electrons</td>
<td>80</td>
</tr>
<tr>
<td>4.12</td>
<td>Band gap energy variation with number of electrons</td>
<td>81</td>
</tr>
</tbody>
</table>
4.13 Band gap energy variation with ground state energy 82
4.14 Comparison of the band gap energy with other work 82
4.15 Frontier orbitals energy variation with number of acene rings 85
4.16 Band gap energy variation with number of acene rings 85
4.17 Polarizability variation with number of acene rings 88
5.1 Chemical potential (μ) variation with number of carbons 94
5.2 Electronegativity (χ) variation with number of carbons 95
5.3 Global hardness (η) variation with number of carbons 96
5.4 Global softness (S) variation with number of carbons 97
5.5 Electrophilicity index (ω) variation with number of carbons 98
5.6 Variation of electrophilicity (ω) with band gap energy 99
5.7 Band gap energy variation with electronegativity 99
5.8 Chemical potential variation with number of electrons 101
5.9 Variation of electronegativity with number of electrons 102
5.10 Global hardness variation with number of electrons 103
5.11 Global softness variation with number of electrons 103
5.12 Variation of electrophilicity with number of electrons 104
5.13 Variation of chemical potential among the acene derivatives 106
5.14 Comparison of global hardness within the B3LYP/6-311G* theory 107
5.15 Comparison of global softness within the B3LYP/6-311G* theory 109
5.16 Electrophilicity variation among the acene derivatives 110
5.17 Electronegativity variation with number of acene rings 112
5.18 IPs and EAs comparison with other work 115
5.19 Variation of IPs and EAs with the number of electrons 116
5.20 IPs and EAs variation with the ground state energy 117
5.21 Comparison of IR spectra for benzene and its derivatives 119
5.22 Comparison of IR spectra for naphthalene and its derivatives 122
5.23 Comparison of IR spectra for anthracene and its derivatives 124
5.24 Comparison of IR spectra for tetracene and its derivatives 127
5.25 Comparison of IR spectra for pentacene and its derivatives 129
5.26 Comparison of IR spectra for hexacene and its derivatives 130
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>Chemical Potential</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Global Hardness</td>
</tr>
<tr>
<td>(\chi)</td>
<td>Electronegativity</td>
</tr>
<tr>
<td>(S)</td>
<td>Global Softness</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Electrophilicity</td>
</tr>
<tr>
<td>(\alpha_{tot})</td>
<td>Average polarizability</td>
</tr>
<tr>
<td>(\alpha_{xx})</td>
<td>Polarizability tensor along (xx)-direction</td>
</tr>
<tr>
<td>(\alpha_{yy})</td>
<td>Polarizability tensor along (yy)-direction</td>
</tr>
<tr>
<td>(\alpha_{zz})</td>
<td>Polarizability tensor along (zz)-direction</td>
</tr>
<tr>
<td>(\Delta \alpha)</td>
<td>Optical anisotropy polarizability</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFU</td>
<td>Bifuran</td>
</tr>
<tr>
<td>CIS</td>
<td>Configurational Interaction</td>
</tr>
<tr>
<td>DC-NAP</td>
<td>Dicynonaphathacene</td>
</tr>
<tr>
<td>DC-PEN</td>
<td>6, 13-dicynopentacene</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>EA</td>
<td>Electron affinity</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>EMSL</td>
<td>Environmental Molecular Science Laboratory</td>
</tr>
<tr>
<td>FOE</td>
<td>Frontier orbital energy</td>
</tr>
<tr>
<td>GGA</td>
<td>Generalized Gradient Approximation</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground state energy</td>
</tr>
<tr>
<td>HOMO</td>
<td>High Occupied Molecular Orbital</td>
</tr>
<tr>
<td>IP</td>
<td>Ionization potential</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>K.E</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>LCAO</td>
<td>Linear combination of atomic orbital theory</td>
</tr>
<tr>
<td>LDA</td>
<td>Local Density Approximation</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Occupied Molecular Orbitals</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular Orbital</td>
</tr>
<tr>
<td>MP2</td>
<td>Møller–Plesset perturbation theory second order</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular orbitals</td>
</tr>
<tr>
<td>NWchem</td>
<td>Northwest chemistry</td>
</tr>
<tr>
<td>OFETs</td>
<td>Organic field effect transistors</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic light emitting diode</td>
</tr>
<tr>
<td>OSM</td>
<td>Organic Semiconductor Material</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polyaromatic hydrocarbons</td>
</tr>
<tr>
<td>PES</td>
<td>Potential energy surface</td>
</tr>
</tbody>
</table>
RHF - Restricted Hartree-Fock
SCF - Self-consistent field theory
TDDFT - Time dependent density functional theory
TFU - Tetrafuran
XC - Exchange correlation
ZINDO - Zerner’s intermediate neglect of diatomic differential overlap
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Atomic Coordinate Data for Benzene</td>
<td>153</td>
</tr>
<tr>
<td>A2</td>
<td>Atomic Coordinate Data for Naphthalene</td>
<td>154</td>
</tr>
<tr>
<td>A3</td>
<td>Atomic Coordinate Data for Anthracene</td>
<td>155</td>
</tr>
<tr>
<td>A4</td>
<td>Atomic Coordinate Data for Tetracene</td>
<td>156</td>
</tr>
<tr>
<td>A5</td>
<td>Atomic Coordinate Data for Pentacene</td>
<td>158</td>
</tr>
<tr>
<td>A6</td>
<td>Atomic Coordinate Data for Hexacene</td>
<td>160</td>
</tr>
<tr>
<td>A7</td>
<td>Atomic Coordinate Data for Heptacene</td>
<td>162</td>
</tr>
<tr>
<td>B1</td>
<td>Atomic Coordinate Data for DCl-Ben</td>
<td>164</td>
</tr>
<tr>
<td>B2</td>
<td>Atomic Coordinate Data for DCl-Nap</td>
<td>165</td>
</tr>
<tr>
<td>B3</td>
<td>Atomic Coordinate Data for DCl-Ant</td>
<td>166</td>
</tr>
<tr>
<td>B4</td>
<td>Atomic Coordinate Data for DCl-Tet</td>
<td>168</td>
</tr>
<tr>
<td>B5</td>
<td>Atomic Coordinate Data for DCl-Pen</td>
<td>170</td>
</tr>
<tr>
<td>B6</td>
<td>Atomic Coordinate Data for DCl-Hex</td>
<td>172</td>
</tr>
<tr>
<td>B7</td>
<td>Atomic Coordinate Data for DCl-Hep</td>
<td>174</td>
</tr>
<tr>
<td>C1</td>
<td>Atomic Coordinate Data for DCy-Ben</td>
<td>176</td>
</tr>
<tr>
<td>C2</td>
<td>Atomic Coordinate Data for DCy-Nap</td>
<td>177</td>
</tr>
<tr>
<td>C3</td>
<td>Atomic Coordinate Data for DCy-Ant</td>
<td>178</td>
</tr>
<tr>
<td>C4</td>
<td>Atomic Coordinate Data for DCy-Tet</td>
<td>180</td>
</tr>
<tr>
<td>C5</td>
<td>Atomic Coordinate Data for DCy-Pen</td>
<td>182</td>
</tr>
<tr>
<td>C6</td>
<td>Atomic Coordinate Data for DCy-Hex</td>
<td>184</td>
</tr>
<tr>
<td>C7</td>
<td>Atomic Coordinate Data for DCy-Hep</td>
<td>186</td>
</tr>
<tr>
<td>D1</td>
<td>Atomic Coordinate Data for DF-Ben</td>
<td>188</td>
</tr>
<tr>
<td>D2</td>
<td>Atomic Coordinate Data for DF-Nap</td>
<td>189</td>
</tr>
<tr>
<td>D3</td>
<td>Atomic Coordinate Data for DF-Ant</td>
<td>190</td>
</tr>
<tr>
<td>D4</td>
<td>Atomic Coordinate Data for DF-Tet</td>
<td>192</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>D5</td>
<td>Atomic Coordinate Data for DF-Pen</td>
<td>194</td>
</tr>
<tr>
<td>D6</td>
<td>Atomic Coordinate Data for DF-Hex</td>
<td>196</td>
</tr>
<tr>
<td>D7</td>
<td>Atomic Coordinate Data for DF-Hep</td>
<td>198</td>
</tr>
<tr>
<td>E1</td>
<td>Atomic Coordinate Data for DTh-Ben</td>
<td>200</td>
</tr>
<tr>
<td>E2</td>
<td>Atomic Coordinate Data for DTh-Nap</td>
<td>201</td>
</tr>
<tr>
<td>E3</td>
<td>Atomic Coordinate Data for DTh-Ant</td>
<td>203</td>
</tr>
<tr>
<td>E4</td>
<td>Atomic Coordinate Data for DTh-Tet</td>
<td>205</td>
</tr>
<tr>
<td>E5</td>
<td>Atomic Coordinate Data for DTh-Pen</td>
<td>207</td>
</tr>
<tr>
<td>E6</td>
<td>Atomic Coordinate Data for DTh-Hex</td>
<td>209</td>
</tr>
<tr>
<td>E7</td>
<td>Atomic Coordinate Data for DTh-Hep</td>
<td>211</td>
</tr>
<tr>
<td>F1</td>
<td>Atomic Coordinate Data for BDTh-Ben</td>
<td>214</td>
</tr>
<tr>
<td>F2</td>
<td>Atomic Coordinate Data for BDTh-NAP</td>
<td>216</td>
</tr>
<tr>
<td>F3</td>
<td>Atomic Coordinate Data for BDTh-Ant</td>
<td>218</td>
</tr>
<tr>
<td>F4</td>
<td>Atomic Coordinate Data for BDTh-Tet</td>
<td>221</td>
</tr>
<tr>
<td>F5</td>
<td>Atomic Coordinate Data for BDTh-Pen</td>
<td>223</td>
</tr>
<tr>
<td>F6</td>
<td>Atomic Coordinate Data for BDTh-Hex</td>
<td>226</td>
</tr>
<tr>
<td>F7</td>
<td>Atomic Coordinate Data for BDTh-Hep</td>
<td>229</td>
</tr>
<tr>
<td>G</td>
<td>Publications and Conferences</td>
<td>232</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

The chapter gives an introduction to the organic semiconductor and their application in molecular and organic material, the background of the study, problem statement, objectives of the research, the scope of the study, the significance of the work as well as the thesis outline.

1.2 Background of the Study

Interest in π-conjugate organic semiconductor materials has potentially increased over a decade in materials science as well as in chemistry and space physics. This is due to their promising advantages over a traditional inorganic material such as lower cost of production, light weight, flexibility (see Figure 1.1), large area of coverage such as in nanomaterials (Nicolas et al., 2012), low temperature and soluble-based processes (Fahem and Bauhofer, 2012), and promising mechanical properties (Cosseddu et al., 2013).

The π-conjugate organic materials also demonstrate significant important applications in organic light emitting diode (OLED), energy storage, photovoltaic cells, organic thin film transistors (OTFT), electrochromic devices, sensors (Ozen et al., 2011), electronic paper and flat panel liquid crystal displays (Ruiz et al., 2005)
and organic electrochemical transistor as biocompatible for brain-machine interface (Khodagholy et al., 2013), and their application in rechargeable Li-ion batteries (Firouzi and Zahedi, 2008). They are utilized in glassy carbon materials and graphene sheets (Hajgató et al., 2008). Also, Nall (2011) has described the most applicable areas of application of organic semiconductor materials such as; active-matrix OLED, organic light emitting diode, organic field-effect transistor, organic solar cell and hybrid solar cell.

In addition, low-cost ‘smart cards’, radio-frequency ID tags and printable transistors are under active investigation (Ruiz et al., 2005). Also, due to good quantum fluorescence efficiency and high mobility of hole transport, the acene derivatives are the most promising candidates for optoelectronic devices application; this includes organic light emitting diodes, organic field effect transistor and hole collectors in organic photovoltaic cells (Pan et al., 2008).

Figure 1.1: Demonstration of a flexible OLED device

(Source: solar.upstime.com/oled-power-new-screens-are-solar-panels)
However, organic semiconductor materials are divided into two broad groups: oligomers (small molecules); these are chemically or industrially treated in a vacuum, and the polymers, which are mainly treated by wet chemical techniques. The oligomers and co-oligomers have demonstrated some promising results over a polymer. Thus, they are easily soluble in organic solvents, distilled and formed a crystalline film. Oligomers and co-oligomers of thiophenes and acenes are essential molecules for OFETs device (Zhao et al., 2013). Also, some theoretical findings in the same study have shown that oligoacene of anthra [2, 3-c] thiophene and their cyanate derivatives manifested ultra-low hole reorganization energy which suggests oligoacene materials to be excellent candidates for p-type semiconductors.

Consequently, organic semiconductor materials utilized molecular orbitals (MO) as the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO); a probable electronic state of organic material. This is a transition state for π-electrons in organic molecules. The HOMO and LUMO orbitals energy of the organic semiconductor play an important role in determining the electronic and optical property of the π-conjugate organic materials (Sun, 2006).

Also, another property that determines the material property is; ionization potential (IP) and the electron affinity (EA). The material with p-type or n-type organic material conduction; the ionization potential, IP and electron affinity, EA is mainly used to estimate the energy barrier for injection of holes and electrons, and to determine the efficiency of the material for molecular device design (El-Nahas et al., 2012). However, for an efficient electron injection from standard metal electrodes, the minimum value of electron affinity (EA) should be 3.00 eV (Purushotham and Sastry 2013).
1.3 Problem Statement

Research and Industrial applications show that oligomers of acenes, their derivatives, heterocyclic hydrocarbons and their polymers have been under intensive study over a decade, after the discovery of the first organic semiconductor material by Shirakawa (Shirakawa et al., 1977). In addition, prediction of a new material is now being employ via modelling and computational methods, which yields remarkable results where the experimental methods become difficult and expensive to carry out.

However, there are many impending challenges regarding the development of an organic semiconductor material application with linear acenes. In general, Garzón et al. (2010) have observed the problems with the molecular design of organic semiconductor material that they have a poor concentration of electrons, scarcely soluble, which is difficult to process. Also, they are also unstable in air. In addition, García et al. (2011) have reported that the luminescence, electroluminescence and electronic property of n-type organic material is affected when subjected to air, whereas the p-type organic material behave differently and show an increase in material conductivity with the air pressure.

On the other hand, García et al. (2012) have reported in their study of poly (arylenethynyl-thienoacenes), a linear acenes derivative for optoelectronics devices that the main problems with ambipolar organic semiconductors is the intrinsic instability of radical ions in the air, and the high barrier for electron injection, which considered to be the work function used as noble metals. Also, a similar case related pentacene and other high linear acene molecules were reported by (Wang et al., 2012).

Further, (Shinamura et al., 2011) have demonstrated that pentacene is an ideal organic semiconductor material for organic field effect transistor (OFET), but high oxidation potential and chemical instability defined by the HOMO energy level makes the molecules susceptible to air oxidation. This is also a major setback for it further practical application. Similarly, Bunz (2015) has observed a similar case that
linear acenes with high ring such as hexacene and heptacene experienced insolubility and high reactivity, which make them difficult to process.

However, many attempts have been made to overcome the above challenges in the design of an organic and molecular electronic device. The early report for an air-stable organic semiconductor was the use of Bis (dithienobenzene), a benzene derivative with reasonable exhibited thin-film mobility of 0.04 $cm^2V^{-1}s^{-1}$ (Wang et al., 2012). Also, Tang and Bao (2010) have reported that the use of halogen (such as fluorine, chlorine and bromine etc) in the acenes molecule could be the best method forward to overcome the instability in the air that is beneficiary toward a proper commercialization of organic semiconductor devices. Thus, the method resulting in production of n-type organic materials.

Moreover, Katsuta et al. (2011) have reported another improvement for air stability organic semiconductor with tetracene and pentacene using cyanate for OFET performance; 5,12-dicynonaphathacene (DC-NAP) and 6,13-dicycnonpentacene (DC-PEN) material, a linear acene derivatives. The result demonstrated the improvement toward air stability of the molecules. In addition, the HOMO and LUMO level differences for DC-NAP and DC-PEN is 0.83 eV and 0.89 eV, and 4.0 eV and 4.14 eV with the LUMO level similar to that of fullerene, C$_{60}$ respectively. Due to anionic states and low LUMO level, both DC-NAP and DC-PEN behave as n-type organic semiconductors. Pramanik and Miller (2012) have reported a different procedure for the synthesis of pentacene-based acenes with an effort to integrate pentacene to OLEDs and photovoltaic devices.

Furthermore, Watanabe et al. (2013) have cited that other bulk materials are utilized to increase the charge and controlling stability of organic semiconductor materials such as arlthio, phenyl, alkylsilylethynyl and many others. Also, the replacement of hydrogen in carbon-hydrogen bond, -CH group in the acenes family (azaacenes) backbone with hetero atoms has additionally advanced the scientists to modify their properties. This has strongly transformed the frontier orbitals energy (FOE) structure of new organic molecular structures by their number, position, and
valencies toward the enhancement of molecular material design (Li and Zhang, 2015).

In addition, Zhang et al. (2013a) have reported that other parameters can be applied to evaluate properties related to molecular stability and the production of charges, such as ionization potential and electron affinity. It is shown that a molecule with higher ionization potential indicates a better stability of the material, whereas a smaller electron affinity reveals the large barrier for electron injection, which is also a remarkable way of manipulating the molecules to improve electronic efficiency.

Also, with the exact or local density approximation (LDA), generalized gradient approximation (GGA) models, recently have provided good representation and physical meaning of the optical band gap \(E_{\text{gap}} \) and frontier orbitals energy, which is usually determined by optical spectroscopy experimental (Baerends et al., 2013)(Cardia et al., 2014; Autschbach and Srebro, 2014).

Despite the fact, there many literature that have reported on the properties of linear acenes and their derivatives, and synthesis, but not all accounts for their chemical properties by quantum chemical indices. Also, in some studies, the ground state energy, electronic and vibrational properties of the linear acenes and their derivatives were not comprehensively studied.

However, due to their significance in organic and molecular electronic materials, there is a need to further study their properties for the potential used in organic semiconductor materials design. Hence, in this research work, we will report and extend the study of electronic, chemical and vibrational properties of linear acenes, and to predict their derivatives based on the previous literature. Also, Hartree-Fock (HF) method, Density Functional Theory (DFT) with B3LYP exchange correlation and MP2 with a selected basis set will be used. This will be given a clear justification on the results in comparison to previous work.
1.4 Research Objectives

The primary aim of the research is to investigate, calculate and predict through chemical physics study, the properties of linear acenes that have potential applications in molecular device design such as OFETs and OLEDs. To accomplish the above aim the specific objectives are proposed as follows:

1) To calculate the ground states energy and electronic properties of linear acenes (n = 1 to 7) compounds by linear combination atomic orbitals theory (LCAO) at HF, DFT-B3LYP and MP2 methods. Also to compute their excited electronic states using TDDFT.

2) To compute the chemical properties using quantum chemical indices for the linear acenes that are useful to the design of OLEDs and OFETs materials. Some of the parameters include ionization energy (IE), electron affinity (EA), chemical potential (µ) and global hardness (η) etc.

3) To determine the vibrational properties of linear acenes relevant to the organic semiconductor materials application.

4) To identify the above said properties for linear acene derivatives based on substitution of halogen, cyanate and thiophene-based. As the present method for enhancement of acenes properties use in molecular and organic electronic application.

1.5 Scope of the Study

In this research work, a linear combination atomic orbital (LCAO) method is adopted to calculate electron, chemical and vibrational properties of linear acenes (n = 1 to 7) and the prediction of their derivatives based on the addition of cyanate, halogen, and heterocyclic compounds. Energy minimization and structure optimization will be carried out with NWchem 6.3 code (Aprà et al., 2003; Valiev et
al., 2010) under the DFT theory at B3LYP exchange. The following approaches are adopted to calculate electronic, chemical and vibrational properties of linear acenes (n = 1 to 7) and their derivatives:

(a) Atomic coordinates, ground state energy, Coulomb potential, nuclear repulsion energy and infrared vibrational frequency parameter can be calculated with the help of energy minimization procedure using Hartree-Fock and density functional theory (DFT) approximations.

(b) Electronic properties such as HOMO energy, LUMO energy and band gap energy, and their excited state (S$_1$) etc. can be computed using Hartree-Fock (HF), density functional theory (DFT), MP2 approximations, and time dependent density functional theory (TDDFT) with B3LYP exchange-correlation.

(c) Global quantum chemical indices like chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), electrophilicity (ω), ionization potential (IP), and electron affinity (EA) can be utilized to predict and analyse the chemical stability of the molecular structures.

(d) Vibrational property such as infrared spectra can be evaluated by using DFT approximation at B3LYP exchange.

(e) To overcome the problem of convergence in optimization of the total ground state energy and electronic properties, different basis sets like 6-311G, 6-311G (d, p), 6-311G* etc. are used for accurate predictions.
1.6 Significances and Original Contribution of the Study

The study of linear acenes (n = 1 to 7) properties; benzene, naphthalene, anthracene, tetracene, pentacene, hexacene, heptacene, and the prediction of their derivatives by first-principle calculations using LCAO method is an attempt to contribute to the existing knowledge on linear acenes electronic, chemical and vibrational properties. Also, the findings of this study would make a necessary recommendation that eventually lead to the potential application of the studied materials for the development of the molecular and organic electronic device design.

The important achievements in the study are:

(i) Hartree-Fock (HF), Density functional theory (DFT), (MP2) and CAM-B3LYP with B3LYP exchange-correlation using LCAO method are utilized simultaneously to remove the discrepancy in the results associated with the properties of linear acenes (n = 1 to 7).

(ii) The designated ranges of the molecular structures have never been part of any first-principle calculations until current study. Electronic, chemical, and vibrational parameters and prediction of new molecular derivatives of linear acenes are calculated and predicted first time.

(iii) The present research work proves that the addition of halogen, cyanate, and heterocyclic functional atoms or molecules to linear acenes molecular structures is a good method to increase and improve the stability, and electronic properties of the linear acenes.

(iv) Selected quantum chemical indices such as chemical potential (µ), electronegativity (γ), global hardness (η), global softness (S), electrophilicity (ω), ionization potential (IP), and electron affinity (EA) are utilized for the first time to establish chemical instability of the linear acenes and their derivatives. The study has proven that the linear acenes; naphthalene to pentacene and their derivatives are useful for OLEDs and OFETs design.
The frequencies vibrational spectra relevant to molecular absorption are also established and analysed first time for the linear acenes and some of their derivatives. Also, wavenumbers in the infrared regions of transmittance intensity are identified.

1.7 Thesis Structure and Organization

Chapter 1 captures the general introduction of the research work, which includes research background, research problems that need to be addressed in the work, objectives, and scope of the research, and as well as the importance of the study and the thesis structure organization.

Also, Chapter 2 reviews the literature on polyacenes (linear acenes) and their derivatives, and also heterocyclic compounds. In addition, Chapter 3 discusses the methodology involved in the research work. Theoretical framework and the methods, as well as computational details of the research work, are given in chapter three.

Chapter 4 discusses the results including, calculation of ground state energy (GSE), electronic properties, optical excitation, etc. Also, Chapter 5 discusses on chemical indices like; chemical potential (μ), electrophilic (ɷ), global hardness (η), electronegativity (χ), global softness (S), and vibrational properties. Finally, Chapter 6 summarizes and reported the conclusion of the research work. Also, research limitation, reference list, and appendices are listed in the chapter accordingly.
REFERENCES

Dheivamalar, S., and Sugi, L. Electronic, optical, thermodynamic parameter, NMR analysis on fullerene interacting with glycine by DFT methods.

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777: John Wiley & Sons Ltd.

Ozen, C., Yurtsever, M., and Ozturk, T. (2011). A theoretical approach to the formation mechanism of diphenyldithieno[3,2-b:2',3'-d]thiophene from 1,8-
diketone, 4,5-bis(benzoylethylthio)thiophene: a DFT study. Tetrahedron. 67, 6275-6280.

aminoestrogens with an anticoagulant effect. European Journal of Medicinal Chemistry. 46, 2463-2468.

