RADIATION PATTERN RECONFIGURABLE ANTENNA FOR LTE APPLICATIONS

GORANTLA DILEEP KUMAR

UNIVERSITI TEKNOLOGI MALAYSIA
RADIATION PATTERN RECONFIGURABLE ANTENNA FOR LTE APPLICATIONS

GORANTLA DILEEP KUMAR

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electronics and Telecommunication)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JANUARY 2018
To my parents, for their endless love and support
ACKNOWLEDGEMENT

First, I have to thank my parents for their love and support throughout my life. Thank you for giving me strength to reach my dreams. I would like to sincerely thank my supervisor, DR. MOHAMAD RIJAL BIN HAMID, for his guidance and support throughout this study, and especially for his confidence in me. Finally, to all my friends, thank you for your understanding and encouragement in my studies.
ABSTRACT

This project proposes a radiation pattern reconfigurable antenna for LTE applications. Long Term Evolution (LTE) is an advanced system in the wireless telecommunication development. Compared to previous standards, LTE offers improved performance. The main advantage of this project is to steer the radiation pattern to a particular direction. The radiation pattern steering is achieved by applying progressive phase shifting. The transmission line model is used to obtain design parameters of the antenna. By using the progressive phase shift concept, three different configurations of patch array antennas are designed at 2.6GHz operating frequency. The three different directions had been formed at -15°, 0°, 15°. FR4 substrate is used for designing the reconfigurable antenna with thickness of 1.6mm. Measured and simulated results are well matched, but with some minor deviations. The gain of the antenna is 4.4dB with broadside direction and the gain is 4.6dB when the beam steers to either ±15°.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Problem Background 1
1.2 Problem Statement 2
1.3 Objective 3
1.4 Scope of the work 3
1.5 Summary 3

2 LITERATURE REVIEW 4

2.1 Introduction 4
2.2 A review on Wireless Communications 4
2.3 Overview of LTE 5
2.4 Overview on Antenna 7
2.4.1 Wire antennas 7
2.7.7	Beam Steering Patch Antenna Using Reactive Loading and Yagi - Antenna Concept	31
2.7.8	A Twelve-Beam Steering Low-Profile Patch Antenna With Shorting Vias for Vehicular Applications	33
2.7.9	Broadside Beam-Steerable Planar Parasitic Pixel Patch Antenna	34
2.7.10	A Beam-Steering Broadband Microstrip Antenna for Noncontact Vital Sign Detection	36
2.8	Summary	38

<table>
<thead>
<tr>
<th>3</th>
<th>RESEARCH METHODOLOGY</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Design flow</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Microstrip patch antenna</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Design of array antenna</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Antenna simulation software</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Fabrication and Measurement process</td>
<td>46</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Fabrication process</td>
<td>46</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Measurements Process</td>
<td>49</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Measuring Gain</td>
<td>49</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Measuring E-field</td>
<td>50</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Measuring H-field</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>RESULTS AND DISCUSSION</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of Single patch antenna without phase shifting and with phase shifting</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulation and Measurement Results</td>
<td>56</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Simulated Antenna Configurations</td>
<td>56</td>
</tr>
</tbody>
</table>
5 CONCLUSION AND FUTURE WORK 66
5.1 Conclusion 66
5.2 Future work 66

REFERENCES 68
Appendix A 73
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparisons of all generations of mobile technologies</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>LTE band numbers with frequency allocation</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>LTE frequency band allocation for mobile services in Malaysia</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Advantages and disadvantages of microstrip antennas</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Different types of feeding techniques of advantages and disadvantages</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of different feeding techniques</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Design specifications and parameters of single element</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Design specifications and parameters for 2×1 antenna</td>
<td>44</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Wire antennas</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Aperture antennas</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Reflector antennas</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Types of the microstrip antennas</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Advantages and disadvantages of microstrip antennas</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Two infinitesimal horizontal dipoles</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Fairfield observations</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Figure 2.4: N-element array liner array.</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) coordination system for antenna analysis (b) Radiation lobes and beam widths of an antenna amplitude pattern in polar form</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Fabricated antenna</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>(a) Reflection coefficient (b) Radiation Pattern when SP3 connects the middle line (c) Radiation Pattern when SP3 switch select the left branch line (d) Radiation Pattern when SP3 switch select the right branch line</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Photos of the fabricated antenna</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Radiation patterns at 5.2 GHz</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Photograph of the prototype of the parasitic antenna</td>
<td>26</td>
</tr>
</tbody>
</table>
2.15 (a) Normalized radiation patterns in correspondence with the fully deactivated configuration (b) Normalized radiation patterns in correspondence with the three-sectors suppressing structure (c) normalized radiation patterns in correspondence with the six-sectors suppressing structure (d) normalized radiation patterns in correspondence with the nine-sectors suppressing structure

2.16 The physical structure of the antenna used in simulation during the preliminary investigation (a) Front view (b) Back view

2.17 (a) reflection coefficient (b) radiation pattern for three different modes of operations

2.18

2.19 (a) Measured return losses in free space (b) Measured radiation patterns and overall HPBW

2.20 Integrated disk-loaded CPW antenna made for 2.45 GHz.

2.21 Measured normalized E-plane antenna radiation patterns

2.22 Top: scheme of the proposed antenna and bottom: photo of one prototype

2.23 (a) Measured reflection coefficient at different varactor bias voltages (b) Measured gain at different varactor bias voltages

2.24 Top and side views of the proposed antenna.

2.25 (a) Measured and simulated reflection coefficient (b) Demonstration of beam steering with tilted beams using single feed configuration and dual feed configuration

2.26 Plan and elevation view of the proposed antenna

2.27 Measured and simulated results (a) Reflection coefficients (b) Radiation patterns

2.28 Proposed antenna (a) bottom layer with diodes that connect the stubs and the partial ground plane (b) top layer
2.29 Comparison of measured radiation patterns of the proposed antenna and reference antenna, and simulated radiation patterns of the proposed antenna along Theta = 90° plane. Radiation patterns at frequencies of (a) 3, (b) 3.5, (c) 4, and (d) 4.5 GHz are plotted.

3.1 Methodology flow chart
3.2 Basic antenna structure
3.3 2x1 array antenna
3.4 CST software user interface
3.5 Antennas layout printed on transparent sheet
3.6 Fabrication process by steps
3.7 Chemical etching machine
3.8 Radiation pattern measurement setup
3.9 Anechoic chamber
3.10 Antenna positions for measuring the h-field

4.1 Single patch antenna simulation results (a) design (b) reflection coefficient (c) 3D radiation pattern
4.2 Single patch antenna with phase simulation results (a) design (b) reflection coefficient (c) 3D radiation pattern
4.3 Antenna simulated three configurations (a) Broadside (b) Left (c) Right
4.4 Antenna fabricated three configurations (a) Broadside (b) Left (c) Right
4.5 Simulated Reflection coefficients
4.6 Measured Reflection coefficients results
4.7 Simulated vs Measured Reflection coefficients result
4.8 Simulated results with different Dielectric constant values
4.9 Simulated Gain results
4.10 Measured Gain results
4.11 2D E-plane Radiation pattern for three configurations
4.12 Measured E-plane radiation pattern for three configurations
4.13 Measured E-plane results with Cartesian graph
4.14 2D H-plane Radiation pattern for three configurations
4.15 Measured H-plane radiation pattern for three configurations
A.1 Broadside Direction 73
A.2 Steering Left 74
A.3 Steering Right 74
LIST OF ABBREVIATIONS

1G - First Generation
2G - Second Generation
3G - Third Generation
4G - Fourth generation
LTE - Long Term Evolution
CST - Computer Simulation Technology
MTS - Mobile Telephone Systems
AMTS - Advanced Mobile Telephone Systems
PTT - Push To Talk
IMTS - Improved Mobile Telephone Service
GPRS - General Packet Radio Service
WLAN - Wireless Local Access Network
FDMA - Frequency Division Multiple Access
CDMA - Code Division Multiple Access
GSM - Global System for Mobile Communication
EDGE - Enhanced Data Rates for GSM Evolution
UMTS - Universal Mobile Telecommunication Systems
HSDPA - High-Speed Downlink Packet Access
3GPP - 3rd Generation Partnership Project
MIMO - Multiple Input Multiple Output
OFDM - Orthogonal Frequency Digital Multiplexing
MBWA - Mobile Broadband Wireless Access
WiMAX - Worldwide Interoperability for Microwave Access
LIST OF SYMBOLS

Z_0 - Characteristics Impedance
Z_{in} - Input impedance
I - Current
V - Voltage
A - Ampere
W - Width
L - Length
L_{eff} - Effective length
ΔL - Change in length
C - Speed of light
M - Micron
dB - Decibel
dB_{i} - Decibel reference to isotropic antenna
λ - Wavelength
λ_0 - Free space wavelength
λ_{eff} - Effective wavelength
Δ - Conductivity
ϵ_r - Relative permittivity
ϵ_{eff} - Effective permittivity
Ω - Ohm
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Simulation 3D Radiation Patterns</td>
<td>73</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Problem Background

In wireless communications, four generations have been implemented until now. The 1st generation (1G), or analog, 2nd generation (2G), or digital, 3rd generation (3G), or broadband, 4th generation (4G), or digital broadband. Long Term Evolution (LTE) is the technology of 4G [1]. LTE is the advanced system in telecommunication and it offers improved performance.

There are different types of antennas, wire antenna, aperture antenna, reflector antenna and microstrip antenna. Microstrip antenna is easy and low cost to fabricate, low-profile, ease of installation, high-performance, less in size, light weight, and its exit in different shapes such as rectangular, square, circle and triangle are the most common shapes. However, the main drawback of microstrip antenna is that, it has narrow bandwidth [2].

The drawback of fixed radiation pattern is less coverage area, and to overcome this problem, pattern reconfigurable antennas are implemented. Pattern reconfigurable antennas, switch the radiation pattern towards a particular direction and provide more coverage area.

For some applications, single element antennas are unable to meet the gain or radiation pattern requirements. Combining several single antenna elements in an array can be a possible solution. Antenna arrays have the advantages of providing the capability of a steerable beam (radiation direction change) [3].
This chapter starts with an introduction, problem statement, objectives, and scope of the project.

1.2 Problem Statement

Microstrip patch antennas built on printed circuit board (PCB) substrate, are attractive due to their various features like light weight, low cost, easy to fabricate. Obviously, the microstrip element suffers from the inherent limitation of narrow impedance bandwidth and high substrate losses and low radiation efficiency. To relax the precision problem of conventional microstrip antenna, it is proposed to fabricate the antenna using lossless low permittivity substrates.

In general, an antenna design with very directive characteristics (very high gains) to meet the demands of long distance communication. Usually the radiation pattern of a single element microstrip radiator is relatively wide and each element provides the low value of directivity (gain). Enlarging the dimensions of the single elements offer high directivity, but this is not a practical solution. Another simple way is to form an assembly of radiating elements in an electrical and geometrical configuration. This multiple element is referred to as antenna array.

A conventional array antenna is capable of producing a single directional beam pattern, therefore it limited to a fixed direction of the main beam. This limitation can be overcome by using a beam reconfigurable antenna, which is upgrading the single antenna into a multifunctional antenna. Therefore, Beam reconfigurable, which capable to steer the main beam at three different places in the single antenna design was proposed in the present research. There only one beam can be steered at one time within the proposed design. Practically user’s position is not stable, to maintain the connection, the antenna maximum radiation must always be pointing towards the base station. This requires a beam steerable antenna array.
1.3 **Objective**

The main objectives of this project as follows:

1. To model and design a microstrip antenna for LTE applications.
2. To steer the radiation pattern towards a particular direction.
3. To fabricate and measure the proposed antenna design.

1.4 **Scope of the work**

The scopes of this project starts with understanding the concept of radiation pattern and micro strip patch array antenna. The two element micro strip patch antenna operating at 2.6 GHz has been chosen and simulated by using a CST microwave studio. The measured return loss of the proposed antenna obtained below -10 dB and the gain of the antenna is almost similar, when steering the radiation pattern. Finally, the proposed antenna design has been fabricated and the simulated and measured results are compared.

1.5 **Summary**

This chapter presents the introduction of the project and an overview of the antennas, radiation pattern and array elements. The chapter also covers the problem statement, the objectives, scope of the work.
REFERENCES

9. Mshvidobadze, T. Evolution mobile wireless communication and LTE networks. *Application of Information and Communication Technologies*

21. Mohammadian, A. H., Martin, N. M. and Griffin, D. W. A theoretical and

