PARTICLE SIZE MEASUREMENT USING ELECTROSTATIC SENSOR THROUGH SPATIAL FILTERING METHOD

TEIMOUR TAJDARI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MARCH 2014
This thesis is dedicated to my respected parents,
Yarmohammad Tajdari and Malekkhatoon Paydar,
and to my beloved wife,
Fatemeh Tajdari
I would like to thank my supervisor, Prof. Dr. Mohd Fua'ad bin Hj. Rahmat, for his inspirational guidance, selfless service, patience and encouragement, without which the study could not have been possible. His blend of character has been unique and worth emulating.

I also wish to thank my entire family members, my father-in-law and my mother-in-law for their understanding and encouragement during my PhD program. Without such support, my mind could not have been at peace to allow me to concentrate on and carry out the PhD research that has led to this thesis.

My sincere appreciation also goes to everyone whom I may not have mentioned above, including all those who have helped directly or indirectly in the completion of my project.
ABSTRACT

Particle size measurement is important in powder and particle industries in which the particle size affects the productivity and efficiency of the machine, for example, in coal-fired power plants. An electrostatic sensor detects the electric charge from dry particles moving in a pipeline. Analysis of the detected signal can provide useful information about the particle velocity, mass flow rate, concentration and size. Using electrostatic sensors, previous researches studied particle sizing using magnitude dependent analysis which is a highly conditional method where the results can be affected by other parameters such as particle mass flow rate, velocity and concentration. This research proposes a magnitude independent analysis for particle sizing in the frequency domain called spatial filtering method. The solution was started by modeling and analysis of the charge induced to the ring electrode using finite-element analysis to find the sensitivity of electrode. A mathematical model was provided to compute particle position on the radial axis of the electrode and then a new technique was proposed to extract a single particle size from the calculated particle radial position. To validate the proposed method experimentally, a sensor was designed and five test particles ranging from 4 mm to 14 mm were selected for measurement. The results show a 0.44 mm estimation error between the estimated and expected results. The results also show that the method is promising for the establishment of a reliable and cost-effective solid particle sizing system.
Pengukuran saiz zarah memainkan peranan yang penting dalam industri serbuk dan zarah, di mana ianya boleh mempengaruhi tahap produktiviti dan kecekapan mesin, sebagai contoh di loji kuasa arang batu. Sensor elektrostatik mengesan cas elektrik dari zarah kering yang bergerak dalam saluran paip. Analisis terhadap isyarat yang dikesan memberikan maklumat yang berguna mengenai halaju, kadar aliran jisim, kepekatan dan saiz zarah. Dengan menggunakan sensor elektrostatik, penyelidikan terdahulu telah membuat kajian terhadap saiz zarah dengan menggunakan analisis magnitud bersandar iaitu satu kaedah yang sangat bersyarat di mana keputusannya boleh dipengaruhi oleh parameter lain seperti kadar aliran jisim, halaju dan kepekatan zarah. Kajian ini mencadangkan satu analisis berdasarkan magnitud bebas untuk mengukur saiz zarah dalam frekuensi domain, iaitu kaedah ruang penapisan. Penyelesaiannya bermula dengan pemodelan dan analisis terhadap cas yang teraruh pada elektrod bentuk cincin dengan menggunakan analisis unsur-terhingga untuk mencari sensitiviti elektrod. Model matematik telah diterbitkan untuk mengira kedudukan zarah pada paksi jejaran elektrod dan satu teknik baru telah dicadangkan untuk mendapatkan saiz zarah tunggal dengan berpandukan kedudukan jejar zarah yang dikira. Untuk mengesahkan kaedah yang telah dicadangkan secara uji kaji, sensor telah direka dan lima ujian yang terdiri daripada zarah yang bersaiz dari 4 mm hingga 14 mm telah dipilih untuk pengukuran. Keputusan menunjukkan ralat anggaran di antara keputusan yang dianggarkan dan diharapkan adalah sebanyak 0.44 mm. Keputusan juga menunjukkan bahawa kaedah ini dapat menghasilkan sistem saiz zarah yang boleh dipercayai dan kos efektif.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xv
LIST OF SYMBOLS xvi
LIST OF APPENDICES xx

1 INTRODUCTION 1
1.1 Motivation and Introduction to Electrostatic Sensor 1
1.2 Electrostatic Sensor 2
1.3 Research Background 3
 1.3.1 Mass Flow Rate Measurement 4
 1.3.2 Velocity Measurement 5
 1.3.3 Process Tomography System 6
 1.3.4 Miscellaneous Applications 7
1.4 Problem Statement 9
1.5 Research Objectives 10
1.6 Research Scope and Limitations 11
1.7 Research Contributions 12
1.8 Thesis Outline 12
1.9 Summary of the Introduction 14

2 LITERATURE REVIEW 15

2.1 Introduction to Literature Review 15
2.2 Particle Sizing Methods 16
 2.2.1 Physical Methods 16
 2.2.2 Laser Diffraction 17
 2.2.3 Imaging Method 20
 2.2.4 Electrical Methods 21
 2.2.4.1 Differential Mobility Analyzer 21
 2.2.4.2 Coulter Count Method 24
 2.2.4.3 Electrostatic Sensor 26
 2.2.5 Miscellaneous Methods 27
2.3 Electrostatic measurement 30
 2.3.1 Electrostatic Charge Measurement Methods 31
 2.3.1.1 Faraday Pail 31
 2.3.1.2 Electrostatic Sensor 33
 2.3.2 Electrostatic Sensor Design 34
 2.3.2.1 Electrode Design 35
 2.3.2.2 Signal Conditioning Circuit 36
 2.3.3 Mathematical Modeling of the Electrostatic Sensor 40
 2.3.4 Sensitivity of the Electrode 45
 2.3.5 Spatial Filtering Effect 48
 2.3.5.1 Spatial Filtering Method 52
 2.3.5.2 Velocity Measurement Using Spatial Filtering Method 52
2.4 Summary of the Literature Review 54

3 RESEARCH METHODOLOGY 56

3.1 Introduction to Methodology 56
3.2 Electrostatic Sensor Design 57
3.2.1 Electrode Design 57
3.2.2 Electrode Spatial Sensitivity 58
 3.2.2.1 Induced Charge to the Electrode 59
 3.2.2.2 Finite Element Modeling 60
 3.2.2.3 Spatial Filtering Effect of the Electrode 63
3.2.3 Frequency Response of the Electrode 64
3.2.4 Frequency Response of the Electrostatic Sensor 67
 3.2.4.1 Process to Model the Frequency Spectrum 69
3.2.5 Signal Conditioning Circuit 70
3.2.6 Hardware Setup 75
3.3 Particle Size Measurement 75
 3.3.1 Spatial Filtering Method for Particle Size Measurement 76
3.4 Summary of the Methodology 82

4 RESULTS AND ANALYSIS 83
4.1 Introduction to Results and Analysis 83
4.2 Electrode Design 84
 4.2.1 Electric Charge Induction to Electrode 85
 4.2.2 The Electrode’s Spatial Sensitivity 87
 4.2.2.1 Axial Axis Sensitivity 87
 4.2.2.2 Radial Axis Sensitivity 90
 4.2.3 The Electrode Spatial Filtering Effect 91
4.3 The Electrostatic Sensor Frequency response 93
4.4 Signal Conditioning Circuit 95
 4.4.1 Intrinsic Noise Analysis 97
 4.4.2 Extrinsic Noise 98
4.5 Experimental Setup 101
4.6 Particle Size Measurement 105
4.7 Summary of Results and Analysis 113
DISCUSSION AND FUTURE WORK

5.1 Introduction 115
5.2 Research Contributions 116
5.3 Research Limitations 117
5.4 Future Work 118

REFERENCES 119

Appendices A-D 131-154
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Particle sizing methods and application areas</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Important studies in modeling and application of spatial filtering effect</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>The best fit equation’s constants and the SEE for three curves</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>The constants a, b, c and d values for axial sensitivity curves in 17 points along the electrode radius</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>Particle size versus CS frequency (from experimental tests)</td>
<td>111</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Application and research areas for the electrostatic sensor</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic Laser Diffraction hardware setup</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Image based particle sizing procedure</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic of Differential Mobility Method</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Coulter Count or Electric Sensing Zone basic set up</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>A micro Coulter Counter by Richards et al. (2012)</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of basic ultrasonic measurement setup</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic of the resonant structure</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic diagram of the basic Faraday Pail</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of the basic Electrostatic Sensor setup</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic representations of conventional electrostatic sensor electrodes</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Electrostatic noise collector using a capacitor</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Electrostatic charge collector using resistor</td>
<td>38</td>
</tr>
<tr>
<td>2.13</td>
<td>Inverting amplifier</td>
<td>39</td>
</tr>
<tr>
<td>2.14</td>
<td>Schematic of the ring electrode</td>
<td>40</td>
</tr>
<tr>
<td>2.15</td>
<td>Schematic representation of electrostatic sensor head as a combination of three parts</td>
<td>41</td>
</tr>
<tr>
<td>2.16</td>
<td>Equivalent circuit diagram of the electrostatic sensor head</td>
<td>42</td>
</tr>
<tr>
<td>2.17</td>
<td>A ring electrode sensitivity on z axis</td>
<td>46</td>
</tr>
<tr>
<td>2.18</td>
<td>Sensitivity of a circular palate electrodes</td>
<td>47</td>
</tr>
<tr>
<td>2.19</td>
<td>The circuit model of electrostatic sensor</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Specification of the selected ring electrode</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>The procedure of performing simulation in Ansoft Maxwell</td>
<td>61</td>
</tr>
</tbody>
</table>
3.3 Ansoft Maxwell interface and the schematic of the ring electrode
62
3.4 Schematic of ring electrode in cylindrical coordinate system
64
3.5 Equivalent circuit diagram of the electrostatic sensor
67
3.6 Current-to-voltage converter used as a pre-amplifier circuit
71
3.7 Pre-amplifier circuit diagram
72
3.8 Signal conditioning circuit diagram includes pre-amplifier and amplifier
73
3.9 Hardware setup for particle size measurement using electrostatic sensor
75
3.10 Schematic representation of particle position inside electrode head
78
3.11 Particles fall tangent with pipe wall get different radial position
80
3.12 schematic representation of particle dropping considerations
81
4.1 Electrode and pipe cross-section
84
4.2 Electric charge density distributions on the ring surface
86
4.3 Axial sensitivity of the electrode at \(r = 0 \)
88
4.4 The axial sensitivity at three different radial positions
89
4.5 Radial sensitivity of the electrode at \(z = 0 \)
90
4.6 Frequency properties of the designed electrode
93
4.7 Frequency properties of sensor output signal
95
4.8 Schematic representation of signal conditioning circuit
95
4.9 The Gain versus frequency in the signal conditioning circuit
97
4.10 The curve indicates the output noise spectrum
98
4.11 Output signal in the presence of 50Hz extrinsic noise
99
4.12 A Dual voltage power supply circuit using ICL7660
99
4.13 The electrostatic sensor
100
4.14 The noise-less output signal from the designed sensor
100
4.15 The setup for experimental tests
101
4.16 Comparison of the induced current to the electrode
103
4.17 Normalized frequency spectrum of the sensor output
105
4.18 Relation between the radial position \(r \) and the constant \(d \)
108
4.19 Mathematical estimation of particle radial
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>Sensor output in frequency domain (top) and time domain (bellow) for a 10mm diameter test particle</td>
<td>109</td>
</tr>
<tr>
<td>4.21</td>
<td>Estimated results and actual results</td>
<td>110</td>
</tr>
<tr>
<td>4.22</td>
<td>Estimated results and actual results (proportionality k is implemented)</td>
<td>113</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensions</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
<td></td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectrum Density</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td>Charged-Coupled Device</td>
<td></td>
</tr>
<tr>
<td>DMA</td>
<td>Differential Mobility Analyzer</td>
<td></td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Modeling</td>
<td></td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
<td></td>
</tr>
<tr>
<td>CS frequency</td>
<td>Frequency at the Crest of Spectrum</td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
<td></td>
</tr>
<tr>
<td>ESZ</td>
<td>Electrical Sensing Zone</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
<td></td>
</tr>
<tr>
<td>DAQ</td>
<td>Data Acquisition</td>
<td></td>
</tr>
<tr>
<td>SEE</td>
<td>Standard Error of Estimation</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
<td></td>
</tr>
<tr>
<td>FET</td>
<td>Field-Effect Transistor</td>
<td></td>
</tr>
<tr>
<td>HHT</td>
<td>Hilbert-Huang Transform</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>k</td>
<td>kilo (1000), Proportionality Constant</td>
</tr>
<tr>
<td>M</td>
<td>Mega (10^6)</td>
</tr>
<tr>
<td>μ</td>
<td>micron (10^{-6})</td>
</tr>
<tr>
<td>n</td>
<td>nano (10^{-9}), Number of Electric Charges</td>
</tr>
<tr>
<td>p</td>
<td>pico (10^{-12})</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>d_p</td>
<td>Particle Diameter</td>
</tr>
<tr>
<td>e</td>
<td>Electric Charge Unit</td>
</tr>
<tr>
<td>C_c</td>
<td>Cunningham Slip Correction</td>
</tr>
<tr>
<td>λ</td>
<td>Mean Free Pass, Wave Length</td>
</tr>
<tr>
<td>r_{inner}</td>
<td>Radius of the Inner Electrode</td>
</tr>
<tr>
<td>r_{outer}</td>
<td>Radius of the Outer Electrode</td>
</tr>
<tr>
<td>L</td>
<td>Length of the Electrode</td>
</tr>
<tr>
<td>x</td>
<td>x axis, Wave Distance to Transmitter</td>
</tr>
<tr>
<td>α</td>
<td>Attenuation Coefficient, Constant</td>
</tr>
<tr>
<td>A_x</td>
<td>Wave Amplitude in Receiver</td>
</tr>
<tr>
<td>A_0</td>
<td>Wave Amplitude in Transmitter</td>
</tr>
<tr>
<td>q</td>
<td>Electric Charge on Particle, Induced Charge to Electrode</td>
</tr>
<tr>
<td>Q</td>
<td>Electric Charge on Particle, Induced Charge to Electrode</td>
</tr>
<tr>
<td>q'</td>
<td>Induced Charge to Electrode</td>
</tr>
</tbody>
</table>
\(C \) - Capacitance, Coulomb (Electric Charge Unit)
\(s \) - Second, Laplace Notation, Surface Notation
\(A \) - Ampere, Constant
\(R \) - Resistance
\(R_f \) - Feedback Resistance
\(C_f \) - Feedback Capacitance
\(F \) - Farad
\(I_s \) - Electric Current
\(W \) - Axial Length
\(\theta \) - A selected Angle
\(\phi \) - Electric Potential
\(U \) - Output Voltage
\(\tau \) - Time Constant
\(\sigma \) - Charge Density
\(\nabla \) - Del Operator
\(\rho_v \) - Volume Charge Density
\(\rho \) - Volume Charge Density
\(\Gamma_s \) - Boundary Conditions for Metal Screen
\(\Gamma_e \) - Boundary Conditions for Electrode
\(\Gamma_p \) - Boundary Conditions for Pipe
\(r_0 \) - Radius of the Particle, Initial Radial Distance to Rotation Axis
\(r \) - Distance from Center of the Particle, Distance from Center of the Ring electrode, Particle Radial Position
\(\varepsilon_0 \) - Electric Permittivity for Free Space
\(f_{cs} \) - Frequency at the Crest of the Frequency Spectrum
\(D \) - Particle Diameter, Electrode Diameter
\(\eta \) - Fluid Viscosity, Air Viscosity
\(\rho_s \) - Density of the Solid
\(\rho_f \) - Density of the Liquid
\(g \) - Gravity Acceleration, Constant
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>v</td>
<td>velocity</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>σ</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>r_f</td>
<td>Final Radial Distance to Rotation Axis</td>
</tr>
<tr>
<td>Z_p</td>
<td>Electrical Mobility</td>
</tr>
<tr>
<td>E</td>
<td>Electric Field</td>
</tr>
<tr>
<td>Q_s</td>
<td>Air Flow for Aerosol-Free Air</td>
</tr>
<tr>
<td>Q_a</td>
<td>Air Flow for Positively Charged Aerosols</td>
</tr>
<tr>
<td>$S(x)$</td>
<td>Electrode Sensitivity in x axis</td>
</tr>
<tr>
<td>$S(z)$</td>
<td>Electrode Sensitivity in z axis</td>
</tr>
<tr>
<td>$S(r)$</td>
<td>Electrode Sensitivity in r axis</td>
</tr>
<tr>
<td>$i(x)$</td>
<td>Electrostatic Noise</td>
</tr>
<tr>
<td>$h(t)$</td>
<td>Impulse Response</td>
</tr>
<tr>
<td>$H(f)$</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>$P(\omega)$</td>
<td>Sensor Frequency Response</td>
</tr>
<tr>
<td>$T(\omega)$</td>
<td>Sensor Frequency Response</td>
</tr>
<tr>
<td>$H_r(\omega)$</td>
<td>Electrode Frequency Response</td>
</tr>
<tr>
<td>b</td>
<td>Axial Length</td>
</tr>
<tr>
<td>f_c</td>
<td>Cutoff frequency</td>
</tr>
<tr>
<td>C_d</td>
<td>Capacitance between Particle and Electrode</td>
</tr>
<tr>
<td>C_e</td>
<td>Capacitance between Particle and Electrode</td>
</tr>
<tr>
<td>r_d</td>
<td>Input Resistor of the Pre-Amplifier</td>
</tr>
<tr>
<td>R_d</td>
<td>Input Resistor of the Pre-Amplifier</td>
</tr>
<tr>
<td>C_n</td>
<td>Capacitance between Electrode and Ground</td>
</tr>
<tr>
<td>r_n</td>
<td>Resistance between Electrode and Ground</td>
</tr>
<tr>
<td>r_1</td>
<td>Gain adjusting Resistor of the Amplifier</td>
</tr>
<tr>
<td>r_2</td>
<td>Gain adjusting Resistor of the Amplifier</td>
</tr>
<tr>
<td>a</td>
<td>Sensitivity Equation’s Constant</td>
</tr>
<tr>
<td>b</td>
<td>Sensitivity Equation’s Constant</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>c</td>
<td>Sensitivity Equation’s Constant</td>
</tr>
<tr>
<td>d</td>
<td>Sensitivity Equation’s Constant</td>
</tr>
<tr>
<td>f_{max}</td>
<td>Frequency at the Crest of the Frequency Spectrum</td>
</tr>
<tr>
<td>v_m</td>
<td>Velocity</td>
</tr>
<tr>
<td>\tilde{D}</td>
<td>Electric Flux</td>
</tr>
<tr>
<td>ε_r</td>
<td>Relative Permittivity</td>
</tr>
<tr>
<td>C_a</td>
<td>Input Capacitance of Pre-Amplifier</td>
</tr>
<tr>
<td>r_p</td>
<td>Pipe Radius</td>
</tr>
<tr>
<td>r_r</td>
<td>Ring Electrode Radius</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The PCB design of the signal conditioning circuit</td>
<td>126</td>
</tr>
<tr>
<td>B</td>
<td>The electrode axial sensitivity in 17 radial position</td>
<td>127-136</td>
</tr>
<tr>
<td>C</td>
<td>The experimental test results to measure the f_{cs}</td>
<td>137-147</td>
</tr>
<tr>
<td>D</td>
<td>List of Publications</td>
<td>148-149</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Motivation and Introduction to Electrostatic Sensor

One of the interesting areas to develop a reliable and cost-effective instrumentation in particle and powder industries have been designing the measurement systems based on electrostatic sensors, which has led to a great deal of research and development on the sensor application. Particle movement inside a pipe or a conveyor produces a small amount of electric charge on the particle surface due to particle-to-particle and particle-to-pipe wall friction and collision. This charge on the particle surface can be detected using an electrostatic sensor. The magnitude and frequency component of the detected signal depends on the physical characteristics of the particle and its dense flow parameters such as velocity, concentration and mass flow rate. The particles flow information can be extracted using suitable signal processing algorithms from the electrostatic sensor output signal. Using the electrostatic sensor the velocity of the moving particle can be measured using the cross-correlation technique (Xu et al., 2010b) or the spatial filtering method (Xu et al., 2013). Particles’ mass flow rate measurement in direct method (Gajewski, 1999a), concentration profile-map utilizing process tomography method (Rahmat et al., 2009c), and particle flow dense mean-size measurement (Zhang and Yan, 2003) are some other studies that employed the electrostatic sensor capabilities.

This research deals with the electrostatic sensor application to measure the mean-size of a single particle. To the sensor, a particle seems as a point charge and particle size does not mean anything to the sensor. A new technique is proposed and studied in detail to acquire the particle size information utilizing electrostatic sensor.
1.2 Electrostatic Sensor

Electrostatic sensor (electrodynamic sensor) consists of two main parts which are the sensor electrode and the signal conditioning circuit. The electrode is a conductive metal that can detect the electrostatic flow noise from a moving charged particle. The charge induced to the electrode needs to be collected and amplified using a suitable signal conditioning circuit to an acceptable level. Then the output signal from the sensor can be sent to a PC using a data-transfer card for signal visualization or further analysis.

Geometrical properties of the electrode dramatically affect the output signal magnitude and its frequency. Depending on their area of application, the electrodes are designed in different shapes including ring electrode, pin electrode and plate electrode. The electrode can be installed using either the intrusive or non-intrusive method. In the intrusive method, the electrode will be installed inside the conveyor in which it is in direct contact with the particle flow, following the same method as that employed by Rahmat and Lee (2004) in their study. In the non-intrusive method, the electrode will be installed in the pipe circumference (Gajewski, 1999b).

A typical signal conditioning circuit for electrostatic sensor consists of a signal collector (pre-amplifier) and a signal amplifier. In some applications such as process tomography, an AC-to-DC converter is added to the circuit to convert the output signal to its equivalent DC level. The signal conditioning circuit deals with a random and a very small range of electric charge fluctuations. Due to the high level of amplification, the sensor is very susceptible to detect the noise from external electromagnetic sources.

Sensitivity of the electrostatic sensor describes the ability of the electrode in detecting the electric field strength at any point within the space. It can usually be described as the ratio of the charge induced to the electrode over the total charge existing in the source (Xu et al., 2007). The sensitivity of the sensor is highly dependent upon the physical properties of the electrode, especially the size and physical geometry of the electrode. In addition, it is a function of the electric charge location in the coordinate system. When the electrode sensitivity is considered
against particle location within the space, it is usually called the electrode spatial sensitivity. The electrode sensitivity can describe the electrode spatial filtering effect.

Spatial filtering effect of the sensor describes the frequency bandwidth properties and the frequency response of the sensor electrode. It has a direct relation with the size and shape of the electrode. In fact, a moving particle remains for a longer time in the electrode detection area with longer axial length. As a result, the induction to a bigger size electrode happens in smaller frequency and vice versa.

In designing a measurement system using an electrostatic sensor, both sensitivity and spatial filtering effect of the electrode are important to be known and analyzed. Information regarding the electrode sensitivity and frequency response is needed in making decisions about the amplifier gain and the design of the noise reduction circuit.

1.3 Research Background

In the industries that deal with particle conveyors, the measurement of particle flow parameters is important to control the machine productivity and efficiency. These parameters can be the amount charge on particles, velocity, mass flow rate, particle size, and humidity. For instance, in coal-fired power stations the particle size, flow velocity and mass flow rate of pulverized fuel are important to be measured and monitored in order to control the combustion quality. This control will result in better productivity of the burner and to higher efficiency in energy consumption.

Electric charge in a particle is a single parameter that can provide a great amount of information regarding the particle behavior when it is moving in a pipeline. Due to its simple and robust structure, electrostatic sensor is a good candidate for use in the dusty and harsh environment of such industries. This section is dedicated to a brief background about the electrostatic sensor application in two-phase flow measurement systems.
In powder and granule industry, mass flow rate measurement of moving particles in a pneumatic conveyor is one of the important parameters that should be measured and controlled. The amount of electric charge carried by particles in a pipeline has direct relation with the mass flow rate. Detecting and analyzing the electrostatic noise will give decent information about particle mass flow rate. The particle mass flow rate in the pneumatic conveyor can be measured in two methods, namely direct method and inferential method (indirect method).

As explained by Yan (1996) and later by Zheng and Liu (2010), in an inferential method, mass flow rate at any time is proportional to the product of instantaneous velocity and instantaneous particle volumetric concentration in the pipe cross-section. In this method, electrostatic sensor can be hired either to measure the particle velocity or to measure volumetric concentration or even both. Green et al. (1997a) have employed an electrostatic sensor to find both the volumetric concentration using process tomography and the velocity using cross correlation technique. Then the mass flow rate map of the pipe cross section is given by multiplying the concentration profile and the velocity for each pixel. Carter and Yong (2005) have measured the mass flow rate utilizing the indirect method where the electrostatic sensor is used to measure the velocity using cross correlation technique, and the volumetric concentration is found by digital imaging technique. As described by Zheng and Liu (2011), in the direct method, the sensing element is compared directly with the mass flow rate. The particle mass flow rate can be compared directly with the averaged output signal level. Gajewski et al. (1993a) and later Gajewski (1996b) invented and developed a measurement system based on a model in which the average output voltage of the electrostatic sensor is a function of velocity and mass flow rate. If the velocity is known, the variation of output voltage of the system directly follows the variation on mass flow rate. However, when the velocity is unknown, the relation between mass flow rate and velocity with the signal quantified characteristics are complex and nonlinear. Lijun et al. (2005) used a novel approach by training a back-propagation neural network to establish the
relation between signal characteristics and mass flow rate and the velocity of the particles that worked with measurement error of 20%.

The direct method obviously has a simpler measurement setup than the indirect method. However, when the velocity is an unknown variable, the system shows a large measurement error. In addition, measuring the velocity using other methods eliminates the simplicity advantage of the system. The inferential method is more complex than the direct method; but it can provide useful information about mass flow rate, velocity and volumetric concentration simultaneously.

1.3.2 Velocity Measurement

Electrostatic sensor application in particle velocity measurement is the most researched and developed area for this sensor. The reason is that the velocity variation has a significant effect on the sensor output signal components both in time domain and frequency domain. There are two main techniques that use the electrostatic sensor for velocity measurement. These are the cross-correlation technique and the spatial filtering method.

Cross-correlation technique uses two identical electrodes on the pipe, aligned and installed in one line along with the flow direction over a distance from each other. The electrodes are called upstream and downstream electrodes, respectively. The cross-correlation of the sensor output gives the transit time that takes the particle to pass the distance between these two electrodes (Yan and Ma, 2000). Velocity can be easily calculated when the distance between the electrodes is known, and the particle transit time is measured. The very early application of this technique was incorporated by Gajewski et al. (1990) and Gajewski et al. (1993b) and later Gajewski (1994) for velocity measurement instrumentation in which the electrostatic sensor was used with the ring electrodes. A commercial prototype of a velocity measurement system using the cross-correlation technique was designed by Ma and Yan (2000), and the instrument performance was evaluated with different shapes of non-intrusive electrodes. The prototype is tested on the pneumatic particle conveyor.
which showed a response time less than 2.5 s and repeatability better than ±2%. The cross-correlation technique employing electrostatic sensors was used by Yan et al. (2010) and later by Rodrigues and Yong (2012) for strip and cable speed measurement, which is applicable in electrical cable and fiber-optic cable industries. To achieve a better accuracy, Xiangchen and Yong (2012) and Qian et al. (2012) instead of applying two electrodes, used an array of electrostatic sensors. In this method, the output signals from every two adjacent electrodes cross correlated, and the output resulted from a data fusion algorithm.

Spatial filtering method relates the frequency components of the electrostatic sensor output signal to the particle velocity. Hammer and Green (1983) showed that the velocity of the particles passing through a capacitive sensor, which is functionally similar to the electrostatic sensor, has direct relation with the frequency component of the output signal. Yan et al. (1995) and Gajewski (1996a) showed that the same relation exists for the electrostatic sensor. Zhang (2002) proposed a mathematical model that showed the velocity of a single particle passing through an electrostatic sensor has direct relation with the frequency at peak of the signal power spectrum density or PSD. In higher velocities, the particle induces the electrostatic noise to the electrode with higher frequency. The method was then developed by Xu et al. (2008) and Xu et al. (2009) to be applied to measure particle dense flow velocity in a pneumatic conveyor with particle concentration of $0.067 - 0.130 \text{m}^3\text{m}^{-3}$. The advantage of this method was its simplicity due to using a single electrode. However, this method has a broad spectral bandwidth that reduces the frequency reading accuracy. Xu et al. (2012b) and Li et al. (2012) proposed a new method based on spatial filtering technique using two sensor arrays. The sensor arrays together, along with using a differential amplifier showed a narrow spectral bandwidth indicating that the frequency at the peak of the PSD is directly related to particle flow velocity.

1.3.3 Process Tomography System

Process tomography is an imaging technique that uses an array of sensors around the pipe circumference, and the images produced provide 2D or 3D view of
the flow parameters inside the pipe. There are different types of devices that can be
used for process tomography purpose, such as capacitive sensor, optic sensor,
ultrasonic sensor, CCD camera, and electrostatic sensor. Due to its non-intrusive
nature and simple structure, the electrostatic sensor has been a suitable candidate in
process tomography.

Green et al. (1997b) used 16 electrostatic sensors to calculate the
concentration of the particle flow in a pneumatic pipeline. The back projection
algorithm was utilized to provide a 2D image from the measured sensitivity map.
The same technique was applied by Rahmat and Rahiman (2001) using two arrays of
16 electrostatic sensors to find a 3D velocity profile of moving particles. Machida
and Scarlett (2005) discussed that the back projection algorithm is unable to
distinguish between two adjacent point charges in the detection area. The Least-
Square algorithm with the combination of the back projection algorithm is used to
get a clearer image.

The researches on process tomography using electrostatic sensor follow
almost the same hardware setup, and the differences come from the number of
electrodes and the type of image reconstruction algorithm. For instance, neural
network training has been used to find the type of the flow pattern on the pipe cross
section (Rahmat and Sabit, 2004, 2007) or similarly, fuzzy logic algorithm has been
applied by Rahmat et al. (2009b).

1.3.4 Miscellaneous Applications

Mass flow rate measurement, velocity measurement and process tomography
imaging have been the most interesting areas for the electrostatic sensor application.
However, the simplicity and flexibility of the sensor structure has led to some other
innovative applications.

Particle mean size measurement using electrostatic sensor in a particle dense
flow conveyor was investigated by Zhang and Yan (2003). Most probably the bigger
size of particles carries a larger amount of electric charge. When the particles transfer in a constant velocity and mass flow rate, the variation in particle size will change the magnitude of the sensor output signal. Zhang and Yan (2003) used different material to validate the proposed method and the results did not show a measurement error larger than 15%.

Portoghese (2005, 2008) have worked on monitoring the moisture and drying end point in bed of fluidized particles using triboelectric sensors. The triboelectric sensor is another name for the electrostatic sensor where the electric charge directly produced by particle impact and friction with the metal electrode. The moisture control is important in powder industries. The electrodes in their study were used to detect the electric charge from the liquid injection to the particles in drying the bed stages. The results showed that the magnitude of the detected electric charge (in the form of an electric current in the sensor output) follows the moisture content in the particle container. Less moisture of particles results in higher magnitudes of the output signal.

The following flow chart shows the electrostatic sensor applications and research areas which were discussed throughout this section.

![Flow Chart](image-url)

Figure 1.1 Application and research areas for the electrostatic sensor
Three main areas of research for the sensor are mass flow rate, velocity, and concentration measurement. Particle size measurement and moisture analysis are categorized as miscellaneous applications because fewer research works have been done on these subjects.

1.4 Problem Statement

Instrumentation based on monitoring electric charge variations in a particle or in a particle dense flow using electrostatic sensor is well-developed and researched. The sensor has been mostly utilized for velocity measurement using the cross correlation as well as the spatial filtering techniques. Even the commercial version of the instrument is available (Yan and Ma, 2000). Other applications for the sensor so far include the measurement of mass flow rate and concentration profile using direct method and process tomography. Alongside the velocity and mass flow rate measurement, the particle size can affect the particle charging process. From that idea, there have been methods and research studies developed using the electric charge on a particle as a variable for particle size measurement.

There are two methods that employ particle charge properties to measure particle size. One of the methods is called the Differential Mobility Analyzer or DMA, which uses the electric mobility properties of charged aerosol to find size distribution of the aerosols within the air. The technique is well-researched and developed in both academic area (Guha et al., 2011) and commercial models (Intra and Tippayawong, 2007). However, the method is limited to only aerosols and micron sized particles. The area for large particle size measurement based on the electric charge measurement has received less attention. The only provided method uses an electrostatic sensor and proposes that the mean size of particles in a mass flow has direct relation with the electric charge level produced by moving particles in a pipeline (Zhang and Yan, 2003). Nevertheless, the electric charge level on particle flow can be much more influenced by flow velocity and mass flow rate rather than the particle size. As a result, the small change on flow velocity and mass flow rate easily demolish the entire size measurement results.
The mean size measurement of a single particle in a magnitude dependent analysis is challenging. At first, hardly two particles with equivalent sizes, material types and densities can get an equal amount of electric charge on their surface. Therefore, they induce different levels of electrostatic noise in the sensor which produces distinct results in the measurement system for two particles of the same size. The problem mostly occurs in the measurement of the particles with dissimilar material types where each of them has specific relative permittivity and different behavior in an electric field.

Second, the electrostatic sensor basically detects the particle as a point charge not as a particle. For example, if we have two particles of different sizes with same electric charge on their surface (the case which may happen due to random processes of the particle charging), the measurement system will show that the particles are the same size which would be a wrong result.

To target the mentioned problems, this study is proposed which has pursued a new technique to deal with both challenges. In order to solve the first problem, the spatial filtering technique was employed. The method performs the measurement in the frequency domain, and it is independent from the amount of electric charge on the particle surface. However, the second problem will not be solved merely by using the spatial filtering method. A new modeling technique in conjunction with spatial filtering method is introduced to form a complete solution for the problem.

1.5 Research Objectives

The main purpose of this research work is to measure the mean size of a single particle using electrostatic sensor. To reach this purpose, the following objectives are defined for different steps of the work:

(i) To design the electrode and the signal conditioning circuit of the sensor and to find its sensitivity properties.

(ii) To formulate the frequency response of the electrostatic sensor.
To formulate a mathematical model that provides the particle size information through spatial filtering method.

To validate the proposed method via the experimental approach.

The proposed technique will be based on spatial filtering method where the measurement principles result from output signal analysis in the frequency domain. Mathematica software was used to verify modeling equations and Ansoft Maxwell software will be used for field simulation. Ansoft Maxwell uses Finite-Element Modeling method for field analysis. Excel and FindGraph software programs are utilized for plotting the graphs and for regression analysis. Multisim software is applied for design and analysis of the signal conditioning circuit. Dewetron data transfer card and DEWESoft software are employed for data collecting purposes in experimental tests.

1.6 Research Scope and Limitations

As the Project scope, the current electrostatic sensor applications and developments were studied. The information about the present technologies for particle sizing and the methods to measure the electric charge on particles were collected. The electrostatic sensor design, the methods to model the charge induced to the electrode and the spatial filtering effect of the electrode and spatial filtering method were investigated. To implement the proposed method, the sensor electrode and signal conditioning circuit were designed. The mathematical modeling of the frequency response of the sensor and relation between particle radial position and the frequency at the crest of the frequency spectrum \(f_{cs} \) were conducted to find the relation between particle size and \(f_{cs} \). Finally, the proposed method was validated using the experimental tests.

However, the system is limited for the round particles. The accuracy of the measurement system is limited by the resolution frequency spectrum. The system cannot measure non-chargeable particles; nevertheless, the particle does not need to be charged by an external source. When small sized particles (<1mm) drop tangent to
the pipe wall, the electric charge on the pipe body either attracts or repels the electric field on the particle body which makes a drift on particle direction. Shielding the pipe reduces this effect, but it does not eliminate it completely. Directing the particles through the air flow would be a better solution. The particle does not need the external charger; however, the system cannot measure non-chargeable particles.

1.7 Research Contributions

The main contributions of this research are as follows:

(i) The mathematical model is provided to explain a ring electrode behavior in the frequency domain when a particle moving in a radial direction.

(ii) A new technique is introduced to provide the particle size information through spatial filtering method.

The design of the sensor included a ring electrode and signal conditioning circuit design. To monitor the electrode behavior in an electric field, a field simulator was employed to find the sensitivity of the sensor. The sensitivity of the sensor for different radial position of particle was recorded. The mathematical modeling was performed to find the relation between particle radial position and output frequency and in the same manner between particle size and output frequency. A gravitational test rig was designed, and the experimental results were compared with modeling results.

1.8 Thesis Outline

Chapter 1 provided a brief introduction of the entire research. Motivation and the reasons for conducting the research are explained. The structure and the modus operandi of the electrostatic sensor are described. A brief background of the electrostatic sensor application is provided. The problem statements highlighting the
existing problems in particle sizing using electrostatic sensor are given in detail. The research objective and project contribution to previous studies are provided.

Chapter 2 presents a concise literature review that consists of two main parts. In the first part, the most common methods in particle sizing are reviewed. The methods include physical methods, laser diffraction, imaging method, DMA, Coulter counter and miscellaneous methods. The second part is dedicated to everything about the electrostatic sensor in detail. The methods for electric charge measurement are described, the electrostatic sensor design is explained, and the methods to mathematically model the sensor are provided. In the last part, the spatial filtering effect and frequency properties of the electrode are described in detail.

Chapter 3 focuses on the measurement principles. Mathematical models, simulation process and hardware setup for experimental test are explained in this chapter. The mathematical models describe the spatial sensitivity of electrode, frequency response of electrode and frequency response of the sensor. The simulation procedure incorporated in finding the amount of the charge induced to electrode using the FEM field simulator is described in detail. The signal conditioning circuit design is explained. Lastly, the proposed method to find the particle size in the frequency domain is provided.

In chapter 4, the mathematical modeling results and experimental results are explained in detail. The chapter begins with the electrode design. The spatial sensitivity equation of the electrode is mathematically calculated. The spatial filtering effect and the electrode frequency response are analyzed. The sensor frequency response is calculated. The chapter closes with detailed explanation of the particle sizing algorithm, and the results from mathematical modeling and experimental tests are provided to validate the proposed method.

Chapter 5 presents the conclusion and possible future works. In this chapter, the contributions of this research work are explained. The limitations of this research as well as the suggested solutions are described. Finally, two proposals are suggested as future works which can develop the basic idea of particle size measurement used in this research.
1.9 Summary of the Introduction

Electrostatic sensor is widely researched for use in powder and particle industries. It is a robust sensor which consists of two main parts: the sensor electrode and signal conditioning circuit. The most important part of the sensor is the electrode whose geometrical shape and size determine the spatial sensitivity and spatial filtering effect of the sensor. The electrostatic sensor is studied to be used in mass flow rate measurement, velocity measurement and in process tomography. In this research, the application of electrostatic sensor was investigated in particle size measurement. A new technique which uses the spatial filtering method for particle size measurement was introduced. The proposed method is validated using mathematical modeling and experimental tests.

This chapter is started with explaining the motivations of doing the research. A brief explanation is provided about the electrostatic sensor structure. In the research background, the applications of the sensor are reviewed. These include mass flow rate measurement, velocity measurement, process tomography and two miscellaneous applications. The remaining parts of this chapter were dedicated to the research problem statement, the research objectives, the research scope and the research contributions. At the end, the thesis outline is provided.
REFERENCES

