DAYLIGHT DRIVEN DESIGN IN ENHANCING ENERGY EFFICIENCY OF OFFICE BUILDING IN TROPICAL CLIMATE

GOH ZHENG LIN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Architecture

Faculty of Built Environment
Universiti Teknologi Malaysia

JUNE 2017
To my beloved parents and siblings
ACKNOWLEDGEMENT

I would first like to express my sincere gratitude to my main thesis supervisor, Dr Malsiah Binti Hamid for her patient, guidance and motivation. I would also like to thank my dissertation supervisor Associate Professor Dr. Syed Ahmad Iskandar Syed Ariffin for his advices, supervision and encouragement. Without their ongoing support, the dissertation will not be ready as it is.

My sincere appreciation to my fellow friends for their continuous support and colleagues who aided me throughout the preparation of dissertation. Finally, I am very thankful to have my beloved parents and family for their continuous support throughout the graduate studies journey.
ABSTRACT

The aim of this research is to establish a daylight driven office building design that improve the energy efficiency of office building in Malaysia. To achieve this aim, the key principles of daylighting are to be establish. The daylighting key principles are solar heat gain minimization, glare prevention, deep penetration of daylight, uniform daylight distribution, electrical light response to harvested daylight, interior planning and design consideration. The research methodology chosen are computer simulation and comparative analysis of case studies. Computer simulation is carried out to determine the optimum building form with minimal solar radiation and the effectiveness of light shelf to harvest daylight in relation to its width. While comparative analysis of case study is carried out to identify the daylighting strategies that implemented and its effectiveness. The results of the research can be categorise as three part that is comparative analysis of case studies, solar radiation simulation and daylighting simulation. Firstly, the three selected case studies show that consideration of all daylighting key principles is crucial to achieve high energy efficiency office building in Malaysia. Secondly, result of six cases of solar radiation simulations show that building form that has podium and tower with self-shading facades has less solar heat gain compared to other building form that do not have those characteristics. Lastly, the results of six cases for daylighting simulation shows that implementation of light shelf of 1500mm width enable to reduce glare effectively but slightly reduced desirable illuminance of 300-400 lux. Therefore, integrated approach that is introduction of reflective ceiling is required to increase the floor area with desirable illuminance of 300-400 lux for healthy working environment.
Kajian ini bertujuan untuk mewujudkan reka bentuk bangunan pejabat yang didorong oleh prinsip pencahayaan semula jadi untuk meningkatkan kecekapan tenaga bangunan pejabat. Prinsip-prinsip utama pencahayaan semula jadi perlu dikenalpasti untuk mencapai matlamat ini. Prinsip-prinsip utama pencahayaan semula jadi merangkumi pengurangan sinaran suria, pencegahan silau, penembusan cahaya semula jadi yang mendalam, pengedaran cahaya dengan seragam, lampu elektrik yang bertindak balas dengan pencahayaan semula jadi, perancangan ruang dalaman dan pertimbangan reka bentuk. Metodologi kajian yang dipilih adalah simulasi komputer dan analisis perbandingan kajian kes. Simulasi komputer digunakan untuk menentukan bentuk bangunan yang optimum dengan radiasi solar yang minimum dan keberkesanan rak cahaya untuk mendapatkan pencahayaan semula jadi berkaitan dengan lebarnya. Analisis perbandingan kajian kes digunakan untuk menentukan strategi pencahayaan semula jadi yang dilaksanakan dan keberkesanannya. Hasil kajian ini boleh dikategorikan kepada tiga bahagian iaitu analisis perbandingan kajian kes, simulasi sinaran suria dan simulasi pencahayaan semula jadi. Pertama, tiga kajian kes yang dipilih menunjukkan bahawa pertimbangan untuk semua prinsip utama pencahayaan semula jadi adalah penting untuk mencapai pejabat bangunan yang mempunyai kecekapan tenaga yang tinggi. Kedua, keputusan enam kes untuk simulasi radiasi solar menunjukkan bentuk bangunan yang mempunyai podium dan menara dengan fasad yang mampu meneduhkan diri sendiri mempunyai haba solar yang kurang berbanding bentuk bangunan lain seperti bentuk bangunan yang tidak mempunyai ciri-ciri tersebut. Ketiga, keputusan enam kes berkaitan dengan simulasi pencahayaan semula jadi menunjukkan bahawa pelaksanaan cahaya rak 1500mm lebar dapat mengurangkan silau dengan berkesan tetapi mengurangkan keterangan yang diperlukan iaitu 300- 400 lux. Oleh itu, integrasi siling yang reflektif diperlukan untuk meningkatkan kawasan lantai dengan keterangan 300- 400 lux dan menghasilkan persekitaran kerja yang sihat.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDIXES</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background Studies 2

1.3 Problem Statement 4

1.4 Research Aim 5

1.5 Objectives of the Study 5

1.6 Research Questions 5

1.7 Significance of the Study 6

1.8 Research Methodology 6

1.9 Structure of Thesis 7

2 LITERATURE REVIEW 8

2.1 Introduction 8
2.2 Definition of Daylighting, Illuminance and Glare 8
2.3 Key Principles of Daylight Harvesting 10
 2.3.1 Solar Heat Gain Minimization 10
 2.3.2 Glare Prevention 11
 2.3.3 Deep Penetration of Daylight 12
 2.3.4 Uniform Daylight Distribution 13
 2.3.5 Electrical Light Response to Daylight Harvested 14
 2.3.6 Interior Planning and Design Consideration 14
2.4 Benefits of Daylighting 15
2.5 Uses of Daylighting in Office Building 15
2.6 Daylighting Strategies 16
 2.6.1 Site Consideration and Orientation 17
 2.6.2 Massing and Form of Building 18
 2.6.3 Space Planning 19
 2.6.4 Window Design Consideration 20
 2.6.5 Ceiling Design Consideration 24
 2.6.6 Light Shelf 25
 2.6.7 Light Pipe 28
 2.6.8 Skylight 29
 2.6.9 PSALI (Permanent Supplementary Artificial Lighting of Interior) & Efficient Artificial Light Equipment 31
2.7 Case Studies: Green Office Building in Malaysia 32
 2.7.1 The Green Energy Office (GEO) Building 33
 2.7.2 The Diamond Building 36
 2.7.3 KKR2 Tower 38
2.8 Summary of Chapter 40

3 RESEARCH METHODOLOGY 41
3.1 Introduction 41
3.2 Method of Research 42
3.3 Case Study 43
3.4 Computer Simulation Programme 44
 3.4.1 Sketchup 2016 45
3.4.2 Insight 360 Autodesk Revit 2016 46
3.4.3 Velux Daylight Visualizer 46
3.5 Research Framework 47
3.6 Simulation Workflow 48
3.7 Variables of Simulation for Solar Radiation and Daylighting Simulations 49
3.8 Development of Basic Building Forms for Solar Radiation Simulation 50
3.9 Requirements of Daylighting Simulation 52
3.10 Performance Criteria 53
3.11 Summary 54

4 ANALYSIS, FINDINGS AND DISCUSSION 55
4.1 Introduction 55
4.2 Case Study 56
 4.2.1 Evaluating the Three Case Studies based on the Six Key Principles of Daylight Harvesting 56
4.3 Simulation result for Solar Radiation 60
 4.3.1 Revit Insight 360 Solar Radiation Simulation 60
 4.3.2 Comparative of the six Simulation Cases for Solar Radiation 76
4.4 Simulation Result for Illuminance 79
4.5 Simulation Result for Daylight Factor 91
4.6 Building Energy Index 92
4.7 Summary of Chapter 93

5 CONCLUSION AND RECOMMENDATIONS 94
5.1 Introduction 94
5.2 Conclusions 95
 5.2.1 Objective 1: To identify the daylight strategies in achieving optimum daylight penetration into the building 95
 5.2.2 Objective 2: To determine the building form through daylight principles 96
5.2.3 Objective 3: To find out integrated design that achieve optimum daylighting for working environment and hence enhancing energy efficiency of building

5.3 Recommendations

REFERENCES

APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>The acceptable ratio of the luminance at two points in the field of view</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Different glazing energy performance</td>
<td>22</td>
</tr>
<tr>
<td>3.0</td>
<td>Summarized basic data of simulation for the 6 cases</td>
<td>51</td>
</tr>
<tr>
<td>4.0</td>
<td>Summary of key principles of daylight harvesting relating to the 3 selected cases</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Case 1 range of solar radiation and facades surface area</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Case 2 range of solar radiation and facades surface area</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Case 3 range of solar radiation and facades surface area</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Case 4 range of solar radiation and facades surface area</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Case 5 range of solar radiation and facades surface area</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Case 6 range of solar radiation and facades surface area</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparative of simulation results for 6 cases</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>The number of node for case 1 simulation on 6th floor</td>
<td>81</td>
</tr>
<tr>
<td>4.9</td>
<td>The number of node for case 2 simulation on 6th, 16th and 23rd floors</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>The number of node for case 3 simulation on 6<sup>th</sup>, 16<sup>th</sup> and 23<sup>rd</sup> floors</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>The number of node for case 4 simulation on 6<sup>th</sup>, 16<sup>th</sup> and 23<sup>rd</sup> floors</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>The number of node for case 5 simulation on 6<sup>th</sup>, 16<sup>th</sup> and 23<sup>rd</sup> floors</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of illuminance of 5 cases on 6<sup>th</sup> floor</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Case 1 Daylight Factor Simulation on 6<sup>th</sup> floor</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Simplified calculation on energy saving from artificial lighting</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Average of building energy efficiency in Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Energy Index from Electrical Consumption and Carbon Emission Intensity of Building Typologies in Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>CO2 emission per capita of Malaysia, Singapore and Indonesia from year of 1952 to 2010</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Typical electricity usage in office buildings in Malaysia</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Structure of Thesis</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>Difference between illuminance and luminance</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Daylight factors and its impacts</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Section of a side lit space with standard window and rule of thumb for daylight penetration through the window.</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>The three-tier approach to Sustainable Heating, Cooling and Lighting</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>The diagram illustrates north and south façade have most daylight while at east and west façade has least daylight and unwanted glare issue</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Different cut outs in building plan able to provide good daylight to the space inside</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Example of a daylighting opportunity analysis</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>General rule of penetration of daylighting through sidelit window</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Maximum distance allowed between window for uniform daylight distribution</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Show the Comparison of daylight factor with opening ratio</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of shading device type and daylight factor across the space</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Effect of glazed area on annual energy consumption</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>90 degree drop ceiling below the top of the facade window height (left) compared to slanting a drop of false ceiling with some angle (right)</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Selection criteria for daylighting strategies</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Side-lighting enhancement techniques and their limits</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Different shape of light shelf reflects daylight with different distance penetration of daylight into building</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Component of Light Pipe (left) and the light pipe reflects daylight into the space (right)</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Saw-tooth roof (left) and Roof-monitor (right)</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>Interaction between natural light and artificial light at various distance from window</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>The flow chart of PSALI</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>Perspective view of GEO Building</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.21</td>
<td>East facade of GEO Building</td>
<td>33</td>
</tr>
<tr>
<td>2.22</td>
<td>West facade of GEO Building</td>
<td>34</td>
</tr>
<tr>
<td>2.23</td>
<td>Skylight design of GEO Building that uses side lighting</td>
<td>35</td>
</tr>
<tr>
<td>2.24</td>
<td>The section of Diamond building relation to the Sun Path and Shadow Casting</td>
<td>36</td>
</tr>
<tr>
<td>2.25</td>
<td>The integration of window sill and light shelf</td>
<td>37</td>
</tr>
<tr>
<td>2.26</td>
<td>The self-shading glazing incorporate with external fin to reduce solar heat gain</td>
<td>38</td>
</tr>
<tr>
<td>2.27</td>
<td>Orientation of building relating to its building form on left and the building’s core positioning colored in red on right</td>
<td>39</td>
</tr>
<tr>
<td>2.28</td>
<td>Daylight Contour of Level 11 from 9am to 10 am (left) and 1pm to 2pm (right) 1 meter above the floor level</td>
<td>39</td>
</tr>
<tr>
<td>3.0</td>
<td>The case study process overview for facility documentation phase</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>The workflow of the research methodology</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Workflow of Modelling and Simulation</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>The setting of weather data for Revit 2016 Insight 360 software for solar radiation simulation</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Sun path of the solar radiation simulation</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Axonometric view of building form 1 (left) and 2 (right)</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Axonometric view of building form 3 (left) and 4 (right)</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Axonometric view of building form 5 (left) and 6 (right)</td>
<td>51</td>
</tr>
</tbody>
</table>
3.8 Axonometric view of the base model for daylighting simulation in Velux (left) and its section (right)

3.9 3D model of simulation for daylighting

4.0 Six cases of solar radiation simulation

4.1 Simulation result of case 1

4.2 Case 1 3D simulation result view from east (left) and view from west (right)

4.3 Top view of case 1 simulation result

4.4 The facades of case 1 simulation result

4.5 Simulation result of case 2

4.6 The 3D view of case 2 simulation result view from north-east (left) and south-west (right)

4.7 Top view of case 2 simulation result

4.8 The facades of case 2 simulation result

4.9 Simulation result of case 3

4.10 The 3D view of case 3 simulation result view from north-east (left) and south-west (right)

4.11 The top view of case 3 simulation result

4.12 The facades of case 3 simulation result

4.13 Simulation result of case 4

4.14 The 3D view of case 3 simulation result view from north-east (left) and south-west (right)
4.15 Top view of case 4 simulation result
69

4.16 Facade of case 4 simulation result
69

4.17 Simulation result of case 5
71

4.18 The 3D view of case 5 simulation result view from north-east (left) and south-west (right)
71

4.19 Top view of case 5 simulation result
72

4.20 Facade of case 5 simulation result
72

4.21 Simulation result of case 6
74

4.22 The 3D view of case 6 simulation result view from north-east (left) and south-west (right)
74

4.23 Top view of case 5 simulation result
75

4.24 Facade of case 5 simulation result
75

4.25 Case 1 simulation of 3 floors without light shelf
79

4.26 Case 1 (no light shelves) simulation result on 6th floor (left) and 13th floor (right)
80

4.27 Case 1 (no light shelves) simulation result on 23rd floor
80

4.28 Case 2 simulation result on 6th (left) and 16th (right)
82

4.29 Case 2 simulaiton result on 23th
82

4.30 Case 3 simulation result on 6th floor (left) and 16th floor (right)
84

4.31 Case 3 simulaiton result on 23rd floor
84

4.32 Case 4 simulation result for 6th floor (left) and 16th floor (right)
86
4.33 Case 4 simulation result for 23rd floor 86

4.34 Case 5 simulation result (1500mm light shelf) of 6th floor (left) and 16th floor (right) 88

4.35 Case 5 simulation result (1500mm light shelf) of 23rd floor 88

4.36 Daylight Factor simulation result for Case 1 (without light shelves) on left and Case 5 (with 1500mm light shelves and reflective ceiling) on right 91
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of compilations of final design thesis presentation boards and drawings</td>
<td>104</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Daylight availability in Malaysia can be considered numerous in amount throughout the year, but energy usage for typical office building remain high with average Building Energy Index (BEI) of 200 to 250 kwh/m²/year (Chan, 2009) as shown in Figure 1.0. Without taking daylighting as part of the design consideration, the building design will lead to a typical deep building plan design that rely heavily on artificial light despite of having large window opening.

Figure 1.0: Average of building energy efficiency in Malaysia (Source: Chan, 2009)
Furthermore, despite of high direct solar heat gain of high rise facades, intends usage of expensive glazing caused emerging forest of “glass boxes” office building design which further worsen urban heat island effect and lead to high energy consumption for cooling. As energy efficiency is one of the key to sustainable future therefore through passive daylighting principles, building performance and working environment in office building can be enhanced and hence achieving energy efficient in office building.

By prioritizing the key principles of daylighting harvesting which are solar heat gain minimisation, glare prevention, deep penetration of daylight, uniform daylight distribution, electrical light response to daylight harvested and lastly interior designing will aid designer to design building that are more sustainable and efficient in the future.

The average minimum daylight available in Malaysia is above 10,000 lux during daytime and with office spaces only required daylighting of 300 lux to 400 lux during working hour. Thus, this shows that there is potential in harvesting daylight in Malaysia. Therefore, buildings should be designed to maximise the amount of natural light that enters the building, particularly workplaces. This can lead to significant energy savings by reducing the need for artificial lighting and furthermore has been shown to improve productivity (Edwards & Torcellini, 2002).

1.2 Background Studies

According to Green Tech Malaysia (2010), office building is the third highest energy consumption building typology after the hospital and hotel building in second and first respectively as shown in Figure 1.1. When building consumed high energy, it also represents the high carbon emission to the environment. Green Technology Corporation (2011) stated in the Clean Development Mechanism (CDM) Report, every
0.747kg of CO$_2$ equals to 1kWh of electricity generated by power plant in Peninsula Malaysia.

Figure 1.1: Energy index from electrical consumption and carbon emission intensity of building typologies in Malaysia (Source: Green Tech Malaysia, 2010)

Figure 1.2 shows that Malaysia is the highest CO$_2$ emission per capita compared to neighbouring countries such as Singapore and Indonesia (World Bank, 2016). World Resources Institute (WRI) suggested that 2 tons of CO$_2$ per capita per year must be targeted for a sustainable living on earth while currently Malaysia is on 7.9 tonnes per capita which exceeded the suggested CO$_2$ emission per capita.

As Malaysia’s voluntarily committed to reduce 40% if its greenhouse gas (GHG) emissions from 1990 levels by 2020, announced at the 2009 United Nations Climate Change Conference in Copenhagen (COP-15). Therefore, it is crucial for office building in Malaysia to be energy efficiency to significantly reduce energy consumption and carbon emission.
Figure 1.2: CO$_2$ emission per capita of Malaysia, Singapore and Indonesia from year of 1952 to 2010 (Source: World Bank, 2016)

1.3 Problem Statement

Typical office building in Malaysia is ranked as the top three building typology of high energy consumption and carbon emission (Green Tech Malaysia, 2010). As shown in Figure 1.3, the energy consumption during the operational stage by artificial light is second highest (20%) after the HVAC (58%). Therefore, by implementing the key principles of daylighting during the initial design stage will enhance the building’s performances as it reduces the usage of artificial lighting and hence reduce the energy consumption of the building.

Figure 1.3: Typical electricity usage in office buildings in Malaysia (Source: Energy Commission, 2016)
1.4 Research Aim

The aim of the research is to establish a daylight driven office building design that improve the energy efficiency of office building in tropical climate.

1.5 Objectives of the Study

There are three main objectives that are targeted to be achieved in this research which stated as below:

i. To identify the daylight strategies in achieving optimum daylight penetration into the building.
ii. To determine the building form through daylight principles.
iii. To develop integrated daylighting strategies for optimum working environment and hence enhancing energy efficiency of building.

1.6 Research Questions

The research questions are established and is interrelated to the objective of the study are stated as below:

a) What are the possible daylight strategies that can be implemented to enhance daylight penetration into the building in tropical climate?
b) How daylighting enhances the working environment and enhancing the energy efficiency of building?
c) How daylight principles affect the building forms?
1.7 Significance of the Study

This research is crucial in understanding the important role of daylighting and integrated the strategies into design consideration especially during the initial stage of building design. This can significantly improve the energy performance of the building. By taking solar as the design driving force, it will establish a solar and environmentally responsive architecture design which will enhance the energy efficiency as well as the working environment of the building. Finally, the findings of this research will be implemented and integrated into the design thesis as part of the design strategies.

1.8 Research Methodology

The research methodology employed primary is through computer simulation. Software such as Insight 360 Revit solar simulation will be used to analyse the solar heat gain of six building forms and Velux simulation software is used to analyse the daylight’s quantity and quality the six cases regarding light shelf and reflective ceiling.

Apart from computer simulation, three case studies of energy efficient office buildings in Malaysia are selected to compare and analyse the daylighting strategies that implemented and their performances. Further information regarding research methodology and the framework of research will be elaborated in Chapter 3.
1.9 Structure of Thesis

Referring to Figure 1.4, it shows the structure of the thesis which developed from objectives to data collection then followed by data analysis and lastly conclude with expected findings.

Objectives

1. To identify the daylight strategies in achieving optimum daylight penetration into the building

2. To determine the building form through daylight principles

3. To develop integrated daylighting strategies for optimum working environment and hence enhancing energy efficiency of building

Data Collection

Primary Data
- Simulation Result

Secondary Data
- Journal
- Book
- Article
- Report

Data Analysis

- Case study analysis
- Simulation comparison and analysis

Expected Findings

- Simulated building form with lowest solar heat gain
- Sufficient daylighting quantity and quality for office spaces
- Building energy efficiency improved as reduction in heat gain and usage of daylight

Figure 1.4 Structure of Thesis
REFERENCES

