PERFORMANCE EVALUATION OF MULTISTAGE ADSORBER DESIGN FOR MERCURY REMOVAL FROM PRODUCED WATER

SITI FATIMAH BINTI SUBOH

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JUNE 2015
To my beloved family, thank you!

To my supportive lecturer, thank you.
ACKNOWLEDGEMENT

I would like to express my sincere gratefulness first of all to Allah for giving me strength and wisdom during my study. I would like also to take this opportunity to wish a million of thanks to my supervisor, Assoc. Prof. Dr. Hanapi Bin Mat for his dedication, skillful guidance, helpful suggestions and constant encouragement that made me possible to finish this dissertation.

Greatest appreciation to my husband, my father and mother who gave me fully support during my study. Special thanks to my friend, Norasikin Saman for her kindness and helping me getting through the difficult times and sharing her experience. Many thanks are to all chemical engineering department staffs for their support and advices.
ABSTRACT

Management of mercury is really important as it is harmful to the environment and human, even though it exists in low concentration. In order to reduce the mercury emitting to environment, the mercury removal process needs to be developed. Adsorption is the well-known process for mercury removal due to the fact that it has low operating cost, simplicity, high efficiency, potential of adsorbent regeneration, and sludge free process. The mercury removal in the multistage adsorber is preferable compared to single stage adsorber as the total cross-sectional area increases with increasing number of adsorber stages and thus increasing the mercury removal efficiency. In this study, the design of multistage adsorber to remove CH$_3$Hg(II) and Hg(II) from inlet solution by using the CP adsorbents was investigated so that the optimum amount of CP adsorbent, the number of stages and the optimum contact time for selected mercury removal efficiency can be determined. Optimization of the CP-Pure amount was calculated for selected removal efficiency (i.e. 50, 60, 70, 80, and 90 %) of CH$_3$Hg(II) and Hg(II) ions for initial concentration of 0.6 g/m3 treated in various inlet solution volumes. As the inlet solution volume increased, the adsorbent amount increased. The adsorbent amount also increased with increasing the removal efficiency. The treated CP adsorbents were efficient than CP-Pure adsorbent as the adsorption process only needed less amount of treated CP adsorbents to remove CH$_3$Hg(II) and Hg(II) at the same conditions. The optimum stage number for 99% removal of CH$_3$Hg(II) using CP-Pure adsorbent and inlet solution volume of 2.5 m3 was four, while the total amount of the CP-Pure adsorbent was 1.64 kg (0.41 kg for each stage). For the same conditions, the same stage number was also obtained for Hg(II) with the CP-Pure adsorbent amount of 0.13 kg (0.09 kg for each stage). For 99% removal of CH$_3$Hg(II) and Hg(II) from 0.6 g/m3 initial concentration and inlet solution volume of 2.5 m3, the optimum time was 2.17 and 1.25 min, respectively with four stages.
Pengurusan raksa adalah sangat penting kerana ianya berbahaya kepada sekitaran dan manusia, walupun pada kepekatan yang rendah. Untuk mengurangkan pembebasan raksa ke sekitaran, proses penyingkiran raksa perlu dibangunkan. Pejerapan adalah merupakan yang diketahui umum bagi penyingkiran raksa disebabkan kosnya yang rendah, mudah, mempunyai kecekapan yang tinggi, potensi penjanaan semula, dan proses bebas enapcemar. Penyingkiran raksa menggunakan penjerap berbilang peringkat adalah lebih baik berbanding dengan penjerap satu peringkat. Dalam kajian ini, rekabentuk penjerap berbilang peringkat bagi penyingkiran CH₃Hg(II) and Hg(II) dari larutan suapan dengan menggunakan penjerap CP telah dikaji bertujuan untuk menentukan kuantiti optimum penjerap, bilangan peringkat dan masa sentuhan optimum bagi kecekapan penyingkiran terpilih dapat ditentukan. Pengoptimuman jumlah CP-Pure telah dikira bagi kecekapan penyingkiran terpilih (i.e. 50, 60, 70, 80, and 90 %) ion CH₃Hg(II) dan Hg(II) untuk kepekatan awal 0.6 g/m³ pada pelbagai isipadu larutan suapan. Kuantiti penjerap meningkat dengan kenaikan isipadu larutan suapan. Kuantiti penjerap juga meningkat dengan kenaikan kecekapan penyingkiran. Penjerap CP terawat adalah lebih cekap berbanding dengan CP-Pure kerana kuantiti penjerap CP terawat yang diperlukan adalah kurang bagi penyingkiran CH₃Hg(II) and Hg(II) yang dijalankan pada keadaan yang sama. Bilangan peringkat yang optimum bagi penyingkiran 99% CH₃Hg(II) menggunakan penjerap CP-Pure dan 2.5 m³ isipadu larutan suapan ialah empat, sementara jumlah kuantiti penjerap CP-Pure ialah 1.64 kg (0.41 kg bagi setiap peringkat). Untuk keadaan yang sama, bilangan peringkat yang sama diperolehi bagi Hg(II) dengan kuantiti penjerap CP-Pure ialah 0.13 kg (0.09 kg bagi setiap peringkat). Untuk penyingkiran 99% CH₃Hg(II) dan Hg(II) dari kepekatan awal 0.6 g/m³ dan 2.5 m³ isipadu larutan suapan, masa optimum ialah masing-masing 2.17 dan 1.25 min dengan empat peringkat.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>AKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Research background 1
1.2 Problem statements 2
1.3 Significant of study 3
1.4 Objectives 3
1.5 Scope of study 3
1.6 Thesis outline 4
1.7 Summary 4

2 LITERATURE REVIEW
2.1 Mercury and environment 6
2.1.1 Introduction to mercury 6
3 METHODOLOGY

3.1 Introduction 20
3.2 Adsorber design and performance evaluation 21
 3.2.1 Design variables 21
 3.2.2 Design input data 23
 3.2.3 Design calculations and simulations 23
 3.2.3.1 Mass balance 23
 3.2.3.2 Optimization of adsorbent amount 25
 3.2.3.3 Optimization number of stages 25
 3.2.3.4 Optimization of contact time 26
 3.2.3.5 Effect of removal efficiency 28
 3.2.3.6 Analytical solution 29
3.3 Summary 29

4 RESULTS AND DISCUSSIONS

4.1 Introduction 30
4.2 Design performance evaluation 31
4.2.1 Optimization of adsorbent amount
4.2.1.1 Adsorbent amount for pure CP
4.2.1.2 Adsorbent amount for different type of adsorbent
4.2.2 Optimization number of stages and total number of adsorbent
4.2.2.1 Stages and total number of adsorbent for pure CP
4.2.2.2 Stages and total number of adsorbent for different type of adsorbent
4.2.3 Optimization contact time for a multistage adsorber
4.3 Summary

5 CONCLUSIONS
5.1 Introduction
5.2 Summary of research findings
5.2.1 Optimization of adsorbent amount
5.2.2 Optimization number of stages and total number of adsorbents
5.2.3 Optimization contact time for multistage adsorber
5.3 Recommendation for future work
5.4 Concluding remarks

REFERENCES
Appendices A-G
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Schematic diagram of multistage adsorber</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>A single-stage batch adsorber</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Amount of CP-Pure against volume of solvent treated for various percentage of CH$_3$Hg(II) removal at 0.6 g/m3 initial CH$_3$Hg(II) ion concentration</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Amount of CP-Pure against volume of solvent treated for various percentage of Hg(II) removal at 0.6 g/m3 initial Hg(II) ion concentration</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Amount of adsorbent (g) against volume of inlet solution (m3) for various types of CP adsorbents at 0.6g/m3 initial CH$_3$Hg(II) ion concentration</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Amount of adsorbent (g) against volume of inlet solution (m3) for various types of CP adsorbents at 0.6g/m3 initial Hg(II) ion concentration</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Plot of optimization data for the number of stages and total adsorbent weight for the adsorption of 99% at 0.6 g/m3 CH$_3$Hg(II) onto CP-Pure from various volume</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Plot of optimization data for the number of stages and total adsorbent weight for the adsorption of 99% at 0.6 g/m3 Hg(II) onto CP-Pure from various volume</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Plot of optimization data for the number of stages and total adsorbent weight for the adsorption of 99% at 0.6 g/m3 CH$_3$Hg(II) onto different type of adsorbents from 2.5 m3 of solution</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Plot of optimization data for the number of stages and total adsorbent weight for the adsorption of 99% at 0.6 g/m3 Hg(II) onto different type of adsorbents from 2.5 m3 of solution</td>
<td>40</td>
</tr>
</tbody>
</table>
4.10 Plot of optimization of contact time and system number for 99% CH$_3$Hg(II) removal in a four stages using 2.5m3 of 0.6 g/m3 solution

4.11 Plot of optimization of contact time and system number for 99% Hg(II) removal in a four stages using 2.5m3 of 0.6 g/m3 solution
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various adsorbents from coconut waste</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of various type of Isotherm Model</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Various kinetic model of adsorption</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Thermodynamic equation and their parameters</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Recent studies on designing adsorber</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

- \(g \) - gram
- \(hr \) - hour
- \(m^3 \) - Cubic meter
- \(kg \) - Kilogram
- \(> \) - more than
- \(Q_e \) - Amount of metal ion adsorbed at initial (mg/g)
- \(O_1 \) - Amount of metal ion adsorbed at final (mg/g)
- \(K_f \) - Freundlich constants denoting adsorption capacity (1\(^n\)mg\(^1\)-a/g)
- \(T \) - Temperature
- \(S \) - Entropy
- \(P \) - Pressure
- \(\Delta G \) - Gibbs energy
- \(G \) - Solution to be treated (kg)
- \(C_o \) - initial pollutant concentration (g/m\(^3\))
- \(C_e \) - Final pollutant concentration (g/m\(^3\))
- \(L \) - Amount of solvent (kg)
- \(K \) - equilibrium constant (m\(^3\)/g)
LIST OF ABBREVIATIONS

CP - Coconut pith
BB - Black B
RR - Reactive Red
MPETS - Mercaptopropyltriethoxyl Silane
CH3Hg - Methyl Mercury
Hg - Mercury
HgCl2 - Mercury Chloride
CH3HgCH3 - Dimethyl Mercury
C2H5HgC2H3 - Diethyl Mercury
Cl- - Chloride
HgS - Mercury Sulfide
HgO - Mercury Oxide
TLCP - Toxicity Characterization Leach Procedure
USEPA - US Environmental Protection Agency
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Optimization data of adsorbent amount for CH₃Hg(II) removal using pure CP-Pure adsorbent</td>
<td>52</td>
</tr>
<tr>
<td>A.2</td>
<td>Optimization data of adsorbent amount for Hg(II) removal using CP-Pure adsorbent</td>
<td>52</td>
</tr>
<tr>
<td>A.3</td>
<td>Optimization data of adsorbent amount for CH₃Hg(II) removal using different types of adsorbents</td>
<td>53</td>
</tr>
<tr>
<td>A.4</td>
<td>Optimization data of adsorbent amount for Hg(II) removal using different types of adsorbents</td>
<td>53</td>
</tr>
<tr>
<td>B.1</td>
<td>Optimization data of stage number and adsorbent amount for CH₃Hg(II) removal using CP-Pure adsorbent</td>
<td>54</td>
</tr>
<tr>
<td>B.2</td>
<td>Optimization data of stage number and adsorbent amount for Hg(II) removal using CP-Pure</td>
<td>54</td>
</tr>
<tr>
<td>B.3</td>
<td>Optimization data of stage number and adsorbent amount for CH₃Hg(II) removal using different type of adsorbents</td>
<td>55</td>
</tr>
<tr>
<td>B.4</td>
<td>Optimization data of stage number and adsorbent amount for Hg(II) removal using different type of adsorbents</td>
<td>55</td>
</tr>
<tr>
<td>C.1</td>
<td>Optimization data of multistage adsorber contact time for CH₃Hg(II) removal using CP-Pure.</td>
<td>56</td>
</tr>
<tr>
<td>C.2</td>
<td>Optimization data of multistage adsorber contact time for Hg(II) removal using CP-Pure.</td>
<td>57</td>
</tr>
<tr>
<td>D.1</td>
<td>Data of Langmuir isotherm model for CH₃Hg(I) removal using different type of adsorbents</td>
<td>58</td>
</tr>
<tr>
<td>D.2</td>
<td>Data of Langmuir isotherm model for Hg(II) removal using different type of adsorbents</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>E.1</td>
<td>Data of Freundlich isotherm model for CH$_3$Hg(II) removal using different type of adsorbents</td>
<td>59</td>
</tr>
<tr>
<td>E.2</td>
<td>Data of Freundlich isotherm model for Hg(II) removal using different type of adsorbents</td>
<td>59</td>
</tr>
<tr>
<td>F.1</td>
<td>Data of pseudo-second order kinetic model for CH$_3$Hg(II) removal using CP-Pure adsorbent</td>
<td>60</td>
</tr>
<tr>
<td>F.2</td>
<td>Data of pseudo-second order kinetic model for Hg(II) removal using CP-Pure adsorbent</td>
<td>61</td>
</tr>
<tr>
<td>G.1</td>
<td>Coding for optimization adsorbent amount optimization.</td>
<td>62</td>
</tr>
<tr>
<td>G.2</td>
<td>Coding for optimization of number of stages and adsorbent amount</td>
<td>63</td>
</tr>
<tr>
<td>G.3</td>
<td>Coding for contact time optimization</td>
<td>64</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Usually, mercury removal processes are installed either in industries or treatment processes aim to reduce the concentration of mercury. One of the most common methods from recent technologies that have been developed to remove mercury from hydrocarbon streams is the use of adsorbents. Examples are active carbon adsorbent, metal oxides or sulfide adsorbents, polymer with thiol groups and much more. Recently, the adsorption technique has been successful and widely applied to industrial and domestic water purification (Ofomaja et al., 2013). Adsorption is becoming more popular because of low cost, simplicity, high efficiency, potential for regeneration and sludge free operation.

Batch adsorbers are extensively applied in the adsorption process. They often yield important kinetic and equilibrium data useful for further fixed bed studies and for predicting industrial adsorber performance. For batch adsorber design, the amount of adsorbent required to remove by a given percentage of the pollutant need to be optimized. This is to improve the efficiency of the adsorber and decrease the size of the batch adsorber and its cost (Rijith et al., 2012). These are the factors that need in
order to study in designing the multistage batch adsorber. Alternatively, mercury from produced water (Hg) and natural gas condensate (CH3Hg) can be removed by using the multi-stage batch adsorber. So, for this study, the focus will be on designing and also study the performance of the multi-stage batch adsorber. The design procedure will be attempted by prediction the optimum process parameters in batch adsorption such as number of stages, volume and amount of adsorbents. The isotherm model parameters such as capacity will be utilized in setting up the model equation from which the various parameters are optimized. The optimization of contact time for a multistage adsorber design also will be discussed. By the optimization of all the parameters, the performance of multistage adsorber can be evaluated.

1.2 Problem Statement

At present, adsorption is more popular compare to other variety of method such as precipitation, electrolysis, ion exchange and many more. This is because its low cost, simplicity and high efficiency. For sure it also can save time due to high efficiency. Besides that, adsorption method is also sludge free operation. This will not involving the treatment of the sludge after the process and the cost is cut there. Due to cost of adsorbent was increase, many researches find other alternative adsorbent which is really low cost. Besides replace high cost adsorbents with agricultural waste as a new adsorbents such as coconut waste, researchers also design multistage adsorber to reduce the total amount of adsorbent that required to remove metal.

Design for multistage adsorber is preferable compare to single stage because, total cross sectional area will increase with increasing number of adsorber due to parallel connection. So, the efficiency for the adsorption of mercury process will also increase. The effluent concentration also can be minimized and the treatment goal can be determined by choosing appropriate number of adsorbents and optimum operating time. Multistage adsorber also is suitable for treatment of large amount of solution.
1.3 Significance of Study

The significance of this study is to design the multistage adsorber for mercury removal \(\text{CH}_3\text{Hg(II)} \) and \(\text{Hg(II)} \) from produced water and natural gas condensate respectively. The development of a model and a program to calculate the total amount of adsorbent usage, number of stages and total contact time can be a beginning step to apply the design in industrial scale. Besides, the study of the total adsorbent amount, number of stages and contact time will lead towards improvement of efficiency in designing a multistage adsorber.

1.4 Objectives of Study

The purpose of this study are to design the multistage adsorber for mercury removal \(\text{CH}_3\text{Hg(II)} \) and \(\text{Hg(I)} \) from produced water and natural gas condensate respectively by using pure coconut pith (CP) and treated CP. The design involved developing models for optimization amount of adsorbents, optimization number of stages and total adsorbents, and optimization of contact time.

1.5 Scopes of Study

These followings are the scope of the study:

- Reviewing state-of-theory in designing the multistage adsorber system.
- Studying the collected data to design the multistage adsorber design.
- Studying the optimal parameters in designing the multistage adsorber system such as total number of adsorbent, number of stages and contact time.
• The multistage adsorber design is to remove CH$_3$Hg(II) and Hg(II) from certain amount of inlet solution at initial concentration was 0.6g/m3 by using pure CP adsorbents and treated CP adsorbents.

• Models are developed during this study to calculate amount of adsorbents, optimum number of stages, and contact time. Calculation is involved.

• Developing the new design incorporating established Langmuir isotherm model, Freundlich isotherm model, and kinetic model for both CH$_3$Hg(II) and Hg(II).

• Few coding are written to calculate optimum number of adsorbent, optimum number of stages and contact time in MatLab 2014 software.

• MATLAB and Microsoft excel are used for calculation and plotting the graphs.

1.6 Dissertation Outline

This dissertation consists of 5 chapters. Chapter 1 describes an introduction parts including background of study, problem statement, objectives, scopes, and significance of study. Chapter 2 briefly reviews the fundamental of mercury, adsorbent, adsorption and design of adsorber. Detailed methodology of new developed design are proposed in chapter 3. The findings of this study are discussed in chapter 4. Chapter 5 concludes the overall study and proposed a few recommendations for future works.
1.7 Summary

The mercury removal technologies have been widely install in many industries to reduce the concentration of mercury. The most method that have been proposed by many researchers is adsorption. Adsorption is the method that are low cost, simple, high efficiency, potential of regeneration and sludge free operation. Design for multistage adsorber is preferable compare to single stage because, total cross sectional area will increase with increasing number of adsorber due to parallel connection. This study focuses on design the multistage adsorber for CH$_3$Hg(II) and Hg(II) removal from produced water and natural gas condensate respectively.

