PRODUCTION AND CHARACTERIZATION OF PROTEASE FROM HALOPHILIC *VIRGIBACILLUS* SPECIES CD6

LAM MING QUAN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JANUARY 2017
Specially dedicated to my beloved family, future life partner, soulmates and friends
ACKNOWLEDGEMENT

First and foremost, I would also like to express my deepest gratitude towards my supervisor, Dr. Chong Chun Shiong who had guided me in every step taken to accomplish my master dissertation throughout these 1.5 years. Even though he was at his post-doctoral position at remote country for 1 year, however, he still concerned about my progress and always kept in touch to update the latest situation. Besides that, I would like to thank my co-supervisor, Dr. Haryati Jamaluddin for being so supportive in term of giving advices and resources, especially during the period when my main supervisor was not around.

Not forgetting fellow seniors in the Enzyme Research Laboratory including Ms. Suganthi Thevarajoo, Ms. Chitra Selvaratnam and Mr. Lim Jia Chun, assistant science officers (Mrs. Fatimah Harun and Ms. Norsyuhada Jaafar), administrative assistant (Mrs. Zulbaidah Muhammad), coursemates (Ms. Tan Ee Yau, Ms. Sonia Nair P. Kreshnan and Mrs. Zetty Amirah Zulkifli), other seniors, juniors and staffs in Faculty of Biosciences and Medical Engineering. Thank you for all of your help during problem solving, listening ears and experiences that you have shared to me.

Apart from that, I would like to acknowledge MyBrain15 scholarship (MyMaster) from Ministry of Higher Education Malaysia, Ministry of Education Malaysia (Project number: 4F265) and Universiti Teknologi Malaysia RU grant (Project number: 07H43) as my financial support for master degree. Last but not least, I would like to take this opportunity to sincerely thank my parents (Lam Poy Leng and Lye Chou Ngo), siblings, relatives, soulmates and friends who have supported me always so that I am able to accomplish what I have in life so far either mentally or physically.
ABSTRACT

In enzyme production industries, the major challenges that hinder the efficient and economic commercial scale application of proteases are their stability in broad range of pH, temperature, salinity, as well as their optimal activity in the presence of metal ions, organic solvents and detergents. Moreover, the enzyme purification steps also contribute to the cost of production. To overcome this problem, characterization and production of crude protease with attractive properties from wild bacterial isolate could be an alternative as it is a more cost-effective way compared to production of protease that involves purification steps and protein engineering approach. Therefore, crude protease of *Virgibacillus* sp. CD6 isolated from salted-fish was characterized in this study using azocasein assay and bioinformatics tools. Protease production was found to be highest when using soybean meal and yeast extract as nitrogen source compared to other organic nitrogen sources. The protease exhibited vast range of stability with optimum activity at 10.0 % (w/v) NaCl, 60°C, pH 7 and 10, indicating its polyextremophilicity. The enzyme activity was enhanced by Mg\(^{2+}\), Mn\(^{2+}\), Cd\(^{2+}\) and Al\(^{3+}\). Both PMSF and EDTA hindered protease activity, denoting the presence of serine protease and metalloprotease properties respectively. High protease stability (>80%) was demonstrated in presence of organic solvents and detergent constituents investigated, and surprisingly it is exceptionally compatible with commercial detergents. Phylogenetic analyses revealed that proteases of *Virgibacillus* sp. demonstrated far distance relationship with other species, which worth for further exploration. Attributes of this protease can actualize necessity of searching superlative enzymes from extremophiles for diverse applications, particularly in detergent industry.
ABSTRAK

Dalam industri penghasilan enzim, cabaran utama yang menghalang aplikasi komersial protease yang cekap dan ekonomi adalah ciri-ciri protease yang stabil dalam pelbagai pH, suhu, kadar garam serta aktiviti optimum dalam ion logam, pelarut organik, dan unsur detergen. Selain itu, proses penulenan enzim juga menyumbang kepada kos penghasilan. Bagi mengatasi masalah ini, pencirian dan penghasilan protease dari bakteria tanpa melibatkan proses penulenan boleh menjadi alternatif kerana ia adalah cara yang kos efektif berbanding dengan penghasilan protease yang melibatkan penulenan enzim dan kejuruteraan protein. Oleh itu, protease daripada *Virgibacillus* sp. CD6 yang dipencilkan daripada ikan masin telah dicirikan dalam kajian ini dengan penggunaan azocasein assay dan alat bioinformatik. Penghasilan protease didapati paling tinggi apabila menggunakan kacang soya dan ekstrak yis sebagai sumber nitrogen berbanding dengan sumber nitrogen organik yang lain. Protease tersebut mempamerkan luas kestabilan dengan aktiviti optimum pada 10.0% (w/v) NaCl, 60ºC, pH 7 dan 10, menunjukkan ciri poli-ekstremofi. Aktiviti enzim telah dipertingkatkan oleh Mg$^{2+}$, Mn$^{2+}$, Cd$^{2+}$ dan Al$^{3+}$. Kedua-dua PMSF dan EDTA didapati menghalang aktiviti protease, menandakan ciri protease serine dan metalloprotease masing-masing. Kestabilan protease yang tinggi (>80%) telah ditunjukkan dalam pelarut organik dan unsur detergen, serta amat serasi dengan bahan pencuci komersial. Analisis filogenetik menunjukkan bahawa protease daripada *Virgibacillus* sp. mempunyai hubungan yang jauh dengan spesies lain, bernilai untuk penerokaan selanjutnya. Sifat-sifat protease ini boleh merealisasi keperluan mencari enzim cemerlang dari esktremofi untuk pelbagai aplikasi, terutamanya dalam industri detergen.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LISTS OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of study 1
1.2 Problem statement / significance of study 3
1.3 Objectives of study 3
1.4 Scope of study 4

2 LITERATURE REVIEW

2.1 Halophilic bacteria 5
2.1.1 Ecology and phylogeny 6
2.1.2 Adaptations in saline environment 9
2.2 Protease-producing halophilic bacteria 12
2.2.1 *Virgibacillus* sp. 12
2.3 Protease 13
2.3.1 Protease source 14
2.3.2 Protease classification 16
2.3.3 Physiological function 19
2.3.4 Protease engineering 20

2.4 Applications of protease 21
2.4.1 Food industry 21
2.4.2 Detergent industry 23
2.4.3 Leather processing 25
2.4.4 Pharmaceutical industry 26
2.4.5 Waste management 27

3 MATERIALS AND METHODS
3.1 Experimental design 28
3.2 Bacterial culture 30
3.3 Gram staining 30
3.4 Qualitative proteolytic screening 31
 3.4.1 Skim milk agar plate assay 31
 3.4.2 Gelatin liquefaction test 32
3.5 Semiquantitative analysis of proteolytic activity 32
3.6 Investigation of protease production medium 33
3.7 Inoculum preparation and protease production 34
3.8 Quantitative protease activity investigation 35
 3.8.1 Azocasein assay 35
3.9 Lowry assay 36
 3.9.1 Construction of standard calibration curve 36
 3.9.2 Protein content and specific activity determination in crude enzyme 37
3.10 Bacterial growth profiling in different nitrogen sources 37
3.11 Effect of nitrogen sources on protease production
3.12 Effect of temperature on protease activity and stability
3.13 Effect of pH on protease activity and stability
3.14 Effect of salt concentration on protease activity and stability
3.15 Stability of protease in presence of organic solvent
3.16 Stability of protease in presence of metal ions
3.17 Stability of protease in presence of inhibitors
3.18 Stability of protease in presence of detergent constituents
3.19 Compatibility of protease with commercial detergents
3.20 Substrate specificity of protease
3.21 Bioinformatics analysis of protease of Virgibacillus sp.
 3.21.1 Sequence retrieval and primary analysis
 3.21.2 Multiple sequence alignment and phylogenetic analysis

4 RESULTS AND DISCUSSION
4.1 Morphological characterization of Virgibacillus sp. strain CD6
 4.1.1 Gram staining
4.2 Qualitative screening of protease activity
 4.2.1 Skim milk agar plate assay
 4.2.2 Gelatin liquefaction test
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Semiquantitative analysis of proteolytic activity</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Protease production medium investigation</td>
<td>50</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Carbon source screening</td>
<td>50</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Nitrogen source screening</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth profile of Virgibacillus sp. strain CD6 in different nitrogen sources</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of nitrogen source on protease production</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of temperature on protease activity and stability</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of pH on protease activity and stability</td>
<td>60</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of salt concentration on protease activity and stability</td>
<td>63</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of metal ions on protease activity and stability</td>
<td>66</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of inhibitors on protease activity and stability</td>
<td>69</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of organic solvents on protease activity and stability</td>
<td>71</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of surfactants and oxidizing agent on protease activity and stability</td>
<td>73</td>
</tr>
<tr>
<td>4.14</td>
<td>Compatibility of protease with commercial detergents</td>
<td>75</td>
</tr>
<tr>
<td>4.15</td>
<td>Substrate specificity</td>
<td>77</td>
</tr>
<tr>
<td>4.16</td>
<td>Bioinformatics analysis of extracellular protease of Virgibacillus sp.</td>
<td>78</td>
</tr>
<tr>
<td>4.16.1</td>
<td>Protein sequences retrieval and prediction of extracellular protease</td>
<td>78</td>
</tr>
<tr>
<td>4.16.2</td>
<td>Primary sequence analysis</td>
<td>81</td>
</tr>
<tr>
<td>4.16.3</td>
<td>Conserved domain analysis and multiple sequence alignment</td>
<td>85</td>
</tr>
</tbody>
</table>
4.16.4 Phylogenetic analysis 96

5 CONCLUSIONS
 5.1 Conclusion 104
 5.2 Recommendations 105

REFERENCES 106
Appendices A - B 126 - 131
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Category of halophiles according to their salt requirement, in both percentage (%) and molarity (M)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Compatible solutes (zwitterionic, non-charged and charged solutes) and its properties, utilized by halophilic bacteria in osmoadaptation</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Descriptions of proteases from animal and plant origins</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Descriptions of proteases from microbial origins</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Classification and descriptions of exopeptidases</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Properties and mechanism of action of various endopeptidases classified based on chemical nature of catalytic site</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Classification of proteases based on evolutionary relationships, showing diverse clans and families</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Commercial proteases (with their microbial sources and suppliers) used in food industry until today</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Commercial proteases (with their microbial sources and suppliers) used in detergent industry until today</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Commercial proteases (with their microbial sources and suppliers) used in leather processing</td>
<td>25</td>
</tr>
</tbody>
</table>
2.11 Properties of purified proteases approved for use as therapeutics agents

3.1 Components and quantities of protease production medium for *Virgibacillus* sp. strain CD6. This medium was modified from chemically defined medium

3.2 Reagents preparation for Lowry assay

3.3 Different types of protease inhibitors used in protease stability assessment

3.4 Ionic surfactants, non-ionic surfactants and oxidizing agent used in protease stability assessment

4.1 Colony morphological characteristics of *Virgibacillus* sp. strain CD6 after 24 hours of incubation at 37ºC

4.2 Gram stain results and bacterial shape observed under 1000X magnification of microscope

4.3 Semiquantitative analysis of proteolytic activity using crude protease of *Virgibacillus* sp. strain CD6. Hydrolysis index was expressed (log_{10} mm²) as indication of degree of proteolytic activity. Each value represents mean ± SD, n=3

4.4 Screening of carbon sources utilized by *Virgibacillus* sp. CD6 for growth after 24 hours of 37ºC incubation under shaking condition at 200 rpm. +, growth was observed, solution changed turbid with OD_{600} > 0.7; -, no bacterial growth, solution remained clear with OD_{600} < 0.1
4.5 Screening of nitrogen sources utilized by *Virgibacillus* sp. CD6 for growth after 24 hours of 37°C incubation under shaking condition at 200 rpm. Trisodium citrate was used as carbon source. +, growth was observed, solution changed turbid with OD$_{600}$ > 0.7; -, no bacterial growth, solution remained clear with OD$_{600}$ < 0.1

4.6 Stability of protease from *Virgibacillus* sp. strain CD6 in presence of various metal ions after 1 hour of pre-incubation at 50°C and pH 8. Enzyme activity without any metal ions (control) was taken as 100%. Each value represents mean ± SD, n=3

4.7 Stability of protease from *Virgibacillus* sp. strain CD6 in presence of different types of protease inhibitors after 1 hour of pre-incubation at 50°C. Enzyme activity without any inhibitors (control) was taken as 100%. Each value represents mean ± SD, n=3

4.8 Stability of protease from *Virgibacillus* sp. strain CD6 in presence of 25% (v/v) organic solvents after 4 hours of pre-incubation at 50°C. Enzyme activity without organic solvent (control) was taken as 100%. Each value represents mean ± SD, n=3

4.9 Stability of protease from *Virgibacillus* sp. strain CD6 in presence of various detergents after 1 hour of pre-incubation at 50°C. Enzyme activity without any detergent (control) was taken as 100%. Each value represents mean ± SD, n=3
4.10 Compatibility of protease from *Virgibacillus* sp. strain CD6 with various commercial detergents after 1 hour of pre-incubation at 50°C. Enzyme activity without any commercial detergents (control) was taken as 100%. Each value represents mean ± SD, n=3.

4.11 Substrate specificity of protease from *Virgibacillus* sp. strain CD6. Percentages of relative activity shown are relative to maximum activity of azocasein substrate. Each value represents mean ± SD, n=3.

4.12 Physico-chemical characteristics of extracellular proteases predicted by ProtParam tool.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Experimental design of this research according to objectives of study.</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Hydrolysis index scale (\log_{10} mm²) used for semiquantitative analysis of proteolytic activity. Values decrease from left to right as degree of proteolytic decrease</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Virgibacillus sp. strain CD6 on Marine Agar (MA) after 24 hours of incubation at 37°C</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Qualitative screening of caseinolytic activity using skim milk agar. Positive and negative control are plates inoculated with protease-producing bacterium Shewanella sp. strain CH1 (a) and without inoculation (b) respectively; Clear zones observed on skim milk agar inoculated with Virgibacillus sp. strain CD6 after 3 days of incubation at 37°C (c)</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Qualitative screening of gelatinolytic activity using gelatin liquefaction test. A control was prepared without inoculation of bacterial culture (a); gelatin was liquefied by Virgibacillus sp. strain CD6 after 10 days of incubation at 37°C and then refrigerated at 4°C for 1 hour (b)</td>
<td>48</td>
</tr>
</tbody>
</table>
4.4 Growth profile of *Virgibacillus* sp. strain CD6 in medium supplemented with different nitrogen sources, incubated at 37°C and under 200 rpm of shaking condition. Absorbance at 600 nm of cells were taken at every 2 hours’ interval until 24th hours. Mean values (n=3) were expressed and standard deviations are indicated as error bars.

4.5 Effect of various nitrogen sources on protease production (U/ml) of *Virgibacillus* sp. strain CD6. Samples were taken after 24 h of incubation at 37°C under shaking conditions (200 rpm). Mean values (n=3) are expressed and standard deviations are indicated as error bars.

4.6 Effect of different nitrogen sources on protease production (specific activity, U/mg) of *Virgibacillus* sp. strain CD6, estimated using Lowry assay. Samples were taken after 24 h incubation at 37°C under shaking conditions (200 rpm). Mean values (n=3) are expressed and standard deviations are indicated as error bars.

4.7 Effect of various temperature on activity and stability of protease from *Virgibacillus* sp. strain CD6. Relative activity (%) was calculated by relative to the case of reaction at which maximum activity was taken as 100%; Stability (%) was calculated by relative to enzyme activity before incubation was taken as 100%. Mean values (n=3) were reported and standard deviations are indicated as error bars.
4.8 Effect of pH on activity and stability of protease from *Virgibacillus* sp. strain CD6. Relative activity (%) and stability (%) were calculated by relative to the case of reaction at which maximum activity was taken as 100%. Mean values (n=3) were reported and standard deviations are indicated as error bars

4.9 Effect of various salt concentration on activity and stability of protease from *Virgibacillus* sp. strain CD6. Relative activity (%) and stability (%) were calculated by relative to the case of reaction at which maximum activity was taken as 100%. Mean values (n=3) were reported and standard deviations are indicated as error bars

4.10 Signal peptide prediction by SignalP 4.1 server with value above cutoff (>0.450), showing peptide possessed in minor extracellular protease vpr, indicating this protease can be secreted extracellularly

4.11 Signal peptide prediction by SignalP 4.1 server with value above cutoff (>0.450), showing peptide possessed in thermostable alkaline protease, indicating this protease can be secreted extracellularly

4.12 Signal peptide prediction by SignalP 4.1 server with value above cutoff (>0.450), showing peptide possessed in zinc carboxypeptidase, indicating this protease can be secreted extracellularly
4.13 Signal peptide prediction by SignalP 4.1 server with value above cutoff (>0.450), showing peptide possessed in neutral protease B, indicating this protease can be secreted extracellularly

4.14 Composition of amino acids (with single alphabet abbreviations) of minor extracellular protease vpr (A), thermostable alkaline protease (B), zinc carboxypeptidase (C) and neutral protease B (D), analyzed by Statistical Analysis of Protein Sequences (SAPS)

4.15 Family, domains and active sites of minor extracellular protease vpr predicted by using InterProscan (A) and ScanProsite (B)

4.16 Family, domains and active sites of thermostable alkaline protease predicted by using InterProscan (A) and ScanProsite (B)

4.17 Domain of zinc carboxypeptidase predicted by using InterProscan

4.18 Family, domains and active sites of neutral protease B predicted by using InterProscan (A) and ScanProsite (B)

4.19 Multiple sequence alignment of minor extracellular protease vpr of Virgibacillus massiliensis Vm-5 in comparison with other bacterial minor extracellular protease vpr by using Clustal Omega. The well-conserved regions (I, II and III) are indicated by black colour boxes; active sites are indicated by a red asterisk (*). The dash (-) indicated the gap inserted to optimize the sequence alignment
4.20 Multiple sequence alignment of thermostable alkaline protease of *Virgibacillus massiliensis* Vm-5 in comparison with other thermostable alkaline protease by using Clustal Omega. The well-conserved regions (I, II and III) are indicated by black colour boxes; active sites are indicated by a red asterisk (*). The dash (-) indicated the gap inserted to optimize the sequence alignment.

4.21 Multiple sequence alignment of zinc carboxypeptidase of *Virgibacillus massiliensis* Vm-5 in comparison with other bacterial zinc carboxypeptidase by using Clustal Omega. The well-conserved region is indicated by black colour box. The dash (-) indicated the gap inserted to optimize the sequence alignment.

4.22 Multiple sequence alignment of neutral protease B of *Virgibacillus massiliensis* Vm-5 in comparison with other bacterial neutral protease B by using Clustal Omega. The well-conserved region is indicated by black colour box; active site is indicated by a red asterisk (*). The dash (-) indicated the gap inserted to optimize the sequence alignment.

4.23 The neighbor-joining tree based on analysis of minor extracellular proteases vpr of 20 amino acid sequences from different bacteria. Numbers on nodes represent percentage bootstrap confidence score for 1000 replicates. Red colour box indicates minor extracellular protease vpr of this study.
4.24 The neighbor-joining tree based on analysis of thermostable alkaline protease of 20 amino acid sequences from different bacteria. Numbers on nodes represent percentage bootstrap confidence score for 1000 replicates. Red colour box indicates thermostable alkaline protease of this study.

4.25 The neighbor-joining tree based on analysis of zinc carboxypeptidase of 20 amino acid sequences from different bacteria. Numbers on nodes represent percentage bootstrap confidence score for 1000 replicates. Red colour box indicates zinc carboxypeptidase of this study.

4.26 The neighbor-joining tree based on analysis of neutral protease B of 20 amino acid sequences from different bacteria. Numbers on nodes represent percentage bootstrap confidence score for 1000 replicates. Red colour box indicates neutral protease B of this study.
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{420}</td>
<td>Absorbance at 420 nm</td>
</tr>
<tr>
<td>A_{750}</td>
<td>Absorbance at 750 nm</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>\approx</td>
<td>Approximately</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>$^\circ C$</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>$=$</td>
<td>Equal</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per liter</td>
</tr>
<tr>
<td>$>$</td>
<td>Greater than</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascal</td>
</tr>
<tr>
<td>$<$</td>
<td>Less than</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>\log_{10}</td>
<td>Logarithm to base 10</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Milligram per milliliter</td>
</tr>
<tr>
<td>μl</td>
<td>Microliter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>M</td>
<td>Molar mass</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
</tbody>
</table>
- - Negative
n - Number
OD₆₀₀ - Optical density at 600 nm
/ - Or
% - Percent
cm⁻¹ - Per centimeter
M⁻¹ - Per molar
π - Pi
± - Plus-minus
+ - Positive
® - Registered trademark
² - Square
× - Times
™ - Trademark
U/mg - Units per milligram
U/ml - Units per volume
v/v - Volume per volume
w/v - Weight per volume
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alanine</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>Aluminum ion</td>
</tr>
<tr>
<td>Al$_2$(SO$_4$)$_3$</td>
<td>Aluminum sulfate</td>
</tr>
<tr>
<td>APC</td>
<td>Activated protein C</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BLASTp</td>
<td>Protein-protein Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>Cysteine</td>
</tr>
<tr>
<td>C$_6$H$_5$Na$_3$O$_7$</td>
<td>Trisodium citrate</td>
</tr>
<tr>
<td>C$_6$H$_5$Na$_3$O$_7$.2H$_2$O</td>
<td>Trisodium citrate dihydrate</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>Cd$^{2+}$</td>
<td>Cadmium ion</td>
</tr>
<tr>
<td>Cd(NO$_3$)$_2$</td>
<td>Cadmium nitrate</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>Chloride ion</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>Cobalt ion</td>
</tr>
<tr>
<td>CoCl$_2$</td>
<td>Cobalt chloride</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>Copper (II) ion</td>
</tr>
<tr>
<td>CuSO$_4$</td>
<td>Copper (II) sulfate</td>
</tr>
<tr>
<td>CuSO$_4$.5H$_2$O</td>
<td>Copper (II) sulfate pentahydrate</td>
</tr>
<tr>
<td>D</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>Enzyme commission</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetraacetic Acid</td>
</tr>
</tbody>
</table>
et al. - And friends
F - Phenylalanine
FDA - Food and Drug Administration
Fe$^{3+}$ - Ferum (III) ion
FeCl$_3$ - Ferum (III) chloride
G - Glycine
Glu, E - Glutamic acid
H-bond - Hydrogen bond
H$^+$ - Hydrogen ion
H$_2$O$_2$ - Hydrogen peroxide
HCl - Hydrochloric acid
His, H - Histidine
I - Isoleucine
IAA - Iodoacetic acid
ID - Identifier
K - Lysine
K$^+$ - Potassium ion
K$_2$HPO$_4$ - Dipotassium hydrogen phosphate
KCl - Potassium chloride
KH$_2$PO$_4$ - Potassium dihydrogen phosphate
KNO$_3$ - Potassium nitrate
L - Leucine
M - Methionine
MEGA 7.0 - Molecular Evolutionary Genetic Analysis version 7.0
Mg$^{2+}$ - Magnesium ion
MgCl$_2$ - Magnesium chloride
MgSO$_4$.7H$_2$O - Magnesium sulfate heptahydrate
Mn$^{2+}$ - Manganese ion
MnCl$_2$ - Manganese chloride
N - Asparagine
Na$^+$ - Sodium ion
Na$_2$CO$_3$ - Sodium carbonate
NaCl - Sodium chloride
NaHCO₃ - Sodium bicarbonate
NaNO₂ - Sodium nitrite
NaOH - Sodium hydroxide
NH₄Cl - Ammonium chloride
Ni²⁺ - Nickel ion
NiSO₄ - Nickel sulfate
OH⁻ - Hydroxide ion
P - Proline
PHB - Polyhydroxybutyrate
PMSF - Phenylmethylsulfonyl fluoride
pI - Isoelectric point
PSI-BLAST - Position-Specific Iterated Basic Local Alignment Search Tool
Q - Glutamine
R - Arginine
rcf - Relative centrifugal force
rpm - Rotary per minute
rRNA - Ribosomal ribonucleic acid
SAPS - Statistical Analysis of Protein Sequences
SD - Standard deviation
SDS - Sodium dodecyl sulfate
SDS-PAGE - Sodium dodecyl sulfate polyacrylamide gel electrophoresis
Ser, S - Serine
sp. - Species (singular)
spp. - Species (plural)
T - Threonine
t-PA - Tissue plasminogen activator
TCA - Trichloroacetic acid
Tris - 2-Amino-2-(hydroxymethyl)propane-1,3-diol
u-PA - Urokinase type plasminogen activator
USA - United States of America
USD - United States dollar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Valine</td>
</tr>
<tr>
<td>W</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>X, Xaa</td>
<td>Unknown amino acid</td>
</tr>
<tr>
<td>Y</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>Zinc ion</td>
</tr>
<tr>
<td>ZnSO$_4$</td>
<td>Zinc sulfate</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Buffer solution preparations</td>
<td>126</td>
</tr>
<tr>
<td>B1</td>
<td>Standard calibration curve for Lowry assay</td>
<td>128</td>
</tr>
<tr>
<td>B2</td>
<td>Phylogenetic tree of genus Virgibacillus (16S rRNA gene)</td>
<td>129</td>
</tr>
<tr>
<td>B3</td>
<td>Annotated protease sequences of Virgibacillus massiliensis Vm-5</td>
<td>130</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Halophilic bacteria has been recognized as one of the extremophiles that has valuable applications in industry and environment (Oren, 2010; Edbeib et al., 2016; Yin et al., 2015). They are found in natural saline and hypersaline habitats such as seawater, salt marshes and lagoon. Occurrence of halophiles can be from seawater to brines (Brock, 1979), some habitats include Dead Sea between Israel and Jordan and also Great Salt Lake in Utah (Oren, 2006). Besides that, salty environments inhabited by halophilic and halotolerant bacteria include food products such as salted fish and fermented food (Enache et al., 2012), and these type of foods are commonly found in Malaysia.

Well-adapted strategies in saline environments utilized by halophilic bacteria made them useful in industrial applications. These halophilic bacteria has been used for production of valuable metabolites and solutes such as stress protectants (DasSarma and DasSarma, 2006), saline wastewater treatments (Shivanand and Mugeraya, 2011) and biodegradation of organic pollutants in environmental biotechnology (Le Borgne et al., 2008). Halophilic bacteria can be classified under different phyla. Under different phylum, halophilic bacteria have different physiological requirements such as compatible solute used and salt concentration required. This diversity makes the halophilic bacteria as one of the source of opportunity and abundance, including industrial enzymes.
One of the enzymes produced by halophilic bacteria is protease, which is a type of hydrolase. Protease can be produced from animal, plant and microbial source. Protease from microbial source has been extensively used in various application especially in detergent industry since 1960 (Rao et al., 1998) due their effectiveness in removing protein stains (Karn and Kumar, 2015). Until today, proteases contributed approximately 60% of the global industrial enzymes market (Anithajothi et al., 2014). While from this amount, microbial proteases constitute 40% of total enzyme production (Raval et al., 2014) which applied in various industries. The largest market undeniable is detergent industry, as this industry contributed to production of 13.5 billion tons per year (Adrio and Demain, 2014).

Apart from that, use of eco-friendly protease recovered from industrial sludge for bio-conversion of proteinaceous waste material into value-added products has become an increasingly concern due to it is a cost effective process (Karn and Kumar, 2015). And also, protease has been engineered using rational design and directed evolution approach to improve its properties and functions to be applied as therapeutic agents and in food processing (Li et al., 2013). Based on huge demand of protease market and its application, new candidate of protease remained a worth for further discovery.
1.2 Problem statement / significance of study

Halophilic bacteria produce polyextremophilic enzymes that may have useful application in various biotechnological field. For instance, protease can act as fibrinolytic agent and also removing protein based stains such as blood and sweat effectively (Karn and Kumar, 2015). Most of the commercial bacterial proteases used in detergent industry are produced from Bacillus sp. (Gupta et al., 2002b), lesser investigation on protease from Virgibacillus sp., and until today, no commercial protease is originated from genus Virgibacillus as well. Furthermore, expenditure cost in detergent industry such as purification, production (Niyonzima and More, 2015b) and protein engineering to increase protease efficiency (Li et al., 2013) are expensive. To sort out these problems, a single step of production with the use of crude enzyme is required (Niyonzima and More, 2015a), a more cost effective way compared to purification. Moreover, exploration on novel enzymes with extraordinary properties from extremophiles is always in demand and continuously in research field. Therefore, this study was conducted to characterize extracellular protease produced from a halophilic bacterium, Virgibacillus sp. strain CD6 that is potentially to be applied in various industries, especially in detergent formulation.

1.3 Objectives of study

The objectives of this research are:

i. To select the best nitrogen source for protease production.

ii. To assess the effect of physico-chemical factors on the activity and stability of protease from Virgibacillus sp. CD6.

iii. To analyze extracellular protease sequences encoded for Virgibacillus sp.
1.4 Scope of study

The previously isolated halophilic bacteria, *Virgibacillus* sp. strain CD6 was initially screened for extracellular protease activity by using qualitative approaches, (skim milk agar and gelatin liquefaction). After that, medium for protease production was formulated and effect of nitrogen sources on protease production was investigated. The optimum conditions of protease activity and its stability in terms of pH, temperature and salt concentration were determined. Then, protease stability in presence of metal ions, inhibitors, detergent constituents and organic solvent was assessed. Compatibility of protease with commercial detergents and substrate specificity of protease were also investigated. Lastly, annotated protein sequences of extracellular proteases of *Virgibacillus* sp. were analyzed using bioinformatics approach and phylogenetic protein tree was constructed.
REFERENCES

