BEHAVIOUR-BASED FACILITIES ENERGY MANAGEMENT FRAMEWORK FOR HIGHER EDUCATION STUDENTS’ RESIDENCE IN GHANA

ANTHONY ADJEI-TWUM

UNIVERSITI TEKNOLOGI MALAYSIA
BEHAVIOUR-BASED FACILITIES ENERGY MANAGEMENT FRAMEWORK FOR HIGHER EDUCATION STUDENTS’ RESIDENCE IN GHANA

ANTHONY ADJEI-TWUM

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Facilities Management)

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

JANUARY 2017
To my wife, Mrs. Naomi Adjei-Twum and our children: Emmanuel Adjei-Twum, Nana Akosua Difie Adjei-Twum, Adwoa Afriyie Adjei-Twum and Yaw Osei Adjei-Twum
ACKNOWLEDGEMENT

I wish to take this opportunity to express my gratitude to all whose contribution, directly or indirectly, have brought this thesis to this far.

Without the protection and guidance of the Almighty God nothing could have been achieved. I, therefore, sincerely thank God for taken me through my entire stay and study in Universiti Teknologi Malaysia.

To my supervisors, Assoc. Prof. Dr Maimunah Binti Sapri and Dr Sheau Ting Low, I owe my deeply heartfelt gratitude. They have proven to be professionals in the field of facilities management, as well as mothers to me during my stay and study in Malaysia; their invaluable guidance, comments and criticisms have seen me through my research.

Other categories of people who need not to be forgotten for their precious contribution to my study, are my study respondents and research assistants. I appreciate your time and opinions provided to make my study a reality.

I also want to extend my appreciation to my employers, Kumasi Polytechnic, who partly funded my study, without whose financial support and permission I would not have been able to pursue my PhD programme. Furthermore, I thank all my friends and my colleagues in Ghana and in Universiti Teknologi Malaysia who extended helping hands in diverse ways during my research work; I thank my church members, both in Ghana and Malaysia for their continual prayers and encouragement towards the achievement of my PhD dream.

Last, but not the least, I would want to express my deepest appreciation to my family, especially, my wife and children for their patience, sacrifice, support and encouragement in diverse ways which have enabled me to successfully complete this thesis.
ABSTRACT

Adopting desirable energy-related behaviours in built facilities have greater potential towards reducing the demand for energy and energy savings. Promoting desirable energy behaviour can be achieved through understanding of users’ behaviour and its determinants to develop appropriate energy saving programmes. However, research on facilities users’ behaviour and facilities energy management is limited within the domain of facilities management, especially in the higher education environment. The main question addressed in this study is: how can users’ behaviour be incorporated into facilities energy management? This study aims to explore the energy use behaviour of students living in higher education residential facilities. The objectives were to determine the factors that influence residential students’ energy use behaviour from the students’ and managers’ perspectives respectively; to identify energy management practices implemented in the residential facilities; and to develop a behaviour-based facilities energy management framework. To achieve these objectives, the study adopted a multi models approach to mixed methods research. The study was situated within pragmatist paradigm with emphasis on qualitative approach. Implementation of energy management practices and energy use behaviour of students from six higher education institutions in Ghana were investigated using survey, semi-structured interview and focus group. Descriptive statistics were used to analyse the survey data whilst interview and focus group data were analysed using content analysis with MAXQDA 12 qualitative analysis software. Analysis of both the survey and the interview data revealed that, energy management practices were least implemented in all the institutions. In addition, the results indicate that there is much room for improvement in students’ energy saving behaviour. Furthermore, the analysis revealed four key factors that influence students’ energy use behaviour from the managers’ perspective: institutional, economic, perceived behavioural control and attitude. From the students’ perspective, five key factors were found to influence students’ energy use behaviour across all the four behaviours studied: attitude, social, habit, physical and economic factors. The study developed and validated behaviour-based facilities energy management framework (BFEM) to manage energy in students’ residential facilities. This study contributes to knowledge by integrating individuals’ behaviour, energy management and facilities management toward energy savings.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Brief Description of Ghana</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Climatic Situation in Ghana</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Energy Situation in Ghana</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem Statement</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Questions</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Aims and Research Objectives</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Scope of Research</td>
<td>15</td>
</tr>
</tbody>
</table>
1.7 Outline of Research Methods

16

1.8 Organisation of the Thesis

17

2 ENERGY MANAGEMENT IN FACILITIES MANAGEMENT

18

2.1 Introduction

18

2.2 Overview of Facilities Management

18

- 2.2.1 Descriptive Relationship between Facilities Users, Energy and other Components of an Organisation

- 2.2.1.1 People – Place –Energy Relationship

- 2.2.1.2 People – Process – Energy Relationship

- 2.2.1.3 People – Technology – Energy Relationship

- 2.2.1.4 People – Facilities Management – Energy Relationship

25

27

28

28

29

2.3 Energy Management

30

- 2.3.1 Approaches to Energy Management

- 2.3.1.1 Technological Approach to Energy Management

- 2.3.1.2 Behavioural Approach to Energy Management

33

33

35

2.4 Summary

43
3 THEORETICAL BACKGROUND OF ENERGY USE BEHAVIOUR

3.1 Introduction 44

3.2 Understanding Human Behaviour Theory 44
 3.2.1 The Theory of Planned Behaviour (TPB) 45
 3.2.2 The Theory of Interpersonal Behaviour (TIB) 48
 3.2.3 Application of the Theory of Interpersonal Behaviour 51

3.3 Understanding Facilities Users’ Energy Use Behaviour 54
 3.3.1 Impact of Users’ Energy Use Behaviour on Facilities Energy Consumption 55
 3.3.2 Energy Use Behaviour in Higher Education Students’ Residential Facilities 57

3.4 Underlying Factors of Facilities Users’ Energy Use Behaviour 62
 3.4.1 External Influencing Factors of Energy-related Behaviours 62
 3.4.1.1 Institutional Factors 64
 3.4.1.2 Physical Factors 66
 3.4.1.3 Economic Factors 67
 3.4.2 Internal Influencing Factors of Energy-Related Behaviours 69
 3.4.2.1 Attitude 69
 3.4.2.2 Social Factors 71
 3.4.2.3 Affect 73
 3.4.2.4 Perceived Behavioural Control 74
 3.4.2.5 Habit 75

3.5 Strategies to Influence Energy Use Behaviour 76

3.6 Research Gap 84

3.7 Summary 85
4 RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Research Philosophy</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Research Approach and Design</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Research Approach and Design Adopted for this Study</td>
<td>93</td>
</tr>
<tr>
<td>4.4</td>
<td>Study Area</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>Overview of Content Analysis</td>
<td>98</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Description of the Analytical Process of this Study</td>
<td>102</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Validity and Reliability</td>
<td>108</td>
</tr>
<tr>
<td>4.6</td>
<td>Research Procedures for Initial Study</td>
<td>109</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Data Collection</td>
<td>109</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Data Analysis</td>
<td>110</td>
</tr>
<tr>
<td>4.7</td>
<td>Research Procedures for Main Study</td>
<td>110</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Research Procedures for Students’ Study</td>
<td>111</td>
</tr>
<tr>
<td>4.7.1.1</td>
<td>Focus Group</td>
<td>111</td>
</tr>
<tr>
<td>4.7.1.2</td>
<td>Analysis of Focus Group Data</td>
<td>114</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Research Procedures for Managers’ Study</td>
<td>117</td>
</tr>
<tr>
<td>4.7.2.1</td>
<td>Data Collection: Managers’ Interview</td>
<td>118</td>
</tr>
<tr>
<td>4.7.2.2</td>
<td>Recruitment of Participants</td>
<td>120</td>
</tr>
<tr>
<td>4.7.2.3</td>
<td>Analysis of Data: Managers’ Interview</td>
<td>120</td>
</tr>
<tr>
<td>4.7.2.4</td>
<td>Data Collection: Managers’ Survey</td>
<td>122</td>
</tr>
<tr>
<td>4.7.2.5</td>
<td>Analysis of Survey Data</td>
<td>123</td>
</tr>
<tr>
<td>4.8</td>
<td>Ethical Considerations</td>
<td>123</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary</td>
<td>124</td>
</tr>
</tbody>
</table>
5 STUDENTS’ PERSPECTIVE OF RESIDENTIAL STUDENTS’ ENERGY USE BEHAVIOUR AND INFLUENCING FACTORS

5.1 Introduction

5.2 Results of Initial Study
 5.2.1 Findings of Initial Studies

5.3 Students’ Energy Use Behaviour from Student’s Perspective
 5.3.1 Focus Group Participants’ Energy Use Activities
 5.3.2 Energy Saving Behaviours of Focus Group Participants
 5.3.3 Students’ Bulk Ironing Behaviour
 5.3.4 Lighting Use Behaviour (Turning Off Light Not in Use)
 5.3.5 Lighting Use Behaviour (Natural Light Use)
 5.3.6 Natural Ventilation Use

5.4 Determinants of Students’ Energy Use Behaviour from Students’ Perspective
 5.4.1 Factors of Bulk Ironing Behaviour
 5.4.1.1 External Factors
 5.4.1.2 Internal Factors
 5.4.2 Factors that Influence the Behaviour of Turning Off Lights Not in Use
 5.4.2.1 External Factors
 5.4.2.2 Internal Factors
 5.4.3 Factors that Influence Students’ Natural Light Use
 5.4.3.1 External Factors
 5.4.3.2 Internal Factors
 5.4.4 Factors that Influence Students’ Natural Ventilation Use
5.4.4.1 External Factors 178
5.4.4.2 Internal Factors 182

5.5 Findings of Students’ Perspective of Students’ Energy Use Behaviours 186

5.6 Summary 189

6 MANAGERS’ PERSPECTIVE OF RESIDENTIAL STUDENTS’ ENERGY USE BEHAVIOUR AND INFLUENCING FACTORS 190

6.1 Introduction 190

6.2 Energy Use Activities in Students’ Residence 190
 6.2.1 Performing Energy Use Activities 193

6.3 Factors that Influence Students’ Energy Use Behaviour from Managers’ Perspective 196
 6.3.1 External Factors 197
 6.3.1.1 Institutional Factors 197
 6.3.1.2 Economic Factors 199
 6.3.1.3 Background 202
 6.3.1.4 Incentives & Rewards 202
 6.3.2 Internal Factors 202
 6.3.2.1 Perceived Behavioural Control 203
 6.3.2.2 Attitude 204
 6.3.2.3 Habit 205
 6.3.2.4 Social Factors 205

6.4 Strategies to Bring Change of Students Behaviour Towards Energy Saving 205
 6.4.1 Education 206
 6.4.2 Formulating and Ensuring Compliance of Regulations 207
 6.4.3 Charging Students for Energy Use 208
 6.4.4 Monitoring Energy Use 209
 6.4.5 Engaging Stakeholders 210
 6.4.6 Measuring Energy Consumption 210
6.4.7 Other Behaviour Change Strategies 211
6.5 Findings of Students’ Energy Use Behaviour 213
6.6 Summary 214

7 ENERGY MANAGEMENT PRACTICES IN STUDENTS’ RESIDENTIAL FACILITIES 215

7.1 Introduction 215

7.2 Energy Management Practices Results from Managers Interview 215
7.2.1 Monitoring 216
7.2.2 Metering 219
7.2.3 Regulations 220
7.2.4 Communication 222
7.2.5 Energy Saving Awareness 223
7.2.6 Energy Saving Initiatives 225
7.2.7 Findings of Analysis of Interview 227

7.3 Status of Energy Management Practices in Students’ Residential Facilities 228
7.3.1 Energy Management Practices Implementation at the Planning Phase 228
7.3.2 Energy Management Practices Implementation at the Implementation Phase 230
7.3.3 Energy Management Practices Implementation at the Monitoring and Evaluation Phase 232
7.3.4 Findings of Managers’ Survey of Energy Management Practices 234

7.4 Summary 235
Development of Behaviour-Based Facilities Energy Management Framework

8 Introduction

8.1 Introduction

8.2 Integration of Findings

8.2.1 Integration of Findings: Students Energy Use Behaviour

8.2.2 Integration of Findings: Factors that Influence Students Energy Use Behaviour

8.2.3 Integration of Findings: Linking Energy Management to Students’ Energy Use Behaviour

8.3 Behaviour-based Facilities Energy Management Framework

8.3.1 Planning Phase of Behaviour-based Facilities Energy Management

8.3.1.1 Stage 1: Situational Analysis

8.3.1.2 Stage 2: Analysis of Factors That Influence Energy Use Behaviour of Students

8.3.1.3 Stage 3: Development of Facilities Energy Management Programme

8.3.2 Implementation, and Monitoring and Evaluation Phases

8.3.2.1 Stage 4 - Implementation

8.3.2.2 Stage 5 - Monitoring and Evaluation

8.3.3 Proposed Rating Scores for Students’ Energy Use Behaviour and Contextual Assessment

8.4 Validation of Framework and Assessment Forms

8.4.1 Results of Behavioural and Contextual Assessment
8.4.1.1 Assessment Results from Independent Assessor
- Page 253

8.4.1.2 Assessment Results from Students
- Facilities Users
- Page 256

8.4.2 Framework Validation Results from Experts
- Page 258

8.5 Summary
- Page 259

9 CONCLUSION AND RECOMMENDATION
- Page 261

9.1 Introduction
- Page 261

9.2 Discussion of Findings in Relation to Previous Studies
- Page 261

9.3 Summary of Findings
- Page 265

9.3.1 Realising Objective One: Students’ Perspective of Students’ Energy Use Behaviour
- Page 266

9.3.2 Realising Objective Two: Managers’ Perspective of Students’ Energy use behaviour
- Page 267

9.3.3 Realising Study Objective Three: Identification of Energy Management Practices
- Page 267

9.3.4 Realising Study Objective Four: Development of Behaviour-based Facilities Energy Management Framework
- Page 268

9.4 Contribution of the Study
- Page 269

9.4.1 Contribution to Knowledge
- Page 269

9.4.2 Potential Contribution to Industry
- Page 270

9.5 Limitation of Study
- Page 270

9.6 Suggestions for Future Research
- Page 271

REFERENCES
- Page 273

Appendices A – P
- Pages 298-346
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Composition of electricity generation sources in percentages</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Electricity consumption (GWh) in Ghana by sector (2005-2014)</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Electricity demand and supply (GWh) in Ghana from 2010-2014</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Research methodology outline</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Studies examining energy management practices</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Energy management key practices (Adapted from Low, 2008; Choong et al., 2012)</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Studies examining energy management within the context of FM</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Energy use behaviour studies involving higher education residential facilities</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Factors that influence facilities users’ energy use behaviour</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Examples of mixed method research approach</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Higher education institutions in Ghana</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Characteristics of focus group participants (Mean ± SD, n = 47)</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of impacts, penetration and probability of energy saving behaviours</td>
<td>127</td>
</tr>
<tr>
<td>5.2</td>
<td>Overview of students’ energy use activities – students’ perspective</td>
<td>130</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.3</td>
<td>Level of engagement in the four behaviours at participants’ level</td>
<td>137</td>
</tr>
<tr>
<td>5.4</td>
<td>Sample quotation for bulk ironing</td>
<td>145</td>
</tr>
<tr>
<td>5.5</td>
<td>Sample quotation for turning off light not in use</td>
<td>158</td>
</tr>
<tr>
<td>5.6</td>
<td>Sample quotations for natural light use</td>
<td>170</td>
</tr>
<tr>
<td>5.7</td>
<td>Sample quotations for natural ventilation use</td>
<td>180</td>
</tr>
<tr>
<td>6.1</td>
<td>Overview of students’ energy use activities – manager’s perspective</td>
<td>192</td>
</tr>
<tr>
<td>6.2</td>
<td>Sample quotation on energy use behavioural factors from managers</td>
<td>201</td>
</tr>
<tr>
<td>6.3</td>
<td>Key strategies to influences students’ energy use behaviour</td>
<td>214</td>
</tr>
<tr>
<td>7.1</td>
<td>Ranking of implementation of energy management practices at the planning phase</td>
<td>230</td>
</tr>
<tr>
<td>7.2</td>
<td>Ranking of energy management practice at the implementation phase</td>
<td>232</td>
</tr>
<tr>
<td>7.3</td>
<td>Ranking of energy management practices at monitoring and evaluation phase</td>
<td>234</td>
</tr>
<tr>
<td>7.4</td>
<td>Fairly implemented energy management practices</td>
<td>235</td>
</tr>
<tr>
<td>8.1</td>
<td>Summary of behaviour factors identified by students (N=47)</td>
<td>239</td>
</tr>
<tr>
<td>8.2</td>
<td>Summary of energy behaviour factors identified by managers</td>
<td>240</td>
</tr>
<tr>
<td>8.3</td>
<td>Overall average of percentages of behavioural factors</td>
<td>241</td>
</tr>
<tr>
<td>8.4</td>
<td>Proposed students’ energy use behaviour rating system</td>
<td>251</td>
</tr>
<tr>
<td>8.5</td>
<td>Proposed context condition rating systems</td>
<td>252</td>
</tr>
<tr>
<td>8.6</td>
<td>Contextual assessment scores</td>
<td>255</td>
</tr>
<tr>
<td>8.7</td>
<td>Assessment of students’ behaviour in Malaysia</td>
<td>257</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map of Ghana showing Climatic zone (Marihellum, 2013)</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Climate of Three cities that represent the three climatic zones of Ghana (www.ghana.climatemps.com)</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Facilities energy pyramid</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Theory of planned behaviour (Ajzen, 1991)</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Theory of interpersonal behaviour (Adopted from Egmond and Bruel, 2007)</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Theory of interpersonal behaviour in relation to energy use (Adopted from Martiskainen, 2007)</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>PRECEDE-PROCEED model (Adapted from Green and Kreuter, 2005)</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>Conceptual framework of the study</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow of research methodology for present study</td>
<td>94</td>
</tr>
<tr>
<td>4.2</td>
<td>Framework used to analyse the qualitative data</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Overview of contributions of focus group participants during sessions</td>
<td>114</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of factors of bulk ironing behaviour at focus group level</td>
<td>116</td>
</tr>
<tr>
<td>4.5</td>
<td>Broad-brush coding and annotation during exploration of managers interview data</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Distribution of energy use activities across focus groups</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>Energy saving behaviours of focus group participants</td>
<td>132</td>
</tr>
<tr>
<td>5.3</td>
<td>Energy saving behaviour of focus group participants at group level</td>
<td>133</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.4</td>
<td>Number of energy saving behaviours performed by focus group participants</td>
<td>133</td>
</tr>
<tr>
<td>5.5</td>
<td>Distribution of engagement in the four behaviours at focus groups level</td>
<td>135</td>
</tr>
<tr>
<td>5.6</td>
<td>Factors that influence students to turn off lights not in use</td>
<td>155</td>
</tr>
<tr>
<td>5.7</td>
<td>Factors that influence students’ use of natural light</td>
<td>167</td>
</tr>
<tr>
<td>5.8</td>
<td>Factors that influence students’ use of natural ventilation</td>
<td>177</td>
</tr>
<tr>
<td>5.9</td>
<td>Key determinants of students energy use behaviours</td>
<td>188</td>
</tr>
<tr>
<td>6.1</td>
<td>Students’ energy use activities</td>
<td>191</td>
</tr>
<tr>
<td>6.2</td>
<td>Nature of students’ energy use behaviour</td>
<td>193</td>
</tr>
<tr>
<td>6.3</td>
<td>External factors of students’ energy use behaviour</td>
<td>197</td>
</tr>
<tr>
<td>6.4</td>
<td>Analysis of internal factors from managers’ perspective</td>
<td>203</td>
</tr>
<tr>
<td>6.5</td>
<td>Strategies to influences students’ energy use behaviour</td>
<td>206</td>
</tr>
<tr>
<td>6.6</td>
<td>Determinants of students’ energy use behaviour from managers’ perspective</td>
<td>213</td>
</tr>
<tr>
<td>7.1</td>
<td>Energy management practice in HESRF</td>
<td>216</td>
</tr>
<tr>
<td>7.2</td>
<td>Monitoring practices</td>
<td>217</td>
</tr>
<tr>
<td>7.3</td>
<td>Energy saving initiatives</td>
<td>225</td>
</tr>
<tr>
<td>7.4</td>
<td>Key energy management practice revealed through managers’ interview</td>
<td>228</td>
</tr>
<tr>
<td>7.5</td>
<td>Energy management practices at the planning phase</td>
<td>229</td>
</tr>
<tr>
<td>7.6</td>
<td>Energy management practices at the implementation phase</td>
<td>231</td>
</tr>
<tr>
<td>7.7</td>
<td>Energy management practices at monitoring and evaluation phase</td>
<td>233</td>
</tr>
<tr>
<td>8.1</td>
<td>Integrated findings of students energy use behaviour</td>
<td>237</td>
</tr>
<tr>
<td>8.2</td>
<td>Behaviour-based facilities energy management framework (BFEM)</td>
<td>245</td>
</tr>
<tr>
<td>8.3</td>
<td>Results of experts judgment of framework</td>
<td>258</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP</td>
<td>Behaviour change programmes</td>
</tr>
<tr>
<td>BFEM</td>
<td>Behaviour-based facilities energy management framework</td>
</tr>
<tr>
<td>BMS</td>
<td>Building management systems</td>
</tr>
<tr>
<td>CMB</td>
<td>Code matrix browser</td>
</tr>
<tr>
<td>CRB</td>
<td>Code relations browser</td>
</tr>
<tr>
<td>EMP</td>
<td>Energy management practices</td>
</tr>
<tr>
<td>EUB</td>
<td>Energy use behaviour</td>
</tr>
<tr>
<td>FEM</td>
<td>Facilities energy pyramid</td>
</tr>
<tr>
<td>FM</td>
<td>Facilities management</td>
</tr>
<tr>
<td>FMAA</td>
<td>Facilities Management Association of Australia</td>
</tr>
<tr>
<td>FEMP</td>
<td>Facilities energy management programme</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>HEI</td>
<td>Higher education institution</td>
</tr>
<tr>
<td>HESRF</td>
<td>Higher education students’ residential facilities</td>
</tr>
<tr>
<td>IFMA</td>
<td>International Facilities Management Association</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardization</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>OAP</td>
<td>Overall average of percentages</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PBC</td>
<td>Perceived behavioural control</td>
</tr>
<tr>
<td>P-PM</td>
<td>PRECEDE-PROCEED model</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SG</td>
<td>Summary grid</td>
</tr>
<tr>
<td>ST</td>
<td>Summary table</td>
</tr>
<tr>
<td>TIB</td>
<td>Theory of interpersonal behaviour</td>
</tr>
<tr>
<td>TPB</td>
<td>Theory of planned behaviour</td>
</tr>
<tr>
<td>TRA</td>
<td>Theory of reasoned action</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Code definitions of factors that influence ironing behaviour</td>
<td>298</td>
</tr>
<tr>
<td>A2</td>
<td>Code definitions of factors that influence turning off lights not in use</td>
<td>299</td>
</tr>
<tr>
<td>A3</td>
<td>Code definitions of factors that influence use</td>
<td>300</td>
</tr>
<tr>
<td>A4</td>
<td>Code definitions of factors that influence natural ventilation use</td>
<td>301</td>
</tr>
<tr>
<td>A5</td>
<td>Code definitions for other focus group data analysis</td>
<td>302</td>
</tr>
<tr>
<td>B</td>
<td>Some major statements extracted from managers’ interview transcripts</td>
<td>303</td>
</tr>
<tr>
<td>C1</td>
<td>Initial study – experts’ questionnaire survey</td>
<td>309</td>
</tr>
<tr>
<td>C2</td>
<td>Initial study – students’ questionnaire survey</td>
<td>311</td>
</tr>
<tr>
<td>D</td>
<td>Focus group discussion guide</td>
<td>313</td>
</tr>
<tr>
<td>E</td>
<td>Informed consent for focus group participants</td>
<td>315</td>
</tr>
<tr>
<td>F1</td>
<td>Identification and distribution factors that influence bulk ironing at individual level (a section of focus group participants)</td>
<td>316</td>
</tr>
</tbody>
</table>
F2 Identification and distribution factors that influence turning off light not in use at individual level (a section of focus group participants) 317
F3 Identification and distribution factors that influence natural light use at individual level (a section of focus group participants) 318
F4 Identification and distribution factors that influence natural ventilation use at individual level (a section of focus group participants) 319
G Managers’ interview guide questions 320
H1 Summary grid showing summaries creation transcript of Manager 5 on hindrance to energy saving 322
H2 Summary table showing summaries created for hindrance to energy saving 323
I1 Examination of patterns among students’ behavioural factors from managers’ perspective 324
I2 Examination of relationship among students’ behavioural factors from managers’ perspective (Within a maximum of one paragraph) 325
J Energy management practices measurement tool 326
K1 Examination of relationship among factors that influence bulk ironing (Proximity analysis in maximum of one paragraph) 332
K2 Examination of relationship among factors that influence turning off light not in use (Proximity Analysis in Maximum of One Paragraph) 333
K3 Examination of relationship among factors that influence natural light use (Proximity analysis in maximum of one paragraph) 334
K4 Examination of relationship among factors that influence natural ventilation use (Proximity analysis in maximum of one paragraph) 335

L1 Behaviour assessment rating survey questionnaire 336

L2 Context assessment rating 339

M Detailed students’ behaviour assessment scores 341

N Framework validation survey 342

O1 A typical higher education students’ residential facility in HEI C 343

O2 Floor plan of a typical higher education students’ residential facility in HEI C 344

P1 A typical higher education students’ residential facility in HEI B 345

P2 Floor plan of typical higher education students’ residential facility in HEI B 346
CHAPTER 1

INTRODUCTION

1.1 Background of Study

The usefulness of energy to humanity cannot be overstated. Energy is required in almost every aspect of human life, e.g., in commercial activities and educational activities. Energy is described as the “golden thread” that bonds economic growth, social equity, and environmental sustainability (Frei, 2013; Ki-moon, 2012). Thus, the inadequacy or lack of energy would tremendously hamper the growth and development of business organisations, nations and the world economy at large (Sovacool et al., 2014; Birol, 2007).

However, the world is beset with a number of energy-related challenges. These challenges include increasing energy demand (energy security), environmental consequences of energy generation and consumption, energy poverty and energy price volatility all of which are threat to energy sustainability (Low et al., 2012). Energy security involves having access to continuous supply of adequate energy at affordable price (Hoeven, 2013; Asif and Muneer, 2007; OECD/IEA, 2007). The critical role energy plays in human development and economic growth makes energy security a great concern. However, energy is a resource with a limited life span for which excessive consumption would lead to its rapid depletion (Keeffe and Grimshaw, 1994). With the world economy structured around oil and other fossil fuels (Sovacool et al., 2014), and increasing demand for energy (Sovacool et al., 2014; Omer, 2008) which
is associated with economic growth, energy security would continue to be a significant issue.

Also, another energy issue is price volatility which is influenced by oil price because oil is a major source of energy. Energy price appears to be more volatile than other commodities (Ebrahim et al., 2013; Cantore et al., 2012; Regnier, 2007; Plourde and Watkins, 1998). The uncertain nature of energy prices is of great concern to many people (World Energy Council, 2015); has both direct and indirect consequences (Ebrahim et al., 2013; Ven and Fouquet, 2014). Directly, oil price fluctuation affects consumption, investment and production; increasing oil price results in increase expenditure on energy which leads to rise in the prices of goods and services whereas indirect consequences include effects on inflation and unemployment (Ebrahim et al., 2013).

Furthermore, energy poverty is another critical energy challenge which is socially-related and refers to lack of access to modern energy services (Birol, 2007). It is estimated that about 1.3 billion people (18.6%) in the world are without access to electricity (Birol, 2012; World Energy Council, 2013). Access to modern energy services and electricity has been linked to development and reduction of poverty (Sovacool et al., 2014; Birol, 2007). Lack of access to modern energy hampers skills development; prevents people from taking part in the global economy whilst providing access to energy creates a platform for people’s development (Sovacool et al., 2014; Birol, 2007). Birol (2007) suggests that commitment, political will and investments in energy infrastructure by world leaders and governments are needed to address energy poverty.

Moreover, majority of the sources of energy supply in the world, such as oil, coal, and natural gas are carbon laden, which have high environmental consequences (Lior, 2008; Holdren and Smith, 2000). Therefore, the more energy we consume, the more carbon we are likely to emit into the atmosphere. Previous studies have shown that energy consumption in buildings is associated with emission of high proportion of carbon dioxide and other greenhouse gases (GHG). For example, it has been
highlighted that buildings are responsible for 25-40% GHG emissions in Organisation for Economic Co-operation and Development (OECD) countries (Wilde and Coley, 2012); 38% of the total GHG emissions in 2009 in UK (Coleman et al., 2013); and account for 48% GHG emissions in the USA (Janda, 2011). These emissions are sources of severe weather conditions, depletion of the ozone layer and other environmental degradations (Holdren and Smith, 2000).

Against this backdrop, it becomes utmost important to prioritize the energy issues on the agenda of the international bodies, nations, business organisations as well as individuals as remarked by Ki-moon (2012) that “we can no longer burn our way to prosperity”. Lior (2008) suggests that it is important and possible to reduce energy consumption. This is consistent with the call to using energy efficiently which is vital (Hoeven, 2013; Wiggins, 2010) and appears to be the way to go. Using energy efficiently means small amount of energy is used to accomplish the same task without affecting the quality of life of facilities users or an organisation’s business (c.f. Patterson, 1996). Efficient use of energy entails changing one’s habit and behaviour that are energy wasting to adopt energy saving ones (Hoeven, 2013). Examples of efficient ways of using energy include turning off lights when spaces are unoccupied, making optimum use of daylight and practising bulk ironing. In other words, mitigating energy challenges would require judicious use of energy as a way forward, which is the subject of energy management (Capehart et al., 2008).

This need for prudent use of energy calls for effective management of energy which would be achieved through facilities management (FM). One of the objectives of FM is to improve the efficiency of the built environment (Cotts et al., 2010) and FM’s role in energy management has been acknowledged. Several studies have been carried out in FM that identify energy management as one of the key functions of FM (e.g. Chotipanich, 2004). In addition, FM has been the forerunner towards achievement of sustainability agenda through sustainable FM (Elmualim et al, 2012) of which energy issues are major component (Alexander, 1996).
1.2 Brief Description of Ghana

This section presents a brief background of Ghana. Ghana is a West African country located at the shores of Gulf of Guinea and the Atlantic Ocean, within latitudes 4.5° and 11.5° north of the Equator and between Longitudes 3.5° west and 1.3° east; and shares borders with La Cote D’ivoire to the west, Republic of Togo to the east and Burkina Faso to the North. Ghana’s population is estimated at 28 million (www.worldpopulationreview.com) with a gross domestic product of US$48,678 million, which is made up of service sector (49.5%), industry sector (28.6%) and agricultural sector (22.0%). The section discusses the climate and energy situation in Ghana.

1.2.1 Climatic Situation in Ghana

According to the Köppen climate classification system, Ghana falls within the tropical climate with clear sky and high temperatures (Mariellum, 2013; Kottek et al., 2006). Ghana experiences two main types of climatic conditions which are influenced by two types of air masses that blow over the country: North-eastern dry and hot wind blowing from the Sahara Desert and south western moist wind from the Atlantic Ocean. These air masses create dry season (harmattan) and rainy season respectively. However, Ghana is divided into three major climatic zones: northern savannah with dry season of hot days, cool nights and clear skies as its key features; tropical forest with two rainy seasons from April to July and September to November; and coastal savannah with similar characteristics as the northern savannah zone (see Figure 1.1). Average annual temperature is quite similar across the country, ranging between 26$^\circ$C and 29$^\circ$C; however, daily variation is greater in the northern zone than it is in the coastal zone (www.ghana.climatemps.com).
Moreover, in terms of sunlight and cloudy conditions which reflects the clearness of the sky, Figure 1.2 A-C present the average sunlight hours per day and the length of daylight hours per day of the three climatic zones, represented by the cities: Tamale (Northern savannah), Kumasi (Tropical forest) and Accra (Coastal savannah). As can be seen from these figures, Ghana has average daily daylight hours ranging between 11.4 and 12.7 hours, fairly stable throughout the year across the three zones
Figure 1.2: Climate of Three cities that represent the three climatic zones of Ghana
(www.ghana.climatemps.com)
whilst average daily sunlight hours ranges between 2.3 and 9.1 hours, with the lower hours occurring between July and September. However, these durations of sunlight per day varies across the climate zones, with tropical forest recording lower daily sunlight hours throughout the year. The months of October to March have sunny skies. With clear skies, as depicted by the length of daylight hours and sunlight hours, the use of natural light within built facilities appears possible with appropriate designs of these facilities; and other factors which affect energy saving behaviours, which the study seeks to explore within HESRF.

In relation to natural light usage in the built facility is daylight factor, which refers to the ratio of indoor light levels to outdoor light levels expressed in percentages (Koranteng et al., 2012). This daylight factor is typically influenced by the building design. According to Hopkins et al. (1996), minimum daylight factor of 0.5%. 1% and 4% are respectively appropriate for a bedroom, living room and rooms used for computing and typing, with which the use of natural light is made possible. However, most of the designs of the HESRF studied appears to clearly make the use of natural light possible (see Appendices O1, O2, P1 and P2 for photographs and floor plans of typical HESRF). These plans also show the distribution of light switches in the various rooms and balconies with some rooms having separate switches for different lights while others have only one switch for the number of lights provided in the rooms.

1.2.2 Energy Situation in Ghana

There are three main types of energy sources in Ghana: Biomass (64%), petroleum fuels (27%) and electricity (9%) (Gyamfi et al., 2015). Although electricity accounts for 9% of the total energy mix, it is the main type of energy used in buildings which accounts for about 36% in residential sector and about 65% in service (e.g. offices, educational institutions) and manufacturing industries (Eshun and Amoako-Tuffour, 2016). Electricity is produced from two main sources – hydro and thermal, supplemented by imports and/or solar (Energy Commission of Ghana, 2011, 2013, 2015a). The thermal plants mostly use natural gas or crude oil as their raw materials
for electricity production. Over the years, the composition of electricity generation sources has been shifting from hydro to thermal and then recently, inclusion of solar (see Table 1.1). The implication of this move towards thermal is that more fossil fuels (e.g. oil) would be burned leading to increasing emission of GHG.

Table 1.1: Composition of electricity generation sources in percentages

<table>
<thead>
<tr>
<th>Generation Sources</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td>91.50</td>
<td>87.93</td>
<td>68.81</td>
<td>64.70</td>
</tr>
<tr>
<td>Thermal</td>
<td>8.50</td>
<td>17.07</td>
<td>31.19</td>
<td>35.27</td>
</tr>
<tr>
<td>Solar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Until the 1970s world energy crisis, Ghana never experienced any energy difficulties; electricity was in abundant supply and people were encouraged to freely use electricity, and high energy consumption was promoted through the use of boilers, kilns and furnaces in the industry (Ofosu-Ahenkorah, 2007). Since then Ghana began to learn about the need to conserve energy; and has gone through a series of power crises from then till date (Brew-Hammond and Kemausuor, 2007).

Ghana is confronted with many energy-related challenges which make energy management extremely important. These challenges include energy insecurity, energy poverty, environmental and economic challenges. The key among these challenges is energy security as explained above which refer to continuous supply of energy at affordable price; hence the situation where there is inconsistent, unreliable supply of energy (electricity) and which are not affordable could be termed energy insecurity.

Demand for electricity in Ghana has been increasing due to expansion of the economy and population growth. Table 1.2 shows the energy consumption pattern in Ghana by sector from 2005 to 2014. As it can be seen, total electricity consumption increased from 5,259 KWh in 2005 to 10,182 KWh in 2014, a total increase of 93.6%, over 10-year period with all sectors more than doubling their values at 2005. This
gives approximately 10% annual increase in demand for electricity. The highest increase in the consumption occurred in the provision of street lights (349.4%), though this consumption formed only 4% of the total consumption in 2014. This was followed by about 164.8% for residential sector, and 125% and 106.7% for non-residential and industrial sectors respectively. Such an increase appears to persist as the country continues to pursue upward economic development.

Table 1.2: Electricity consumption (GWh) in Ghana by sector (2005-2014)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1,956</td>
<td>2,130</td>
<td>2,095</td>
<td>2,269</td>
<td>2,418</td>
<td>2,738</td>
<td>2,761</td>
<td>2,805</td>
<td>3,228</td>
<td>3,223</td>
</tr>
<tr>
<td>Non-Residential</td>
<td>676</td>
<td>790</td>
<td>802</td>
<td>927</td>
<td>884</td>
<td>966</td>
<td>1,041</td>
<td>1,153</td>
<td>1,525</td>
<td>1,522</td>
</tr>
<tr>
<td>Industrial</td>
<td>2,542</td>
<td>3,593</td>
<td>2,687</td>
<td>2,963</td>
<td>2,921</td>
<td>3,156</td>
<td>3,900</td>
<td>4,153</td>
<td>4,224</td>
<td>5,055</td>
</tr>
<tr>
<td>Street Lighting</td>
<td>85</td>
<td>144</td>
<td>137</td>
<td>171</td>
<td>184</td>
<td>264</td>
<td>274</td>
<td>315</td>
<td>377</td>
<td>382</td>
</tr>
<tr>
<td>Total</td>
<td>5,259</td>
<td>6,657</td>
<td>5,721</td>
<td>6,330</td>
<td>6,407</td>
<td>7,124</td>
<td>7,976</td>
<td>8,424</td>
<td>9,354</td>
<td>10,182</td>
</tr>
</tbody>
</table>

Source: Energy Commission of Ghana (2015b)

In addition, whilst demand for electricity continues to rise, supply has consistently lagged behind (Table 1.3). As can be seen, actual electricity supplied since 2010 has always fallen below required demand. This situation has resulted in load shedding since 2012. Other means of addressing the shortfall entail importing power from neighbouring countries such as La Côte d’Ivoire (Ministry of Energy, 2010), an approach the Energy Commission of Ghana (2006) describes as risky and could threaten the countries energy security.

Table 1.3: Electricity demand and supply (GWh) in Ghana from 2010-2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Required amount of electricity (Demand)</th>
<th>Actual supply</th>
<th>Energy Mark-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>13,848-17,484</td>
<td>10,232</td>
<td>3,616</td>
</tr>
<tr>
<td>2011</td>
<td>13,300-14,488</td>
<td>11,200</td>
<td>2,100</td>
</tr>
<tr>
<td>2012</td>
<td>12,394-14,673</td>
<td>12,164</td>
<td>230</td>
</tr>
<tr>
<td>2013</td>
<td>13,667-15,794</td>
<td>12,927</td>
<td>740</td>
</tr>
<tr>
<td>2014</td>
<td>14,571-15,351</td>
<td>12,906</td>
<td>1,665</td>
</tr>
</tbody>
</table>

Furthermore, increasing energy demand requires more investments to be made in the provision of energy infrastructure, to expand generation plants which are capital intensive. However, inability to produce adequate electricity has drastically affected Ghana’s economic growth. For example, the energy crisis over the period has resulted in downward growth in the country’s gross domestic product (GDP): consistently reducing from 14.4% in 2011 to 8.8% (2012), 7.1% (2013), 4.2% (2014) and projected to fall to 3.5% in 2015; losses due to energy crisis in 2007 and 2014 amounted to about 1.8% and 2% of GDP respectively (Energy Commission of Ghana, 2015a).

In addition, inadequate supply of electricity is associated with increasing unemployment. The energy crisis coupled with high tariffs has made some companies to fold up while others lay off employees because of high operational cost resulting in high unemployment in Ghana (Opare, 2016). Furthermore, one key reason that is regularly assigned to the shift from hydro power generation to thermal is changing and unreliable rainfall pattern as a result of which the country’s three hydropower plants are not able to operate at their full capacity (Gyamfi et al., 2015).

Moreover, in Ghana all government institutions, including public higher education institutions (HEI) were not paying for the electricity they use; utilities had always been the responsibility of government and for that matter, students of higher education are not levied for electricity use (Sapri et al., 2016, Ofosu-Ahenkorah, 2007). This is a clear disincentive to adopting energy saving behaviour in the non-residential sector where facility users have no personal or financial interest (Carrico and Riemer, 2011). This disincentive is expressed by the Energy Commission of Ghana as:

If someone else pays your electricity bills like it happens in government institutions, you don’t care because you may not even see the bill, as the Minister of Finance collects the bills and pay on your behalf.

(Ofosu-Ahenkorah, 2007)

With lack of financial obligation, organisations would not think of putting in place measures and programmes to manage and reduce energy consumption. Energy waste
by end-users are clearly visible throughout the country which is noted in Ghana’s strategic national energy plan as a challenge of inefficiency in the end-use of energy resulting in wasting of energy (Energy Commission of Ghana, 2006). In addition, inefficient use and management of utilities, is the basis for government directive to public institutions to pay for their electricity consumption (Ministry of Finance, 2014). By this directive, higher education students would eventually be made to pay for the electricity they use, especially, those in residence. Recognising the high amount of energy consumed by students, the government targeted higher education students’ residential facilities (HESRF) for initial introduction of prepayment meters; residential facilities were also targeted together for 50% reduction of their electricity consumption by 2015.

To reduce the burden on the power generation plants, end-users should use energy efficiently. Whereas regulations abound at national level to govern generation, distribution and transmission of electricity, none appears to exist that seeks to ensure that energy is properly used or managed, especially in organisations. The Energy Commission of Ghana in 2006 proposed for the enactment of Energy Efficiency and Conservation Act to deal with energy management practices (EMP) among other measures to ensure reduced energy consumption (Energy Commission of Ghana, 2006) which is yet to be enacted. As suggested by Turner et al. (2007), energy management is one of the surest means by which organisations and governments could meet energy challenges that confront them.

1.3 Problem Statement

Humanity’s excessive energy consumption has great consequences on continuous supply of energy resources leading to rising energy prices, environmental degradation through carbon emissions, social development and economic growth of nations and organisations (Asif and Muneer, 2007; Holdren and Smith, 2000). One of the key contributors to this situation is energy used in built facilities (Coleman et al., 2013; Janda, 2011; Burnett, 2007). These facilities consume large amount of energy
and emit huge amount of GHG, most of which are attributed to the behaviour of the users (Wilde and Coley, 2012; Gill et al., 2010). Facilities users contribute significantly to excessive energy consumption in the built facilities through their behaviour. For example, Prodromou et al. (2009) suggest that behavioural patterns and improper use of buildings and its systems could result in excess energy consumption of 45% above the initially predicted levels. Unless energy is used efficiently and consumption reduced, individuals, organisations and nations would continue to be threatened with potential energy-related environmental, social and economic problems. Energy management appears to be one of the effective and surest ways to use energy efficiently and effectively (Turner et al., 2007).

Previous researches on energy management in the context of FM focus on technological/technical approach to managing energy in organisations (Määttänen et al., 2014; Escrivá-Escrivá et al., 2010) to address the issues of energy wasting and higher energy consumption. Other studies also concentrate on developing tools to assist facilities managers in benchmarking energy consumption (Haji-Sapar and Eang Lee, 2005); assessing energy consumption (Junghans, 2013a); and in carrying out energy-led refurbishment of buildings (Strachan and Banfill, 2012). Yet, other studies focus on the role of FM personnel and their challenges in managing organisation’s energy (Goulden and Spence, 2015; Aune et al., 2009).

Certainly, technical/technological approach to energy management in organisations’ facilities can lead to improved energy efficiency and energy consumption reduction, (Määttänen et al., 2014; Yen et al., 2010; Aune et al., 2009). It is argued that adopting this approach alone would not suffice in addressing excessive energy consumption issues (Janda, 2009). Indeed, it is said that facilities users immensely contribute to facilities energy consumption through their behaviour and that technical approach alone is not sufficient to address energy efficiency problems (Janda, 2011; Gill et al., 2010; Marans & Edelstien, 2010); users are great untapped potential to improve facilities energy performance and operations (Lopes et al., 2012; Center for the Built Environment, 2010; Mashburn, 2007).
To the best of the knowledge of the researcher, least research attention has been given to behavioural aspect of energy management within FM, that is, studies that focus on facilities users’ energy use behaviour (EUB) in facilities energy management appears to be lacking. During periods of escalating energy prices and imposition of taxes to ensure reduced carbon emissions, the need for influencing and reducing energy consumption in organisations becomes imperative, especially, for HEIs with dwindling budget, so as to eliminate energy wasting with its financial consequences on organisations.

In addition, less attention has been paid to research on HESRF in terms of energy management. Generally, HEIs possess huge and complex facilities that accommodate greater number of people, used for wider variety of purposes (Sapri and Mohammed, 2010), and thus consuming high amount of energy (Petersen et al., 2007). Residential students constitute important part of higher education community who consume substantial amount of energy; responsible for significant carbon emission (Petersen et al., 2007) and are also significant sources of energy wasting (Galis and Gyberg, 2011). Understanding users’ EUB and underlying determinants is significant for effective facilities energy management (c.f. Karlin et al., 2014; Stephenson et al., 2010).

Existing studies on residential students’ EUB mostly use quantitative approaches with a focus on students as subjects of study (e.g. Hafizal et al., 2015). However, an exploratory research, focusing on the phenomenon of students’ EUB and its determinants from the perspectives of managers of HESRF and institutions facilities as well as students, would in addition to providing detailed views of study participants in their own words (Curry et al., 2009), provide a holistic picture of the behaviour of students regarding energy use in their residence and related factors.

Exploring students’ EUB from two perspectives alongside energy management implementation, would enhance our understanding of how students use energy in their facilities and the factors that influence them. It would assist in developing appropriate energy management framework with users’ behaviour as the main focus; enable
facilities managers to incorporate students’ behavioural determinants into their energy management programmes by involving students in decisions and activities concerning energy.

1.4 Research Questions

The main question addressed in this study is: how can students’ behaviour be incorporated into energy management in students’ residential facilities? The specific research questions to be addressed are as follows:

1. What are students’ perspectives of residential students’ energy use behaviour?
2. What are managers’ perspectives of residential students’ energy use behaviour?
3. What energy management practices are implemented in higher education students’ residential facilities?
4. How can students’ behaviour be incorporated into energy management in higher education students’ residential facilities?

1.5 Research Aims and Research Objectives

The aim of this study is to explore energy use behaviour of students of HEIs to be incorporated into energy management in students’ residential facilities. The study addresses the following specific objectives:

1. To determine the factors that influence energy use behaviour of residential students in higher education students’ residential facilities from student’s perspective.
2. To determine the factors that influence energy use behaviour of residential students in higher education students’ residential facilities from manager’s perspective.
3. To identify energy management practices in higher education students’ residential facilities.

4. To develop Behaviour-based Facilities Energy Management framework (BFEM) for managing energy in higher education students’ residential facilities.

1.6 Scope of Research

The study focuses on behaviour of students in relation to energy use, that is, electricity use, and measurement of EMP in residential facilities of HEIs. As a result, the research involves students living in HESRF from selected universities and polytechnics in Ghana. These institutions are College of Technology (University of Education, Winneba), Kumasi; Kwame Nkrumah University of Science and Technology; Kumasi Polytechnic; Cape Coast Polytechnic; Koforidua Polytechnic and Sunyani Polytechnic. Also, the study involved managers of the facilities and/or HESRF of these institutions. The research was limited to the exploration of students’ EUB and determinants from two perspectives: student’s perspective focusing on bulk ironing, lighting use (turning off light not in use and natural light use), and natural ventilation use; managers’ perspective focuses on students’ general energy EUB.
1.7 Outline of Research Methods

The section presents a brief overview of the process followed in carrying out this research as presented in Table 1.4. Details are provided in chapter 4.

Table 1.4: Research methodology outline

<table>
<thead>
<tr>
<th>Objective</th>
<th>Activity</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of relevant FM and energy management concepts; behaviour/behavioural change theories and models.</td>
<td>Review of literature</td>
<td>EMP, factors that influence energy behaviour and strategies to cause behaviour change identified</td>
</tr>
<tr>
<td>To conduct experts and students survey and analyse</td>
<td>Initial study</td>
<td>Specific energy saving behaviours identified for focus group sessions.</td>
</tr>
<tr>
<td>Objective 1: to explore students’ EUB and influencing factors from students’ perspective</td>
<td>Main study – Students-Data collection and analysis</td>
<td>Students’ EUB explored and influencing factors identified from students’ perspective.</td>
</tr>
<tr>
<td>Objective 2: to explore students’ EUB and influencing factors from managers’ perspective</td>
<td>Main study – Managers- Data collection and analysis</td>
<td>Students’ EUB explored and influencing factors identified from managers’ perspective.</td>
</tr>
<tr>
<td>Objective 3: to identify EMP implemented in the HESRF.</td>
<td></td>
<td>EMP implemented in the HESRF are identified.</td>
</tr>
<tr>
<td>Objective 4: To develop behaviour-based facilities energy management framework</td>
<td>Development and validation of framework</td>
<td>Behaviour-based facilities energy management framework</td>
</tr>
<tr>
<td>Report the results, findings as well as conclusion</td>
<td>Results, findings and conclusion</td>
<td>Study findings are reported and all study objectives are achieved</td>
</tr>
</tbody>
</table>
1.8 Organisation of the Thesis

The thesis is organised into nine chapters which are outlined below:

Chapter 1: This chapter provides overview of the complete research covering the background, problem statement, research questions, objectives, scope of study, and brief overview of methodology.

Chapter 2: The chapter reviews and summarises relevant literature relating to FM and energy management covering topics such as energy management practices (EMP), descriptive relationship of users and energy, place, technology and process in an organisation.

Chapter 3: The chapter reviews two behavioural theories and summarises key determinants of EUB, and one intervention planning model. The chapter deals with topics such as EUB, factors that influence EUBs and strategies for changing behaviour.

Chapter 4: The chapter outlines and explain the methodology employed in the study. It explains various parts of the study including philosophy, research approach, design, data collection and data analysis procedures.

Chapter 5: The chapter presents analysis and exploration of students’ EUBs and their determinants from the perspective of students.

Chapter 6: In this chapter, students’ EUBs and determinants are explored and analysed from the perspective of managers of students’ residential facilities and/or institutions facilities.

Chapter 7: This chapter analyses and discusses EMP implemented in the HESRF.

Chapter 8: In chapter 8, the findings from chapters 5, 6 and 7 are integrated for the development of BFEM. The various components and validation of the framework are also discussed.

Chapter 9: This chapter concludes the study by providing discussion of findings in relation to previous studies, summarising the key study findings, contributions and limitations of the study and suggestions for further studies.
REFERENCES

Aune, M., Berker, T., & Bye, R. (2009). The missing link which was already there: Building operators and energy management in non-residential buildings. *Facilities, 27*(1/2), 44-55.

Gram-Hanssen, K. (2013). Efficient technologies or user behaviour, which is the more important when reducing households’ energy consumption? *Energy Efficiency, 6*, 447–457. doi:DOI 10.1007/s12053-012-9184-4

Onwuegbuzie, A. J., & Leech, N. (2005). Taking the Q out of research - Teaching research methodology courses without the divide between quantitative and qualitative paradigms.

