A MODIFIED MEAN-VARIANCE-CONDITIONAL VALUE AT RISK MODEL
OF MULTI-OBJECTIVE PORTFOLIO OPTIMIZATION WITH AN
APPLICATION IN FINANCE

YOUNES ELAHI

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Mathematics)

Faculty of Science
UniversitiTeknologi Malaysia

DECEMBER 2014
To my beloved Parents, Family and my respected Supervisor
ACKNOWLEDGEMENT

I heartily express my gratefulness to Allah s.w.t for His blessing and strength that He blessed to me during the completion of this research.

My sincere thanks go to my supervisor Prof. Dr. Mohd Ismail Abd Aziz for his continuous motivation, constant advice, encouragement and support from start to the completion of my studies.

I am ever grateful to my family, especially my wife, for their continuous support in term of encouragement and motivation.

Furthermore, very genuine appreciation goes to my father (1952-1990) whom i owe my very existence to the world, who always gave me the motivation and courage to look on the bright side every time I felt unmotivated, whom that never let me down and whom I respect the most in my heart.

This research work has been financially supported by UTM’s International Doctoral Fellowship (IDF). I would like to thank the members of Universiti Teknologi Malaysia (UTM) for providing the research facilities.
ABSTRACT

This research focuses on the development of a portfolio optimization model based on the classic optimization method and a meta-heuristic algorithm. The main goal of a portfolio optimization model is to achieve maximum return with minimum investment risk by allocating capital based on a set of existing assets. Recently, mean-variance models have been improved to mean-variance-CVaR (MVC) model as a multi-objective portfolio optimization (MPO) problem which is difficult to be solved directly and optimally. In this work, a modified MVC model of portfolio optimization is constructed using the weighted sum method (WSM). In this method, each objective function of MVC model is given a weight. The optimization problem is then minimized as a weighted sum of the objective functions. The implementation of WSM enables the MVC model to be transformed from a multi-objective function to one with a single objective function. The modified MVC model is then solved using ant colony optimization (ACO) algorithm. This algorithm solves the MVC model by the number of ant colonies and the number of pheromone, a chemical creating trails for others to follow. The modified MVC model can be used in managing diverse investment portfolio, including stocks on the stock market and currency exchange. The applicability and effectiveness of the proposed method are demonstrated by solving a benchmark problem and a practical investment problem as examples. The data of practical examples are collected from the foreign currency exchange of Bank Negara Malaysia for the years 2012 and 2013. In conclusion, this thesis presented a hybrid optimization algorithm which utilizes a classical approach, WSM and a meta-heuristic approach, ACO to solve an MVC model of portfolio optimization.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Overview 1
1.2 Background of Problem 3
1.3 Problem Statement 5
1.4 Objectives of Study 5
1.5 Scope of the Study 6
1.6 Significance of Study 7
 1.6.1 Contribution to Theory 7
 1.6.2 Contribution to Practice 7
1.7 Thesis Outline 8
LITERATURE REVIEW AND THEORY

2.1 Introduction 9
2.2 Preliminary Concepts 10
 2.2.1 Multi-Objective Portfolio Optimization 10
 2.2.2 Pareto Optimal Solution 14
 2.2.3 Mean-Variance Model 16
2.3 Weighted Sum Method and Permutation-Based Optimization 18
2.4 Ant Colony Optimization 21
 2.4.1 ACO Algorithm 24
 2.4.2 ACOR Algorithm 26
2.5 Related Works on Portfolio Optimization 27
2.6 Summary 30

RESEARCH METHODOLOGY

3.1 Introduction 31
3.2 Research Framework 31
3.3 Overall Research Design 32
3.4 MVC Model Formulation 33
3.5 Summary 40

DEVELOPMENT OF MVC MODEL THROUGH WSM

4.1 Introduction 41
4.2 Development of Modified MVC Model 42
 4.2.1 Conditions for WSM Implementation 42
 4.2.2 Modified MVC Model 47
4.3 Algorithm Procedure 52
 4.3.1 Algorithm of MVC Model Based on PBO 52
 4.3.2 Recursive Procedure of PBO 53
4.4 Illustrative Example 54
4.5 Discussion 58
4.6 Summary 59
5 ANT COLONY OPTIMIZATION APPROACH FOR SOLVING MODIFIED MVC MODEL

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>60</td>
</tr>
<tr>
<td>5.2 ACOR Algorithm of MVC Model</td>
<td>62</td>
</tr>
<tr>
<td>5.3 Flowchart for Solving a Modified MVC Model using ACOR</td>
<td>65</td>
</tr>
<tr>
<td>5.4 Pseudo Code to Solve a Modified MVC Model using ACOR</td>
<td>66</td>
</tr>
<tr>
<td>5.5 An Illustrative Example</td>
<td>68</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>73</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>75</td>
</tr>
</tbody>
</table>

6 APPLICATION OF MODIFIED MVC MODEL AND ACOR

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>6.2 Implementation of PBO</td>
<td>76</td>
</tr>
<tr>
<td>6.2.1 Investment on USD and EUR in BNM</td>
<td>77</td>
</tr>
<tr>
<td>6.2.2 Investment on USD, GBP and EUR in BNM</td>
<td>78</td>
</tr>
<tr>
<td>6.3 Implementation of ACOR Algorithm</td>
<td>81</td>
</tr>
<tr>
<td>6.4 Benchmark Problem and Hybrid Method</td>
<td>81</td>
</tr>
<tr>
<td>6.5 Discussion</td>
<td>85</td>
</tr>
<tr>
<td>6.6 Summary</td>
<td>86</td>
</tr>
</tbody>
</table>

7 SUMMARY AND FUTURE WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>87</td>
</tr>
<tr>
<td>7.2 Main Contribution of Thesis</td>
<td>87</td>
</tr>
<tr>
<td>7.3 Limitation of the Study</td>
<td>88</td>
</tr>
<tr>
<td>7.4 Direction of Future Researches</td>
<td>89</td>
</tr>
</tbody>
</table>

REFERENCES

Appendices A-F 100-115
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summarized review of multi-objective portfolio optimization</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Research design</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Algorithm of MVC model based on PBO</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Constants used by WSM for MVC model (USD and GBP)</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of result of modified MVC model for USD and GBP</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison between PBO and LINGO for USD and GBP</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Conditions and their related mechanism</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison between PBO and ACOR</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison between ACOR and LINGO for USD and GBP</td>
<td>74</td>
</tr>
<tr>
<td>6.1</td>
<td>Results of min MVC model for USD and EUR</td>
<td>78</td>
</tr>
<tr>
<td>6.2</td>
<td>Solution of the MVC model for USD, GBP and EUR (case a)</td>
<td>80</td>
</tr>
<tr>
<td>6.3</td>
<td>Solution of the MVC model for USD, GBP and EUR (case b)</td>
<td>80</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison between PBO and LINGO for USD, GBP and EUR</td>
<td>81</td>
</tr>
<tr>
<td>6.5</td>
<td>Results of MV Model for Handan and Baidu</td>
<td>83</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary of comparison for benchmark problem</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The global objectives hierarchy</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The chart of the ACO as a meta-heuristic method</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>The probability density function (PDF)</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram of research framework</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Recursive procedure of PBO</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Historical chart of rate of USD and GBP against RM</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>The PDF to determine the solutions in ACOR</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Solutions archive in ACOR</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>Procedure flowchart of ACOR</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Simulation pseudo code of ACOR</td>
<td>67</td>
</tr>
<tr>
<td>5.5</td>
<td>Initial population in the ACOR for USD and GBP</td>
<td>69</td>
</tr>
<tr>
<td>5.6</td>
<td>Sorted initial population of MVC for USD and GBP</td>
<td>70</td>
</tr>
<tr>
<td>5.7</td>
<td>Solutions archive for USD and GBP with normal weights</td>
<td>70</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean vector of USD and GBP in the ACOR</td>
<td>71</td>
</tr>
<tr>
<td>5.9</td>
<td>Standard deviations of USD and GBP in ACOR</td>
<td>71</td>
</tr>
<tr>
<td>5.10</td>
<td>New generated rows in ACOR for USD and GBP</td>
<td>71</td>
</tr>
<tr>
<td>5.11</td>
<td>Unsorted merged archive in ACOR for USD and GBP</td>
<td>72</td>
</tr>
<tr>
<td>5.12</td>
<td>Sorted merged archive in ACOR for USD and GBP</td>
<td>72</td>
</tr>
<tr>
<td>5.13</td>
<td>Final solutions archive of first iteration in ACOR for USD and GBP</td>
<td>73</td>
</tr>
<tr>
<td>5.14</td>
<td>Solutions archive in ACOR for 50 iterations</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>Historical chart of fluctuation of USD and EUR against RM</td>
<td>77</td>
</tr>
<tr>
<td>6.2</td>
<td>Historical chart of fluctuation of USD, GBP and EUR to RM</td>
<td>79</td>
</tr>
<tr>
<td>6.3</td>
<td>Historical price fluctuation of Baidu and Handan stocks</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ACO - Ant Colony Optimization
ACOR - Ant Colony Optimization in continues space
MV - Mean Variance
WSM - Weighted Sum Method
MPO - Multi-Objective Portfolio Optimization
VaR - Value at Risk
CVaR - Conditional Value at Risk
DM - Decision Maker
PBO - Permutation Based Optimization
AWS - Adaptive Weighted Sum
BNM - Bank Negara Malaysia
RM - Ringgit Malaysia
MVS - Mean-Variance-Skewness
MVSK - Mean-Variance-Skewness-Kurtosis
MVC - Mean-Variance-CVaR
EDA - Estimation of Distribution Algorithm
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>The number of assets that are available</td>
</tr>
<tr>
<td>R_x</td>
<td>Return depending on a decision vector x that belongs to a feasible set A</td>
</tr>
<tr>
<td>x_i</td>
<td>Proportion of investment in i^{th} asset</td>
</tr>
<tr>
<td>Ω</td>
<td>The feasible set of solutions</td>
</tr>
<tr>
<td>X</td>
<td>A solution of problem</td>
</tr>
<tr>
<td>μ_i</td>
<td>The expected mean of the i^{th} asset</td>
</tr>
<tr>
<td>$\sigma^2(R_x)$</td>
<td>The variance belonging to R_x</td>
</tr>
<tr>
<td>K</td>
<td>The number of assets to invest</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>Covariance among the return of assets</td>
</tr>
<tr>
<td>δ</td>
<td>Covariance matrix</td>
</tr>
<tr>
<td>α</td>
<td>Confidence level</td>
</tr>
<tr>
<td>φ</td>
<td>Overall maximum</td>
</tr>
<tr>
<td>x^*</td>
<td>Best solution</td>
</tr>
<tr>
<td>$f(x^*)$</td>
<td>Pareto optimal</td>
</tr>
<tr>
<td>ω_i</td>
<td>Weight of objective functions</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The dataset of USD and GBP to RM from BNM</td>
<td>99</td>
</tr>
<tr>
<td>B</td>
<td>The results of MVC model based on WSM for USD and GBP</td>
<td>103</td>
</tr>
<tr>
<td>C</td>
<td>Data for USD and EUR against RN from BNM (2012, 2013)</td>
<td>105</td>
</tr>
<tr>
<td>D</td>
<td>The results of portfolio included USD and EUR against RM (2012, 2013)</td>
<td>109</td>
</tr>
<tr>
<td>E</td>
<td>Some results of portfolio included USD, GBP and EUR against RM (2012, 2013)</td>
<td>112</td>
</tr>
<tr>
<td>F</td>
<td>List of publications</td>
<td>117</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

In finance, a portfolio refers to a collection of investments. Usually a person with a certain amount of fund wants to obtain higher income than interests paid by saving accounts or fixed deposits. The investor tries to choose various assets to purchase with the hope of getting a better return. These assets are commonly shares on the stocks markets. They may also be commodities (gold, iron, aluminum, cements, petroleum, coffee, palm oil, etc.), fixed properties (houses, shops, apartments, and condominiums), share holiday resorts and many others. In recent years, due to fast movement of money electronically and high rate of fluctuations among currencies, they have also become popular assets for investments.

An investor is usually interested in getting good return of his/her investment. He/she may be very ambitious, wanting top returns, and not concerned about possible losses. However, few investments can be assured of gains without possibilities of losses. Thus the investor tries to select assets which will probably yield the best returns with the minimum of losses. In general, assets with higher returns are usually speculative, and they tend to have higher risks of losses. On the other hand, assets which are considered safe in the sense that they are quite sure to gain values are usually less likely to gain much. Depending on the personality of the investors, some choose to go for high returns, even though the risk of losses is higher. However, many prefer to choose a safer route and are not willing to suffer losses.
The unwillingness to lose on investment is called risk aversion. The profile of
the investor in terms of intended amount of gain and risk aversion determines the
types of assets to invest. This profile sets the tone for selection of assets and
apportioning the fund into each asset.

Many investors create their own portfolio based on their own judgments and
inclinations. But serious investors with big funds usually seek the help of experts.
The usual scenario is the investor (customer) engages a financial institution which
plans out the portfolio. It is the institution’s responsibility to form the portfolio with
maximum return, taking into consideration the customer’s profile of intended gain
and risk aversion level. Traditionally, the portfolio was created rather arbitrarily,
based on the previous knowledge and experience on the assets. Normally the
institution trusted with investment will try to present the customer with different
situations to select options related to their risk aversion (Mavrotas, 2009). Each
version may have different forecasts for expected returns and risks.

It is necessary for a more formalized method to optimize the portfolio returns.
Portfolio optimization was first introduced by Markowitz (1952) via a framework of
return/ variance risk (Yu et al., 2011). The main problem is in finding a best solution
to distribute a given fund on a set of existing assets. Maximization of return and
minimizing risks are the two main aims. The user’s risk aversion has a direct effect
on the best solution. Two criteria are necessary for optimization of the portfolio: First
is the set of solution to the portfolio optimization problem called “efficient frontier”,
or “pareto optimal”. Second is the measure against the risk of the portfolio.

Markowitz’s approach for portfolio optimization is based on the covariance
measure, in which he proposed two criteria. The first is minimization of the risk, and
the second is maximization of the expected return. These can be defined as follows:
\[\mu = E(R) = \max \sum_{i=1}^{M} \mu_i x_i, \]

\[\sigma^2 = \text{var}(R) = \min \sum_{i=1}^{M} \sum_{j=1}^{M} \delta_{ij} x_i x_j, \]

s.t. \[\sum_{i=1}^{M} x_i = 1, \ x_i \geq 0, \ i = 1, \ldots, M \]

where, \(M \) is the number of existing assets to invest, \(x_i \) is the proportion of budget invested in asset \(i \in \{1, \ldots, M\} \); \(x = [x_1, \ldots, x_M]^T \in \mathbb{R}^M \) is the solution vector of \(M \) dimensions; \(\mu_i \) denotes the expected return of asset \(i \in \{1, \ldots, M\} \); \(\sum_{i=1}^{M} \sum_{j=1}^{M} \delta_{ij} x_i x_j \) is the variance among the returns of assets \(i, j \in \{1, \ldots, M\} \), and \(\delta = (\delta_{ij})_{i=1, \ldots, M, j=1, \ldots, M} \) shows the corresponding \(M \times M \) covariance matrix (Ehrgott et al., 2004).

1.2 Background of Problem

Numerous types of risk measures for portfolio optimization have been introduced since Markowitz’s theory was proposed. The main aim of portfolio optimization model is maximum return on investment with lower risk. Two most popular types of risk measures for portfolio optimization are value at risk (VaR) and conditional value-at-risk (CVaR). VaR refers to the maximum of expected loss on an investment, related to specific time period and particular level of confidence. CVaR represents the expected loss conditional on exceeding a VaR threshold. These measures have been shown to be efficient for the models of optimization (Chen et al., 2012).

The original method of modeling the risk for portfolio optimization is based on mean variance (MV). The expected value of returns and the value of a risk are measured as two statistical quantities that are computable via MV model. This is a practical model for decision making in finance (Aboulaich et al., 2010).
Yu et al. (2011) used the weighted sum method (WSM) to model the mean-CVaR model of portfolio optimization. In practice, their model was considered as one of the multi-objective problem. The mean and CVaR are two objective functions of their model. They used multi-objective fuzzy programming (MFP) to solve their proposed model.

Actually using three objective functions in MVC to minimize the risk and to maximize the return of the portfolio selection increases the performance of their model. Also, the MVC model which includes three objective financial functions is useful for decision making in finance. The MV conditional value at risk (MVC) model added a parameter, the CVaR to the objective function. The MVC contains three parameters (Aboulaich et al., 2010):

1) the expected returns (E),
2) the variance (σ^2) and
3) the CVaR at a specified confidence level $\alpha \in (0,1)$

The MVC model based on Aboulaich et al. (2010) is as follows:

$$\min \{CVaR, -E, \text{var}\},$$

$$s.t \quad x \in \left\{ (x_1, \ldots, x_n) \left| \sum_{j=1}^{n} x_j = 1, x_j \geq 0, \forall j \in \{1, \ldots, n\} \right. \right\}.$$

This model has one multi-objective system for portfolio optimization that consists of three objective functions. The first objective function is to minimize the CVaR of portfolio optimization. The second objective function is to maximize the expected value of return of the portfolio. The final objective function is to minimize the variance of returns. However, as a non-linear portfolio model, MVC is based on a rather complicated quadratic structure which is NP-hard problem. The MVC model was solved by using simulated annealing (SA).
1.3 Problem Statement

The main goal of this study is to modify the current model and simplify it by using WSM. The MVC model is defined in terms of mathematical structure which is used to explain the procedure via a recursive algorithm.

However, no attempts have been made to use meta-heuristic approaches to solve the MVC model of multi-objective portfolio optimization, as we intend to do here, particularly ACO. Hence, it gives us the motivation to develop a model of portfolio optimization based on the ACO method.

In this approach, each MVC model is first defined by a mathematical structure. Next, the simulated pseudo code of that model is presented based on ACO procedure, in which the pseudo code is transformed into ACO algorithm to solve the problem. The aim of implementing ACO algorithm consists of finding the pareto solutions based on the constraints of MVC model. This approach helps to increase the efficiency in finding the best solution.

1.4 Objectives of Study

The following are the objectives of this research:

1. To identify the variables of portfolio optimization model related to investment.
2. To develop a MVC model for multi-objective portfolio optimization via weighted sum method (WSM).
3. To solve the new model via ACO.
4. To apply the modified MVC model of portfolio optimization to investment.
1.5 Scope of the Study

This study presents the identification, analysis, and improvement of the MVC model. We first carry out a review on MVC model of portfolio optimization based on multi-objective approach.

Next, we employ WSM to MVC model of portfolio optimization in multi-objective approach to transform the model to one linear combination with specific coefficients. Then, the permutation based optimization (PBO) is used to solve the improved model.

In this study, the algorithm is run with MATLAB software version 2009. The test data is taken from two datasets. The first dataset is taken from Malaysian Exchange during 2012 and 2013. The second one is taken from China stoke market during 2010 and 2011.

Minimizing the CVaR, maximizing the return and minimizing the variance are done by choosing the best coefficients through PBO. ACO, as one of the meta-heuristic methods, is also utilized.

In addition, the thesis also includes

- Presentation of WSM as a classic optimization methods to develop the modified MVC model
- Application of ACO algorithm to solve the model and evaluating the proposed modified model
- Implementation of MATLAB simulation to evaluate the results of proposed model
1.6 Significance of Study

This study promotes the mathematical modeling and applications of MVC model of MPO. MVC model of portfolio optimization (which employs mean, variance and CVaR) is shown to give better results than current risk measure of portfolio (see Chapter 4 and 6). In addition, an important contribution of the research is the presentation of ACO as an alternative procedure in solving of the MPO (Chapter 5 and 6). The modified model is found to be suitable for currencies investment as shown in the examples presented later.

In general, there are two main purposes of this research, which are of theoretical and practical significance.

1.6.1 Contribution to Theory

- This study will add to the body of knowledge and the advancement of solution of MVC problem by using the WSM.

- This research develops a hybrid method of WSM and ACO to solve MVC in the multi-objective optimization approach.

1.6.2 Contribution to Practice

- This study modifies the mathematical model of MVC model for MPO.

- This research proposes a new solution method that is derived through the integration of WSM and ACO approach.
The improved current model of portfolio optimization model can help extend financial activity, which helps to create the optimal set of assets (currencies) to investment.

1.7 Thesis Outline

This research is arranged into seven chapters. Chapter 2 discusses the current models and theoretical results, covered in the literature review of MPO in conventional finance. Chapter 3 presents the methodology of this research. This chapter also includes the overall research design and research framework of this research. Chapter 4 discusses the development of modified MVC model of portfolio through WSM. To achieve this aim, each objective function of MVC model is assigned a weighted coefficient. The optimization problem is then minimized as a weighted sum of the objectives. The application of WSM enables the MVC model to be transformed from a multi-objective function to a single objective function. Then the developed MVC model is solved via PBO. Also, Chapter 4 presents the comparison between the results of the MVC model based on PBO and LINGO software. Chapter 5 discusses the procedure of obtaining the solution for the new model via ACOR. This algorithm parameterizes the MVC model by the number of ant colonies and the number of pheromone trails. The solution is then compared with the result from LINGO. Chapter 6 presents the application, and comparison between the results of the MVC model based on PBO, LINGO and ACOR via illustrative examples. A practical example of investment in the stock market as a benchmark problem is also considered. The last chapter that is Chapter 7, presents the main contributions of the thesis, limitation of study and direction for future researches.
REFERENCES

