INTERFACIAL WICKING FLOW THROUGH HIERARCHICAL
STRUCTURE OF NATURAL CELLULOSE FIBERS FOR
BIOMEDICAL MICROFLUIDIC DEVICES

SAHBA SADIR

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

NOVEMBER 2015
DEDICATION

To my father’s soul for his words of inspiration and encouragement,

I wish he was here to see his dream comes true.

To my beloved mother, for her support and prayers to me,

To my lovely husband for his support and patience,
ACKNOWLEDGEMENTS

In the Name of Allah, the most gracious, the most merciful. First of all thanks to my god for giving me support, guidance, patience and perseverance of my study.

This dissertation would not have been possible without several individuals who were always there to support me to complete the work.

First and foremost, I am very grateful to my supervisor Dr. Dedy H.B Wicaksono who gave me this wonderful opportunity to pursue my PhD to this level. I would like to express my sincere appreciations to my co-supervisor Prof. Dr Rafiq for his guidance in my research.

During the course of this PhD project, I had the chance to collaborate with some research groups and collaborative researchers. I would like to thank Prof. Seeram Ramakrishna and Dr. Molamma P. Prabhalaran who gave me the opportunity to pursue my research internship and to carry out my experiments at Centre for Nanofibers and Nanotechnology in National University of Singapore (NUS) for a period of one year. I have been lucky to have had the opportunity to work in the faculty of Bioscience and Medical Engineering in University Technology Malaysia during these four years, and for this I would like to thank to UTM for providing me facilities and equipment. I would like to extend special thanks to Syazwani, Salasiah, Fahimeh, and Nabila for their contributions to my research work, and my sincere thanks to my colleagues in Bio-inspired Medical Devices Lab, Syamsiah, Lam and others for their sharing knowledge and assistance in lab-works.

Others have also helped me in specific ways. Many thanks to all technicians and operators for their cooperation in operating equipment, especially, Norhidayu
who helped me with XPS measurements. I appreciate Ms. Mei Hong Ooi and Dr. Fei-Tieng Lim for helps on SEM measurements and Confocal Laser Scanning Microscopy at Hi-Tech Instruments.

I owe my gratitude to my dear friends, Rokhsareh, Mojib, Fatemeh, Sara and Radha for their constant encouragement. I am pleased to thank Mahdi for his help in formatting of my thesis document and also I am thankful to Aisyah to translate the abstract to Bahasa Malay. Lastly, I would like acknowledge security personnel of faculty of bioscience and medical engineering for their kind patience and cooperation, especially during last year of my PhD studies.

I have been blessed with wonderful family who stuck by me through both good and bad times. I give my deepest thanks to my beloved husband (Mr. Mohammadreza) for his constructive feedback and advice on my research work and his amazing love and support as the source of inspiration.

Finally, I would like to acknowledge all financial support from Universiti Teknologi Malaysia (UTM).
ABSTRACT

Micro/Nanofluidics technology is a new research area focused on analyzing and controlling flow of fluids and bio-particles at nanometer and micrometer scales. In an attempt to achieve low cost fabrication and operation of microfluidic devices, the use of cotton fabric was proposed as a new platform for developing low-cost microfluidic devices. This thesis presents a novel wicking fluidic study through the hierarchical structures of textiles by multi-stage analysis of fluid flow at different structural scales, from the macro- (the three dimensional network structure of the cotton fabrics), via the micro- (the tiny segment of the textile structure, twisted multi fibers in a yarn) to the nanoscale (single fiber). The wicking flow within the cotton fabric structure and kapok fiber (as a hollow fiber and a simple model for the wicking flow) was experimentally analyzed using quantitative fluorescence microscopy data from the motion of fluorescent beads. Thereafter, in order to formulate the wicking flow through the hierarchical structure of the fibers network of the cotton fabrics and to predict how the wicking flow depends on the textile structure and basic material properties, experimental analyses based on fluorescent beads tracing with fluorescent and confocal microscopy as well as analytical analyses were carried out. The results of this study formed the foundation of new theories and novel ideas for interfacing microfluidics and nanofluidics. Additionally, the analyses prove that the wicking and the capillary action play important roles in selective mass transport in the textile structures. This phenomenon is potentially useful for biological and chemical detection in biosensors devices. The research targets application in novel passive size-based mechanical cell sorting using cotton fabric chip and fiber based enzyme-linked immunosorbent assay (ELISA).
ABSTRAK

Teknologi bendalir-mikro/nano adalah era baru penyelidikan yang fokus kepada penganalisisan dan pengawalan aliran cecair serta partikel-bio yang berskala nanometer dan mikrometer. Dalam usaha untuk mencapai kos fabrikasi dan operasi alat mikrobendalir yang rendah, penggunaan fabrik kapas telah dicadangkan sebagai satu platform baru. Tesis ini membincangkan satu kajian original berkenaan resapan bendalir melalui struktur hierarki kain menggunakan analisis pelbagai peringkat aliran bendalir untuk perbezaan skala struktur daripada makro (tiga dimensi rangkaian struktur fabrik kapas), mikro (bahagian kecil struktur tekstil, pelbagai benang yang dipintal) kepada nano (serat tunggal). Penyerapan bendalir dalam struktur fabrik kapas dan serat kapok (sebagai satu serat berlubang dan model ringkas untuk kadar penyerapan) telah dianalisis secara eksperimen menggunakan data kuantitatif pendarfluor mikroskop daripada pergerakan manik pendarfluor. Oleh itu, untuk memformulasi kadar penyerapan melalui struktur hierarki rangkaian serat fabrik kapas dan meramalkan bagaimana kadar penyerapan bergantung kepada struktur tekstil dan sifat asas bahan, analisis secara eksperimen berasaskan manik pendarfluor dan mikroskop sefokus serta analisis secara analitikal telah dilakukan. Keputusan kajian telah menghasilkan teori asas baru dan idea original untuk interaksi antara mikrobendalir dengan nanobendalir. Selain itu, beberapa analisis membuktikan bahawa serapan dan tindakan kapilari memainkan peranan penting dalam pemilihan dalam struktur tekstil. Fenomene ini amat berguna untuk pengesanan biologi dan bahan kimia di dalam alat biopenderia. Aplikasi sasaran kajian ini ialah pengisihan sel mekanikal berasaskan saiz pasif menggunakan cip fabrik kapas dan serat berasaskan asai imunoserap terangkai ensim (ELISA).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Background of the study 2
1.3 Problem statement 5
1.4 Objectives of the study 5
1.5 Scopes 6
1.6 Thesis outline 7

2 LITRATURE REVIEW 9
2.1 Introduction 9
2.2 Biomicrofluidic devices based on threads and fabrics 9
2.3 Physics of microscale fluid mechanics in microfluidic systems 10
2.3.1 Laminar flow in microfluidics systems 11
2.3.2 Diffusion 12
2.3.3 Fluidic resistivity
2.3.4 Surface-area-to-volume ratio
2.3.5 Surface tensions, hydrophilicity, hydrophobicity and capillary effects

2.4 Properties of cotton fiber
2.4.1 Composition of cotton fiber
2.4.2 Chemistry of cotton cellulose
2.4.3 Structure of cotton from fiber to fabric

2.5 Structure and chemical composition of kapok fiber as a natural cellulose hollow fiber

2.6 Capillary and wicking flow properties in multifilament of fibers, thread and fabric
2.6.1 Mathematical model
2.6.2 Capillary flow calculation

2.7 Conclusion

3 WICKING FLOW ANALYSIS THROUGH THE HIERARCHICAL STRUCTURE OF NATURAL CELLULOSE FIBERS

3.1 Introduction

3.2 Material and Methods
3.2.1 Chemical treatment of kapok and cotton fibers
3.2.1.1 Raw material
3.2.1.2 Treatment of a kapok fiber with sodium hydroxide, (NaOH) followed by sodium chlorite (NaClO2)
3.2.2 Scouring treatment of a cotton fiber, thread and fabric with soda ash, Na$_2$CO$_3$
3.2.3 Morphological study of the hierarchical structure of textile
3.2.3.1 Scanning electron microscopy (SEM)
3.2.3.2 Atomic force microscopy (AFM)
3.2.4 Surface chemical characterization of a kapok and a cotton fiber after and before treatment
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4.1</td>
<td>X-ray spectroscopy (EDS)</td>
<td>34</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>FTIR Fourier Transform infrared Raman-spectroscopy (FTIR)</td>
<td>35</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>X-ray Photoelectron Spectroscopy (XPS)</td>
<td>35</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Thermo gravimetric analysis (TGA)</td>
<td>35</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Wicking and wetting analysis</td>
<td>36</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Wettability measurement using contact angle measurement</td>
<td>36</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Experimental study by Confocal Laser Scanning Microscopy (CLSM)</td>
<td>37</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Quantitative analysis of wicking dynamics through the fibrous structure of natural cellulose fibers</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and discussions</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Physical characteristics of fibers after chemical modification</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Surface morphology characterization by SEM results</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Energy dispersive spectroscopy analysis</td>
<td>45</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Atomic Force Microscopy (AFM) to analysis surface roughness</td>
<td>46</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Characterization of surface chemical composition by FTIR result</td>
<td>48</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Characterization of surface chemical composition of treated and untreated kapok fiber by X-ray Photoelectron Spectroscopy (XPS)</td>
<td>50</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Thermo gravimetric analysis (TGA)</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Wetting properties analysis of natural cellulose fibers</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Capillary and wicking flow through single natural cellulose fiber</td>
<td>57</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Surface wicking analysis on the surface of fiber</td>
<td>57</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Translumen wicking observation</td>
<td>60</td>
</tr>
</tbody>
</table>
4 A PASSIVE SIZE-BASED MECHANICAL CELL SORTING USING A COTTON FABRIC CHIP

4.1 Introduction

4.2 Material and Methods

4.2.1 Material

4.2.2 Scouring treatment of cotton fabric

4.2.3 Scanning Electron Microscopy (SEM)

4.2.4 Surface roughness measurement

4.2.5 Surface chemical characterization of cotton fabric

4.2.6 Pore size distribution and capillary flow investigation

4.2.7 Wicking investigation along warpwise and weftwise on the cotton fabric

4.2.8 Fabrication of a fabric-based cell sorting device with wax patterning:

4.2.9 Preparation of suspend fluorescent polystyrene beads in water

4.2.10 Culturing and fluorescent staining of hybridoma, fibroblast and cancerous fibroblast cells

4.2.11 Investigation of wickability and sortability of beads/cells

4.2.12 Statistical study on wickability and sortability

4.3 Results and discussions

4.3.1 Surface structure characterization by SEM

4.3.2 3-D surface measurement

4.3.3 Surface chemical characterization
4.3.4 Pore size distribution and capillary flow characterization 79
4.3.5 Wicking flow analysis along warp and weft direction on cotton fabric 81
4.3.6 Cells/Beads wickability along the hydrophilic channels of a cotton fabric chip 88
4.3.7 Effect of hydrophilic channel dimension on cells/beads wicking: 89
4.3.8 Cells/Beads sortability along the hydrophilic channels of cotton fabric chip 94

4.4 Conclusion 97

5 THREAD BASED CELLS SORTING MICROFLUIDICS DEVICE 99
5.1 Introduction 99
5.2 Experimental method 100
 5.2.1 Fabrication of thread-based cell sorting device 100
 5.2.2 Blood processing 102
5.3 Results and Discussion 102
 5.3.1 Wicking analysis on a thread 102
 5.3.2 The sortability of cells and beads with different sizes through the thread-based microfluidic device: 104
 5.3.2.1 Confocal microscopy analysis on the sortability of fluorescent beads with different sizes through the thread-based devices 105
 5.3.2.2 Scanning electron microscopy analysis on blood cells sorting through the thread-based microfluidic device 107
5.4 Conclusion 110

6 FIBER-BASED CRP-ELISA 111
6.1 Introduction 111
6.2 Materials and Methods
6.2.1 Materials
6.2.2 Electrospinning of nanofibers
6.2.3 Characterization of nanofibrous scaffolds and fibers in cotton swabs
6.2.4 Crosslinking of fibers
6.2.5 Immobilization of antibody on electrospun nanofibers and cotton swab fibers
6.2.6 Binding ability of nanofibrous membrane with anti-CRP antibody
6.2.7 Development of optical CRP-ELISA on PLLA nanofibrous membrane
6.2.8 Development of colorimetric CRP-ELISA on CA nanofibrous mat and cotton swabs
6.2.9 Statistical and image analysis
6.3 Results and Discussion
6.3.1 Characterization of fibers
6.3.1.1 Characterization by Scanning Electron Microscopy (SEM)
6.3.1.2 Wettability characterization of nanofibers and micro cotton fibers
6.3.1.3 Chemical characterizations of fiber surfaces
6.3.1.4 Binding of primary antibody to electrospun nanofibrous membrane
6.3.2 Optimization of efficiency parameters on the performance of fiber based CRP-ELISA
6.3.3 Analytical performance of fiber based CRP immunoassays with optimized parameters
6.3.4 Calculation of limit of detection
6.3.5 Stability of fiber based CRP immunoassays
6.4 Conclusion
7 CONCLUSION AND OUTLOOK 138
 7.1 Conclusion 138
 7.2 Future work 139

REFERENCES 141

Appendices A-B 157-174
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Elements of cotton fiber</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Components of cotton fiber [55]</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Cotton Fiber Structure [55]</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Components of the kapok fiber [62]</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Measured roughness and mean scale heights of treated and untreated</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>cotton fabric by Alicona InfiniteFocus 3D True Colour Optical Profiler</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Measured and calculated effecting parameters on macrocapillary and</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>microcapillary rise through cotton fabric structures</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Characterization of electrospun nanofibers, micro cotton fibers of</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>cotton swabs and conventional ELISA plate</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of time period of CRP-ELISA performed on nanofibers and</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>microfibers compared to conventional method</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Linear and logistical model parameters of conventional ELISA and fiber</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>based ELISA</td>
<td></td>
</tr>
<tr>
<td>B.1</td>
<td>Preparation of standard maltose curve by following reaction mixture</td>
<td>164</td>
</tr>
<tr>
<td>B.2</td>
<td>Conventional alpha-amylase assay</td>
<td>164</td>
</tr>
<tr>
<td>B.3</td>
<td>Normal range of α-amylase in saliva based on Takai, et al. [174]</td>
<td>172</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart representation of the thesis structure</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of a water droplet on the hydrophobic and hydrophilic surfaces.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Cellulose formula ((C_6H_{10}O_5)_n), (b) The hydrogen bonds between glucose strands in triple strand of cellulose. Reprinted with permission from [59].</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Microscopic view of cotton fiber; (b) Structure of cotton fiber. (Primary, secondary walls and lumen of cotton fiber). (c) Cotton fiber's cross-sectional shapes (1.wax layer. 2. primary wall. 3. secondary wall. 4. tertiary wall. 5. lumen). Reprinted with permission from [59]</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>(a) Ceiba pentandra tree, (b) kapok fruit and (c) kapok fiber.</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>SEM images of kapok fibers, (a) longitudinal view, (b) cross section. Reprinted with permission [66].</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Thread position in fabric considering as inclined tube geometry. Represented with permission [80]</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Plain weave in which the weft and warp threads intertwine alternately to produce a checkerboard effect</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Woven fabric with and without the cross weft threads. Reprinted with permission [80].</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of surface modification of natural cellulose fiber</td>
<td>31</td>
</tr>
</tbody>
</table>
3.2 Schematic of three different wicking flows through the single fiber structure; translumen, nanopore-translumen and surface wicking

3.3 SEM images from (a, b) untreated and (c, d) Na$_2$Co$_3$ treated natural cotton fiber under different magnifications (1000X – 10000X). The images show the scouring treatment removes the waxy layer from the surface and underlys spiral microcellulose fiber.

3.4 SEM morphology images of raw kapok fiber under different magnifications

3.5 SEM images from cross section of single untreated kapok fiber with 20µm diameter

3.6 SEM morphology of treated kapok fiber with NaOH aqueous 5% under various magnifications; (a) 1000X, (b) 3500X, (c) 5000X and (d) 20000X. The images show that microfibrils and some pores appear on the surface of kapok fiber after treatment

3.7 SEM morphology of treated kapok fiber with NaOH aqueous 20% under different magnifications; (a) 1000X, (b) 3500X and (c) 20000X. The images presents that the structure of fiber is damaged due to scouring treatment with high concentration of NaOH solution.

3.8 Schematic of lignin and hemicellulose extraction from natural fibers after chemical treatment

3.9 SEM morphology of treated kapok fiber with NaOH aqueous 3%, sodium chlorite (NaClO$_2$) aqueous 10% and HCl.

3.10 EDS spectrum of (a) natural kapok fiber, (b) alkali-treated kapok fiber with NaOH 15 % and (c) treated kapok fiber with NaClO$_2$, NaOH, HCl. The graphs and tables describe that the percentage of oxygen- O increased after treatment, whereas, the percentage of carbon-C decreased due to extracted lignin and wax.
AFM topographies of (a) natural cotton fiber, (b) treated cotton fiber with Na$_2$CO$_3$, (c) raw kapok fiber, (d) scouring treated kapok fiber with NaOH and (e) scouring and bleaching treated kapok fiber with NaOH and NaClO$_2$. The images illustrate that the roughness (Ra) of surface fiber increases after treatment.

FTIR spectra of treated and untreated kapok fibers.

FTIR spectra of natural cotton fibers and scouring treated fiber with Na$_2$CO$_3$

XPS survey of natural kapok fiber. (a) survey scan; (b) XPS O1s spectrum: the experimental data (black curve) decomposed to C-OH (blue curve) and C=O (red curve) component; and (c) XPS C1s spectra: the experimental data (black curve) decomposed to C-CH (blue curve), C-O (red curve), C=O (red curve) and ester (orange curve) component.

XPS survey of scouring treated kapok fiber. (a) survey scan; (b) XPS O1s spectrum: the experimental data (black curve) decomposed to C-OH (blue curve) and C=O (red curve) component; and (c) XPS C1s spectra: the experimental data (black curve) decomposed to C-CH (blue curve), C-O (red curve), C=O (red curve) and ester (orange curve) component.

XPS survey (a) scan and (b, c) spectra XPS survey of bleaching and scouring treated kapok fiber. (a) survey scan; (b) XPS O1s spectrum: the experimental data (black curve) decomposed to C-OH (blue curve) and C=O (red curve) component; and (c) XPS C1s spectra: the experimental data (black curve) decomposed to C-CH (blue curve), C-O (red curve), C=O (red curve) and ester (orange curve) component.

TGA signals of (a) natural kapok fiber, (b) scoured, and (c) scoured and bleached kapok fiber. The results for the analyzed kapok material verified that two steps
of degradation for fibers at 220-270 °C and 320-360 °C are due to the decomposition of hemicellulose and lignin.

3.18 Water contact angle on a bulk of (a) treated (scouring and bleaching) and (b)untreated kapok fibers (c) Water diffusion through the kapok fiber wall of treated kapok fibers after t=0.16 s.

3.19 Surface wicking of beads with size of 1µm along the micro-grooves of (a) cotton fiber surface and (b) kapok fiber surface.

3.20 Surface wicking flow based on capillary action through the micro-grooves of the surface

3.21 Translumen wicking of beads with size of 200 nm through the lumen of kapok fiber in four interval times,
\[t_1 = 0.2 \text{ s}, t_2 = 0.4 \text{ s}, t_3 = 0.6 \text{ s}, t_4 = 0.8 \text{ s}. \]

3.22 Bubbles and droplet formation inside of the lumen of the kapok fiber

3.23 Water absorption to the lumen through micro and nano pores of fiber surface

3.24 Experimental results from surface wicking and capillary translumen wicking test.

3.25 Analytical analysis of surface wicking and translumen capillary wicking in respect to time.

4.1 A schematic of the size-based mechanical cell/beads sorting on fabric chip

4.2 Schematic illustration fabric chip fabrication process with simple wax patterning techniques; a) wax impregnated paper, b) creating a pattern of hydrophilic channel, c) transfer of wax from a paper to the cotton fabric by heat treatment, d) creating a hydrophilic channel on the cotton fabric chip.

4.3 Designs of simple hydrophilic patterns with one inlet and outlet on fabric based cell-sorting chip
4.4 SEM secondary electron SEM images (SEI) of (a, b) untreated cotton fabric and (c, d) treated cotton fabric.

4.5 SEM image at (a) interfacing between wax impregnated and non-waxy cotton fabric region and zoom-in images on (b) non-waxy and (c) wax impregnated fibers.

4.6 3D surface profile of (a) untreated and (b) treated cotton fabric.

4.7 Atomic carbon and oxygen percentage on hydrophobic wax barrier (a and c) and hydrophilic cotton channel (b and d). The first two groups of bars (a and b) present the percentage values for untreated cotton fabric; the last two groups of bars (c and d) are for treated cotton. The blue bars show the composition of carbon and the red bars are for oxygen.

4.8 SEM and the corresponding EDS spectra from (a) waxed and (b) un-waxed region of untreated cotton fabric in comparison with (c) waxed and (d) un-waxed region of treated cotton fabric by Na$_2$CO$_3$.

4.9 Wet, dry and half dry curves for woven cotton fabric. The red curve presents the nitrogen gas flow rate (L/min) through the dry sample with dry pores. The green line is called half-dry curve which is obtained by dividing the dry curve’s values by 2. The blue line is the gas flow rate through wet pores. The wetted pores become dry after some curtain pressures, whereby, the gas flow rate reaches to the one in dry sample. The pore sizes are then calculated on the basis of imposed pressure and nitrogen flow rate at the intersecting point.

4.10 Schematic of Microcapillary in a thread [118]. It is assumed that the Rµ is an effective radius for the space between the fibers in a thread; thus, its value depends
on the number of fibers in a yarn, tortuosity of yearn and diameters of fibers.

4.11 Schematic of macrocapillary between yarns [118]. It is assumed that the capillary between the yarns regarded as capillary between two parallel plates. The length of plates \((L)\) is the unit cell of plain weave (top schematic). “L” is “a” if it is warp way capillary or “L” is “b” if it is weft way capillary.

4.12 Experimental setup for (a) vertical and (b) horizontal wicking

4.13 Experimental results from horizontal and vertical wicking test. The wicking length is recorded every 30 seconds.

4.15 Length optimization of hydrophilic channel on cotton fabric due to wickability of beads with 10 \(\mu\)m size.

4.16 Width optimization of hydrophilic channel on cotton fabric due to wickability of beads with 10 \(\mu\)m size

4.17 Dynamic data analysis of numbers of 10 \(\mu\)m beads versus time at 7 different position of hydrophilic channel

4.18 Stationary data analysis from beads and cells distribution through the hydrophilic channel.

4.19 Dynamic data analysis from wickability of three different size of polystyrene fluospheres (a) 4 \(\mu\)m, (b) 10 \(\mu\)m and (c) 15 \(\mu\)m

4.20 The beads mixture sorting through the fabricated cotton fabric chip.

4.21 Confocal images from inlet, middle and outlet of hydrophilic channel. Red dots are 10 \(\mu\)m beads and small green dots are 4 \(\mu\)m beads

4.22 Confocal images from inlet, middle and outlet of hydrophilic channel. Red dots are 15 \(\mu\)m beads and small green dots are 4 \(\mu\)m beads
4.23 Size based-distribution of the beads fractions in inlet, middle and outlet for two different mixtures including a mixture of 4 and 10 µm beads and a mixture of 4 and 15 µm beads.

96

4.24 SEM images from inlet, middle and outlet of hydrophilic channel to find beads sorting from the mixture of 4 and 10 µm beads solution

96

4.25 SEM images from inlet, middle and outlet of hydrophilic channel to find beads sorting from the mixture of 4 and 15 µm beads solution

97

5.1 Schematic design of thread-based cell sorting devices

101

5.2 The wicking test set-up

103

5.3 Wicking rate analysis for threads with different TPIs

104

5.4 Three focused position on thread for wickability study

105

5.5 Confocal images from zone-1 (near inlet before first knot) where 15 µm beads were trapped at the area near to the inlet(red colors)

105

5.6 Confocal images from zone-2 (at the second zone after the first knot) where no red color beads (15 µm) were observed.

106

5.7 Confocal images from zone-3 (at the third zone after the second knot) where no red color beads (15 µm) were observed.

106

5.8 Size-based distribution of the bead fractions in three zones.

107

5.9 Blood cells sorting through the fabricated thread-based device

108

5.10 SEM images from first position near the inlet where the WBCs are trapped

109

5.11 SEM images from second zone where the RBCs are trapped a) near the first knot, b) in the middle zone between two knots

109
5.12 (a) SEM images from third zone a) the few RBCs are trapped at the second knot, b) there is no RBCs after second knot.

6.1 Schematic on the development of electrospun fiber based sandwich CRP-ELISA: 1) electrospinning of nanofibers and collecting on 15 mm coverslip, 2) Placing 15mm coverslip contained nanofiber mat within the wells of a 24-well plate, 3) Entrapment and coupling with EDC/NHS, 4) Capturing anti-CRP immobilized on nanofibers mat, 5) Blocking the surface of nanofibers with BSA, 6) Incubating nanofibers with samples and standards with different level of CRP, 7) Incubating nanofibers with HRP-labeled signal antibodies

6.2 Concept of cotton swabs based CRP-ELISA and schematic on its development: 1) Placing cotton swabs within microtube of a 24-microtube plate, 2) Entrapment and coupling with EDC/NHS, 3) Capturing anti-CRP immobilized on nanofibers mat, 4) Blocking the surface of nanofibers with BSA, 5) Incubating nanofibers with samples and standards with different level of CRP, 6) Incubating nanofibers with HRP-labeled signal antibodies.

6.3 Scanning electron microscopy (SEM) images (A-C) and histogram showing the fiber size distribution (D-F) of electrospun PLLA (A, D), electrospun CA nanofibers (B, E) and cotton fibers in cotton swabs (C, F)

6.4 Contact angle images of (a) PLLA, (b) CA electrospun nanofibers and (c) cotton fibers in cotton buds

6.5 FTIR spectrum of PLLA, CA nanofibers and cotton swabs immobilization

6.6 UV-Vis spectra from leached BSA on (A) PLLA nanofibers, (B) CA nanofibers, (C) Cotton swabs,
before antibody immobilization and after antibody immobilization (D) Standard calibration curve of standards that are used to determine the concentration of BSA in leached solutions. (E) Calculated amounts of BSA adsorbed on PLLA, CA and cotton swabs

6.7 Optimization of incubation time for (A, B) antibody immobilization, (C, D) samples and (E, F) signal amplification of CRP signal in all fiber based CRP-ELISA

6.8 Standard calibration curve for (A) conventional and (B) PLLA nanofibers-based CRP-ELISA as functions of mean absorbance (OD) vs. CRP concentration were fitted with the 4-parameters logistic regression (4-PLR) curve.

6.9 The optical intensity (a.u) as function of CRP concentrations for CA nanofibers were plotted in 4-PLR calibration curves

6.10 4-PLR calibration curves for cotton swabs CRP-ELISA

6.11 Stability of fiber-based CRP-ELISAs examined by plotting the 4-PLR calibration curves and linear fittings for (A) PLLA nanofibers, (B) CA nanofibers and (C) cotton swabs CRP-ELISA after two weeks storage at 4 °C.

B.1 Cotton swab-based α-amylase assay procedures

B.2 Wicking properties of twisted cotton swab with different TPI 4, 7 and 12.

B.3 Colorimetric calibration standard curve for serial concentrations of maltose on (a) cotton swab and (b) 96 wells plate

B.4 Converting color image to grayscale through image intensity processing by ImageJ

B.5 Plotting calibration standard curve for serial concentrations of maltose on (A) conventional assay based on Bernfeld and (B) cotton-swab-based device.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.6</td>
<td>Plotting calibration standard curve for serial concentrations of alpha amylase on (A) conventional assay based on Bernfeld and (B) cotton-swab-based alpha-amylase assay</td>
<td>172</td>
</tr>
<tr>
<td>B.7</td>
<td>The salivary α-amylase level in rest and stress condition. Represented with permission from [175].</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute coronary syndromes</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
</tr>
<tr>
<td>A_{welf}</td>
<td>Cross-sectional area of pore exposed to the welf way</td>
</tr>
<tr>
<td>A_{wrap}</td>
<td>Cross-sectional area of pore exposed to the wrap way</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>c_1, c_2</td>
<td>Wrap and welf crimp</td>
</tr>
<tr>
<td>CA</td>
<td>Cellulose acetate</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal laser scanning microscopy</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSA</td>
<td>Camphorsulfonic acid</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
</tr>
<tr>
<td>DNS</td>
<td>Dinitrosalicylic acid</td>
</tr>
<tr>
<td>Symbol</td>
<td>Acronym</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>E</td>
<td>Interfacial energy</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EDA</td>
<td>Energy-dissipative electron spectroscopy</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field-Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transformation infrared roman spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>Gravity acceleration</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s balanced salt solution</td>
</tr>
<tr>
<td>HF</td>
<td>Heart failure</td>
</tr>
<tr>
<td>h_{fab}</td>
<td>Wicking height in fabric</td>
</tr>
<tr>
<td>HFP</td>
<td>1,1,1,3,3,3-hexafluoro-2-propanol</td>
</tr>
<tr>
<td>J</td>
<td>Diffusion flux</td>
</tr>
<tr>
<td>K_n</td>
<td>Knudsen diffusion</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>l_2</td>
<td>Modular length in transverse direction</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>n_2</td>
<td>Number of weft threads</td>
</tr>
<tr>
<td>O.D.</td>
<td>Optical Density</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>p_1, p_2</td>
<td>Wrap and welf spacing</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PAD</td>
<td>Paper-based analytical device</td>
</tr>
<tr>
<td>PANI</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline Solutions</td>
</tr>
<tr>
<td>PDMS</td>
<td>Polydimethylsiloxane</td>
</tr>
<tr>
<td>PLLA</td>
<td>Polylactic acid</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>POC</td>
<td>Point of care</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>Q</td>
<td>Volume fluid flow</td>
</tr>
<tr>
<td>R</td>
<td>Fluid resistance</td>
</tr>
<tr>
<td>Ra</td>
<td>Roughness</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>R_{ji}</td>
<td>Capillary radius</td>
</tr>
<tr>
<td>SAA</td>
<td>Salivary alpha amylase</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SWNT</td>
<td>Single-well carbon nano-tube</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>TAD</td>
<td>Thread-based analytical device</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TE</td>
<td>Thromboembolic</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal gravimetric analysis</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetramethylbenzidine</td>
</tr>
<tr>
<td>TPI</td>
<td>Twisting per inch</td>
</tr>
<tr>
<td>u</td>
<td>Velocity</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood cell</td>
</tr>
<tr>
<td>WGA</td>
<td>White germ agglutinin</td>
</tr>
<tr>
<td>x</td>
<td>Particle travel distance</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>157</td>
</tr>
<tr>
<td>B</td>
<td>Low cost cotton swab-based salivary alpha-amylase assay for stress level detection</td>
<td>159</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, microfluidics technologists have developed different devices for the fast manipulation and characterization of fluid samples for biological and the chemical analyses. Microfluidic devices commonly consist of microscale fluidic channel with typical length of 1-100 µm. High throughput analysis, small sample volume, shortened analysis time, enabling new functionalities by integrating new micro components and application of novel physics phenomena; all these are reported benefits for microfluidics devices. In typical bio-diagnostic microfluidic systems, multiple different fluidic elements are connected into circuits to detect a specific analyte in a sample fluid.

Nanofluidics refers to the study of fluidics in nanochannels in the length scale of 1-100 nm. The unique physics phenomena behind the working of nanofluidics devices can be revealed by studying fluid flow in such devices. Since the channel sizes in nanofluidics are closed to biomolecule size, most of the time nanofluidics have been applied to carry out separation, to count or to characterize individual biomolecules such as protein or DNA molecules.

Many different fabrication techniques are reported to develop microfluidics, nanofluidics and interfacing them together. However, all of these methods require considerable cost and specialized equipment to reduce the high development cost for the fabrication and operation of modern microfluidic and nanofluidic devices that are
made up of materials such as, silicon [1], glass [2], and polymers i.e. PMMA [3], SU-8 [4] and PDMS [5, 6]. Microfluidic systems that are intended to be low cost and portable for home-use diagnostic applications have been proposed by many researchers. These microfluidic systems are made from hydrophilic materials such as paper [7, 8], threads [9, 10] and cloth like silk [11] and cotton [12]. Since capillary force wicks and drives liquids in their hydrophilic microchannels, no pumping system and advanced control system is necessary in such microfluidic systems.

Capillary effect is also known as wicking and has been widely used as a pumping force in microfluidic systems in recent years. Capillary pumping is surface-directed and has no external power input. It exhibits a small pressure drop in the micro channel. Hydrophilic surface is essential for capillary pumping. Relevant capillary effect issues in microfluidic chips have been studied in terms of the theory, channel geometry, patterned structure and applications [13-17].

1.2 Background of the study

Intensive demand to have sensitive, simple and portable biodiagnostic devices especially in developing countries has received much attention. Such devices exploit low-cost, disposable and hydrophilic materials (such as paper, thread and fabric) to create a hydrophilic pattern to form a microfluidics device platform for medical diagnostics test.

Microfluidics paper-based analytical devices (µPADs) have been developed for point of care diagnostics and environmental monitoring at resource-poor regions. The concept of paper based microfluidics was first proposed by the Whiteside research group at Harvard University [7]. Most of the µPADs have been fabricated by patterning hydrophobic barriers on Whatman filter paper. Wax [18, 19], polystyrene [20], polydimethylsiloxane [5], alkyl ketene dimer [21] and fluorochemicals [22] have been used as the materials for patterning hydrophobic barriers on the paper. Different patterning methods have also been applied for patterning the hydrophilic channels on paper such as photolithography [7], printing
plasma [23], laser [24] and chemical etching method [25]. Due to simplicity and compatibility with aqueous solutions, the Whiteside’s wax printing has become one of the popular techniques for µPADs fabrication. The limitations of paper based microfluidic devices mostly are related to the material properties of paper. Some of the limitations are as follows:

- Low wetting strength of paper [26].

- Low efficiency of sample delivery due to sample retention and evaporation through the hydrophilic channels on the surface of paper [27].

- Low strength of the patterned hydrophobic barrier on paper [27].

Thread [9, 10] and fabric [11, 12] have been applied as low-cost platforms for developing inexpensive microfluidic devices. The gaps between the fibers on the thread and between the yarns in textiles are considered as capillary channels to move liquid without external forces or pumping effect. This capillary force and driven liquid in the hydrophilic multi-filaments microchannels define the wicking properties of these structures. Researchers proved that coated waxes on the natural fibers decrease or even stop fluid wicking within the threads of cotton fabric [28]. To overcome the aforementioned problem, various surface modification methods were reported to remove natural wax from the fiber’s surface to improve their wettability of the fibers and consequently also the wicking capillary action occurred in the porous fiber structure of threads and cotton fabric [12].

Several microfluidic thread-based analytical devices (µTADs) have been reported as a colorimetric assay device to detect glucose and protein in urine or blood [10, 29]. Thread was also used for blood typing [30]. The advantages of thread compared to paper are its flexibility and wet strength. The fabrication of thread-based microfluidic devices is simpler and relatively low cost, because it requires only sewing needles or household sewing machines.
Designing and developing microfluidics devices based on the multiplex and multiple-dimensional thread is relatively difficult, since one-dimension is assumed for thread. On the other hand, a publication by our research group reported an innovative two- and three-dimensional cotton fabric-based microfluidic devices which was developed based on the two-dimensional fabric [12]. We have proved their potential as unconventional assay for glucose, nitrate and protein detection, and as quick colorimetric enzyme-linked immunosorbent assay (ELISA) to determine human chorionic gonadotropin [31]. In another recent paper, cotton fabric was used for developing a microfluidic device to electrochemically detect lactate level in saliva [32]. Several advantages of thread and cotton fabric versus papers to develop microfluidic systems are listed below:

- High flexibility due to great tensile strength; wicking and reaction still happen despite bending, twisting, stretching and compression [28].

- Long term mechanical durability; despite the platform being bent, stretched, comprised or twisted [33].

- Long term continuous flexible sampling; it can endure liquid wicking without damaging the structure, under various mechanical disturbances [32].

- Additional porous structure due to the wide variety of pores: higher surface area to volume ratio which guarantee higher sensitivity of thread and fabric-based assays [31].

Both thread and fabric have a wide-ranging diversity of pores and gaps such as nanopores and gaps between the cellulose microfibrils in a single fiber, microscale interfiber gaps and inertial void spaces between the twisting and weaving fibers in the thread and the yarns in the cotton fabric. Therefore, the wicking flow characterization inside this hierarchical structure is difficult to carry out and requires further study. In this study, capillary and wicking flow through the complex and porous structure of natural fibers and hierarchical structures of cotton fabric are investigated. The aim of this study is to develop inexpensive and simple
micro/nanofluidic devices from the multi filaments of natural fibers including fibers, thread and fabric for biological and chemical applications.

1.3 Problem statement

In this study, we aim to characterize and develop models of liquid wicking on cotton fibers, thread and fabrics to meet emerging technical and performance needs in micro/nanofluidics applications, e.g. biomedical devices and chemical/biological devices. In this manner, understanding how liquids wet, permeate and flow in multiscale porous fibrous structures is important.

Characterizing the physical and mechanical properties of the complicated and hierarchical structures of cotton fabric is no a small task. Wicking flow and Fluid interactions through these structures of cotton fabric, especially considering their pore size diversity, further adds the complexity. Wetting and wicking of fluids through fibrous structures is dynamic and stochastic, often involving changing physical nature due to surface adsorption, fiber shifting and fiber swelling. Characterizations of fluid wicking phenomena in the fibrous structures of fibers to fabric is extremely required to precise by control fluid flow in microfluidics system which are fabricated from fibers, thread or fabric.

1.4 Objectives of the study

1. Study on the morphology and the hierarchical structure of the textile, from fiber to fabric, single fiber (cotton and kapok fiber), cotton thread and fabric.

2. Experimental measurements of the wetting properties and the wicking rate of single fiber to fabrics and correlating them to analytical and mathematical modelling.
3. Study on fluidic wicking through the hierarchical fibrous structure of cotton fabric by multi-stage analysis of the fluid flow at different scales from the micro- (through three-dimensional network structure of the cotton fabric, tiny segment of textile structure or twisted multifibers in thread) to the nanoscale (in a single fiber).

4. Designing and developing cotton thread and fabric-based microfluidics devices for a passive size-based mechanical cell sorting by characterization the wickability and sortability of multiple sizes of beads and cells through the fibrous structure of the devices.

5. To design a fiber-based assay and an enzyme linked immunosorbent assay (ELISA) with high sensitivity by utilizing the high surface area to volume ratio property.

1.5 Scopes

1. Chemical modification is conducted to modify the surface chemical composition and surface morphology of the fiber.

2. Prior to the further studies of multiscale fluid flow, the hierarchical structures and morphology of the textile should be carried out based on the microscopy studies.

3. In the next stage of the study, the wicking movement of fluid along a single fiber, spun fibers and thread with different twistings per inch (TPI) and a strip of cotton fabric is examined experimentally through “image analysis of liquid rising”. Additionally, the analysis of wicking in a single cotton fiber is done using an optical macroscopic method. Thereafter, a mathematical model for wicking in textile is developed based on textile structure and capillarity properties in macro- and microscales.
4. Wicking characterization of the liquid on or in the cellulosic fibers is carried out using confocal laser scanning microscopy. Fluorescent beads having various sizes in the micro- and nano range are flown along the fibers to investigate channel size at different scales. Time-lapse imaging is carried out to measure wicking rate, while z-stacking imaging is conducted to know the exact wicking position in the fiber.

5. Several low-cost health care devices based on natural cellulosic fibers are developed by inspiration from the wicking and wetting properties of natural cellulose fibers.

1.6 Thesis outline

Remaining chapters of thesis are organized as follows (Figure 1.1);

Chapter 2 presents the main concept of microfluidics in order to introduce the physical aspect behind microfluidics. It introduces to explain the chemical and the physical properties of single natural cellulose fiber such as cotton and kapok fibers. In the final section of this chapter, research on analytical analysis of liquid transport through fabric structures will be reviewed.

Chapter 3 conveys details for investigation of the physical properties of natural cellulose fibers to achieve appropriate understandings of the wicking flow through the hierarchical structures of natural cellulose fibers and cotton fabric.

Chapter 4, 5 and 6 explain several implementations of the wicking study to develop fiber-based biodiagnostic devices for point of care applications. The steps and procedures for the fabrication and development of fabric and thread based microfluidic for the cells sorting will be explained in chapters 4 and 5, respectively. Chapter 6 will present the development of fiber-based CRP-ELISA to detect the
salivary C-reactive protein (CRP) level as a predictor for cardiovascular disease (CVD).

Chapter 7 concludes the whole research approach and give some suggestions for further study.

It should be noted that chapters 3 to 6 have been written as separate journal papers, which have been submitted to or are already accepted for scientific journal publications. A list of publication is given in Appendix A.

Figure 1.1; Flowchart representation of the thesis structure
REFERENCES

54. Fan, Q. *Chemical Testing of Textiles*: CRC Press. 2005

82. Chatterjee, P. K. *Absorbeny*: Elsevier Scientific Pub. 1985

112. Freshney, R. I. *Culture of specific cell types*: Wiley Online Library. 2005

164. Krishnan, A. *Protein Adsorption to Hydrophobic Surfaces*. The Pennsylvania State University; 2005

