MACHINABILITY ASSESSMENT WHEN TURNING AISI 316L AUSTENITIC STAINLESS STEEL USING UNCOATED AND COATED CARBIDE INSERTS

RUSDI NUR

UNIVERSITI TEKNOLOGI MALAYSIA
MACHINABILITY ASSESSMENT WHEN TURNING AISI 316L AUSTENITIC STAINLESS STEEL USING UNCOATED AND COATED CARBIDE INSERTS

RUSDI NUR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JANUARY 2016
To my beloved mother and father,
Hj. Habesiah, and H. Muhammad Nur Pilo

To my honored mother and father in law,
Hj. Sitti. Marhamah, and Muh. Syabiruddin Abdolo

To my lovely wife and daughter
Asmeati and Ainayah Zalikhah Rusdy

Also to my brothers and sisters,
H. Ramli Nur, Rusli Nur, Rais Nur,
Ramlah Nur, Ramsiah Nur and Rosmiati Nur
ACKNOWLEDGEMENT

First of all, I would like to thank Allah SWT for giving me the strength and guidance to finish this research. In preparing this thesis, I was in contact with many people including academicians, technicians and fellow researchers. They have contributed enormously towards my understanding of the subject. In particular, I wish to express my sincere thanks and appreciation to my supervisor, Prof. Dr. Noordin Mohd Yusof, and co supervisors Assoc. Prof. Dr. Izman Bin Sudin and Dr. Denni Kurniawan for their encouragement, guidance and constructive criticisms. Without their continued support and interest, this thesis would not have been possible. My sincere gratitude is also extended to the lecturers of the Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering for their valuable contributions towards my research and education in Universiti Teknologi Malaysia.

My study would not have been possible without the funding from my country Indonesia. I wish to thank the Governor, Province of South Sulawesi and the State Polytechnic of Ujung Pandang for the financial and moral support.

I would also express my deepest gratitude to my family. My sincere thanks to my wonderful mother, Hj. Habesiah, and my lovely wife and my daughter, Asmeati and Ainayah Zalikhah Rusdi, who have always given me encouragement and support in completing this thesis. I am also grateful to my brothers, sisters, and other family members for their love, constant support, understanding, and caring for all these years.

I am also indebted to my fellow postgraduate students and colleagues especially Ahmad Zubair Sultan, Muhammad Anshar, Nur Hamzah Said, Wibowo, and Toto who have provided assistance on various occasions. My thanks also go to all the technicians especially Mr. Aidid Hussin and Mr. Sazali Ngadiman from the Production Laboratory for their valued assistance during my experimental work. My sincere appreciation also extends to all my colleagues and others who have provided assistance directly or indirectly throughout this research. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.
ABSTRACT

Austenitic stainless steel AISI 316L is mostly used as an implant material and is customarily applied as impermanent devices in orthopedic surgery because of its low cost, adequate mechanical properties, and acceptable biocompatibility. AISI 316L is an extra-low carbon type 316 (austenitic chromium nickel stainless steel containing molybdenum) that minimizes harmful carbide precipitation at elevated temperature. Machining is part and parcel during the fabrication of implants and medical devices made from stainless steels and thus it is of interest to evaluate the machinability of AISI 316L. In this study, austenitic stainless steel AISI 316L was turned using two commercially available cutting tool inserts at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev) and at a constant depth of cut of 0.4 mm. The turning of AISI 316L was implemented in dry cutting. The cutting tools used were an uncoated tungsten carbide-cobalt insert (WC-Co) and a multi coated nano-textured TiCN, nano-textured Al₂O₃ thin layer, and a TiN outer layer insert. The cutting forces, total power consumption, surface roughness, and tool life were measured/obtained and analyzed. The total power consumption of the turning process was obtained from direct measurements as well as using a combination of theoretical formulas and experimental cutting force data. The machining experiments and their responses were designed and evaluated using the three-level full factorial design and the analysis of variance (ANOVA). It was found that the cutting speed and feed significantly affect the various machining responses observed. The cutting force and total power consumption increased with increasing cutting speed, but the surface roughness and tool life decreased. With increasing feed, surface roughness and tool life decreased but the cutting force and total power consumption increased. The empirical mathematical models of the machining responses as functions of cutting speed and feed developed were statistically valid. Confirmation runs helped to prove the validity of the models within the limits of the factors investigated.
ABSTRAK

keluli tahan karat austenit AISI 316L digunakan secara meluas sebagai bahan implan dan sering digunakan untuk peranti sementara dalam pembedahan ortopedik kerana kos yang rendah, sifat mekanikal yang memadai, dan biokeserasian yang boleh diterima. AISI 316L adalah versi karbon terendah-sangat bagi keluli jenis 316 (keluli austenit kromium nikel tahan karat yang mengandungi molibdenum) yang mengurangkan pemendakan karbida yang merbahaya pada suhu tinggi. Proses pemesinan digunakan dalam pembuatan implan dan peranti perubatan yang diperbuat daripada keluli tahan karat dan oleh itu adalah penting untuk menilai kebolehmesin AISI 316L. Dalam kajian ini, keluli tahan karat austenit AISI 316L dilarik menggunakan dua mata alat sisipan komersial pada pelbagai kelajuan pemotongan (90, 150, dan 210 m/min) dan uluran (0.10, 0.16, dan 0.22 mm/putaran) dan pada kedalaman potongan tetap 0.4 mm. Larikan AISI 316L dijalankan dalam keadaan pemotongan kering. Mata alat sisipan yang digunakan adalah karbida tungsten-kobalt (tungsten carbide-cobalt, WC-Co) tak bersalut dan mata sisipan yang disalut berlapis dengan lapisan nano-bertekstur TiCN, lapisan nipsis nano-bertekstur Al2O3 dan lapisan luar TiN. Daya pemotongan, jumlah penggunaan kuasa, kualiti permukaan, dan hayat mata alat diukur/diambil dan dianalisa. Jumlah penggunaan kuasa bagi proses larikan diperoleh secara pengukuran langsung dan juga gabungan formula teori dan data ujikaji daya pemotongan. Ujikaji pemesinan dan responnya telah direkabentuk dan dinilai menggunakan reka bentuk faktorial tahap tiga dan analisa varians (analysis of variance, ANOVA). Kelajuan pemotongan dan suapan didapati memberi kesan kepada pelbagai respon pemesinan yang diperhatikan. Daya pemotongan dan jumlah penggunaan kuasa meningkat dengan peningkatan kelajuan pemotongan, tetapi kekasaran permukaan dan hayat mata alat menurun. Dengan peningkatan uluran, kualiti permukaan dan hayat mata alat berkurangan tetapi daya pemotongan dan jumlah penggunaan kuasa meningkat. Model matematik empirikal bagi respon pemesinan sebagai fungsi kelajuan pemotongan dan uluran yang dibangunkan adalah sah secara statistik. Ujian pengesahan telah membantu dalam membuktikan kesahihan model dalam had bagi faktor-faktor yang dikaji.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives 4
1.4 Scope of Study 4
1.5 Significance of Study 5
1.6 Organization of Thesis 5

2 LITERATURE REVIEW

2.1 Machinability in Turning 7
2.2 Sustainability 9
2.3 Sustainable Manufacturing 10
2.4 Power Consumption in Machining 12
2.5 Metal Cutting 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>Turning Process</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Cutting Forces</td>
<td>21</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Cutting Temperature</td>
<td>23</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Chip Formation</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Surface Integrity</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Cutting Insert</td>
<td>30</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Conventional Geometry Insert</td>
<td>31</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Cutting Tool Materials</td>
<td>33</td>
</tr>
<tr>
<td>2.7.2.1</td>
<td>High Speed Steel</td>
<td>35</td>
</tr>
<tr>
<td>2.7.2.2</td>
<td>Cemented Carbide</td>
<td>35</td>
</tr>
<tr>
<td>2.7.2.3</td>
<td>Coated Carbide</td>
<td>36</td>
</tr>
<tr>
<td>2.7.2.4</td>
<td>Ceramics and Cermets</td>
<td>40</td>
</tr>
<tr>
<td>2.7.2.5</td>
<td>Cubic Boron Nitride (CBN)</td>
<td>41</td>
</tr>
<tr>
<td>2.7.2.6</td>
<td>Diamonds</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>Tool Life and Tool Failure</td>
<td>42</td>
</tr>
<tr>
<td>2.9</td>
<td>Workpiece Material</td>
<td>48</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Stainless Steel</td>
<td>48</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Classification of Stainless Steel</td>
<td>48</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Austenitic Stainless Steel</td>
<td>50</td>
</tr>
<tr>
<td>2.10</td>
<td>Design of Experiment</td>
<td>53</td>
</tr>
<tr>
<td>2.11</td>
<td>Summary</td>
<td>54</td>
</tr>
</tbody>
</table>

3 RESEARCH METHODOLOGY

3.1 Experimental Setup

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Preparation of Workpiece</td>
<td>59</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Turning Processes</td>
<td>59</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Measurement of Cutting Forces</td>
<td>60</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Measurement of Power Consumption</td>
<td>63</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Measurement of Surface Roughness</td>
<td>64</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Measurement of Tool Life</td>
<td>65</td>
</tr>
</tbody>
</table>

3.2 Workpiece Material Used

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Cutting Tool Inserts Used</td>
<td>66</td>
</tr>
</tbody>
</table>
4 EXPERIMENTAL RESULTS, MODELLING AND DISCUSSION

4.1 Experimental Results

4.1.1 Part One – Uncoated Carbide (UTi20T)

4.1.1.1 Cutting Force

4.1.1.2 Total Power Consumption

4.1.1.3 Surface Roughness

4.1.1.4 Tool Life

4.1.1.5 Tool Failure Mode

4.1.2 Part Two – Coated Carbide (MC7025)

4.1.2.1 Cutting Force

4.1.2.2 Total Power Consumption

4.1.2.3 Surface Roughness

4.1.2.4 Tool Life

4.1.2.5 Tool Failure Mode

4.2 Modelling Responses

4.2.1 Part One – Uncoated Carbide (UTi20T)

4.2.1.1 Analyzing Model for UTi20T

4.2.1.2 Optimization Model for UTi20T

4.2.1.3 Confirmation Run for UTi20T

4.2.2 Part Two – Coated Carbide (MC7025)

4.2.2.1 Analyzing Model for MC7025

4.2.2.2 Optimization Model for MC7025

4.2.2.3 Confirmation Run for MC7025

4.3 Discussion

4.3.1 Cutting Force and Total Power Consumption

4.3.2 Surface Roughness, Tool Life and Tool Wear

4.3.3 Comparison of Uncoated and Coated Carbide

4.3.4 Analysis of Modelling
5 CONCLUSIONS AND FUTURE WORK 146

5.1 Conclusions 146
5.2 Future Work 148

REFERENCES 149

Appendices A - H 169 – 207
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of various machinability studies for turning process</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Tool numbering</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Review of researches based on machining of AISI 316L</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Cutting parameters of the experiment</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental plan</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of AISI 316L</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>General properties of AISI 316L</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Average cutting forces for UTi20T</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Average total power consumption for UTi20T</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Average total power consumption of experimental and theoretical for UTi20T</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Average surface roughness for UTi20T</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Average tool life for UTi20T</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Recapitulation of Taylor tool life equation details for UTi20T</td>
<td>79</td>
</tr>
<tr>
<td>4.7</td>
<td>Average cutting forces for MC7025</td>
<td>83</td>
</tr>
<tr>
<td>4.8</td>
<td>Average total power consumption for MC7025</td>
<td>85</td>
</tr>
<tr>
<td>4.9</td>
<td>Average total power consumption of experimental and theoretical for MC7025</td>
<td>86</td>
</tr>
<tr>
<td>4.10</td>
<td>Average surface roughness for MC7025</td>
<td>88</td>
</tr>
<tr>
<td>4.11</td>
<td>Average tool life for MC7025</td>
<td>91</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.12</td>
<td>Recapitulation of Taylor tool life equation details for MC7025</td>
<td>93</td>
</tr>
<tr>
<td>4.13</td>
<td>Summary of machinability responses for UTi20T</td>
<td>98</td>
</tr>
<tr>
<td>4.14</td>
<td>Sequential model sum of squares for cutting force</td>
<td>99</td>
</tr>
<tr>
<td>4.15</td>
<td>ANOVA table for cutting force model</td>
<td>99</td>
</tr>
<tr>
<td>4.16</td>
<td>ANOVA table after reduction for cutting force model</td>
<td>100</td>
</tr>
<tr>
<td>4.17</td>
<td>Sequential model sum of squares for total power consumption</td>
<td>103</td>
</tr>
<tr>
<td>4.18</td>
<td>ANOVA for total power consumption model</td>
<td>103</td>
</tr>
<tr>
<td>4.19</td>
<td>Sequential model sum of squares for surface roughness</td>
<td>106</td>
</tr>
<tr>
<td>4.20</td>
<td>ANOVA for surface roughness model</td>
<td>107</td>
</tr>
<tr>
<td>4.21</td>
<td>Sequential model sum of squares for tool life</td>
<td>109</td>
</tr>
<tr>
<td>4.22</td>
<td>ANOVA table for tool life model</td>
<td>110</td>
</tr>
<tr>
<td>4.23</td>
<td>The set goals of optimization for UTi20T</td>
<td>113</td>
</tr>
<tr>
<td>4.24</td>
<td>Feasible optimal solutions for UTi20T</td>
<td>113</td>
</tr>
<tr>
<td>4.25</td>
<td>Point prediction function for UTi20T</td>
<td>115</td>
</tr>
<tr>
<td>4.26</td>
<td>Confirmation analysis of experiments for F_c using UTi20T</td>
<td>116</td>
</tr>
<tr>
<td>4.27</td>
<td>Confirmation analysis of experiments for P_t using UTi20T</td>
<td>116</td>
</tr>
<tr>
<td>4.28</td>
<td>Confirmation analysis of experiments for Ra using UTi20T</td>
<td>116</td>
</tr>
<tr>
<td>4.29</td>
<td>Confirmation analysis of experiments for T using UTi20T</td>
<td>116</td>
</tr>
<tr>
<td>4.30</td>
<td>Summary of machinability responses for MC7025</td>
<td>117</td>
</tr>
<tr>
<td>4.31</td>
<td>Sequential model sum of squares for cutting force</td>
<td>117</td>
</tr>
<tr>
<td>4.32</td>
<td>ANOVA table for cutting force model</td>
<td>118</td>
</tr>
<tr>
<td>4.33</td>
<td>ANOVA table after reduction for cutting force model</td>
<td>119</td>
</tr>
<tr>
<td>4.34</td>
<td>Sequential model sum of squares for total power consumption</td>
<td>121</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.35</td>
<td>ANOVA table for total power consumption model</td>
<td>122</td>
</tr>
<tr>
<td>4.36</td>
<td>ANOVA table after reduction for total power consumption model</td>
<td>122</td>
</tr>
<tr>
<td>4.37</td>
<td>Sequential model sum of squares for surface roughness</td>
<td>125</td>
</tr>
<tr>
<td>4.38</td>
<td>ANOVA table for surface roughness model</td>
<td>126</td>
</tr>
<tr>
<td>4.39</td>
<td>ANOVA table after reduction for surface roughness model</td>
<td>126</td>
</tr>
<tr>
<td>4.40</td>
<td>Sequential model sum of squares for tool life</td>
<td>129</td>
</tr>
<tr>
<td>4.41</td>
<td>ANOVA table for tool life model</td>
<td>129</td>
</tr>
<tr>
<td>4.42</td>
<td>ANOVA table after reduction for tool life model</td>
<td>130</td>
</tr>
<tr>
<td>4.43</td>
<td>Set goals of optimization for MC7025</td>
<td>133</td>
</tr>
<tr>
<td>4.44</td>
<td>Feasible optimal solutions for MC7025</td>
<td>133</td>
</tr>
<tr>
<td>4.45</td>
<td>Point prediction function for MC7025</td>
<td>135</td>
</tr>
<tr>
<td>4.46</td>
<td>Confirmation analysis of experiments for F_c using MC7025</td>
<td>135</td>
</tr>
<tr>
<td>4.47</td>
<td>Confirmation analysis of experiments for P_c using MC7025</td>
<td>136</td>
</tr>
<tr>
<td>4.48</td>
<td>Confirmation analysis of experiments for Ra using MC7025</td>
<td>136</td>
</tr>
<tr>
<td>4.49</td>
<td>Confirmation analysis of experiments for T using MC7025</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sustainability pillars</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Evolution of Sustainable manufacturing</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Energy in machining adapted from Dahmus and Gutowski</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Profile of power for turning processes</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Turning process with movement of cutting and feed</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Basic cutting operations (a) Orthogonal and (b) Oblique cutting</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Illustration of (a) Semi-orthogonal turning and (b) Orthogonal turning with the tube</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Forces of cutting in turning</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Stress distribution model on tool during cutting</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Temperature allocation in a cutting area</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Allocating heat for continuous cutting</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Chip formation</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Types of chips</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Influence of cutting speed on chip formation</td>
<td>27</td>
</tr>
<tr>
<td>2.15</td>
<td>Grouping chip-based ISO various form</td>
<td>28</td>
</tr>
<tr>
<td>2.16</td>
<td>Surface finish in turning based on feed rate and the nose radius of tool</td>
<td>29</td>
</tr>
<tr>
<td>2.17</td>
<td>Form of inserts</td>
<td>31</td>
</tr>
<tr>
<td>2.18</td>
<td>Terminology for indexable inset</td>
<td>32</td>
</tr>
</tbody>
</table>
2.19 Grade characteristics for cutting tool materials 34
2.20 Capabilities of cutting speed and feed for various cutting tool materials 35
2.21 Example of Taylor’s tool life curve 42
2.22 Tool wear on turning tools 43
2.23 Progression of wear with carbide tools 44
2.24 Tool wear parameters for grooved insert 45
2.25 Tool wear for grooved insert 45
2.26 Illustration the condition of wear, thermal shock cracking and edge chipping for cutting tools 46
2.27 Stainless steel alloy system 49
3.1 Schematic of experimental setup 57
3.2 Flowchart of experimental setup 58
3.3 ALPHA 1350S 2-Axis CNC Lathe 60
3.4 A three component dynamometer 61
3.5 Multi channel amplifiers 61
3.6 Data acquisition system with PC 62
3.7 Sample output from DynoWare software 62
3.8 Portable power monitors ZN-CTX21 63
3.9 Wave Inspire ES Ver. 2.2.0 63
3.10 Mitutoyo Surftest SJ-301 surface roughness testers 64
3.11 Optical microscope 65
3.12 Cutting inserts of a) MC7025 and b) UTi20T 67
3.13 TCLNR 2020K12 tool holder 67
4.1 Cutting forces influenced by a variety feed rate at different cutting speed for UTi20T 69
4.2 Cutting forces influenced by a variety of cutting speed at different feed rate for UTi20T 69
4.3 Total power consumption influenced by a variety of feed rate at different cutting speed for UTi20T

4.4 Total power consumption influenced by a variety of cutting speed at different feed rate for UTi20T

4.5 Comparison of total power consumption between experimental and theoretical for UTi20T at 0.10 mm/rev

4.6 Comparison of total power consumption between experimental and theoretical for UTi20T at 0.16 mm/rev

4.7 Comparison of total power consumption between experimental and theoretical for UTi20T at 0.22 mm/rev

4.8 Surface roughness influenced by a variety feed rate at different cutting speed for UTi20T

4.9 Surface roughness influenced by a variety of cutting speed at different feed rate for UTi20T

4.10 Tool wear propagation graph UTi20T at various V_c and 0.10 mm/rev

4.11 Tool wear propagation graph UTi20T at various V_c and 0.16 mm/rev

4.12 Tool wear propagation graph UTi20T at various V_c and 0.22 mm/rev

4.13 Tool life influenced by a variety feed rate at different cutting speed for UTi20T

4.14 Tool life influenced by a variety cutting speed at different feed rate for UTi20T

4.15 Taylor tool life equation for UTi20T at various feeds

4.16 Optical microscope images of worn UTi20T inserts after turning austenitic stainless steel

4.17 Cutting forces influenced by a variety feed rate at different cutting speed for MC7025

4.18 Cutting forces influenced by a variety of cutting speed at different feed rate for MC7025

4.19 Total power consumption influenced by a variety of feed rate at different cutting speed for MC7025

4.20 Total power consumption influenced by a variety of cutting speed at different feed rate for MC7025
4.21 Comparison of total power consumption between experimental and theoretical for MC7025 at 0.10 mm/rev
4.22 Comparison of total power consumption between experimental and theoretical for MC7025 at 0.16 mm/rev
4.23 Comparison of total power consumption between experimental and theoretical for MC7025 at 0.22 mm/rev
4.24 Surface roughness influenced by a variety of feed rate at different cutting speed for MC7025
4.25 Surface roughness influenced by a variety of cutting speed at different feed rate for MC7025
4.26 Tool wear propagation graph MC7025 at various cutting speeds and 0.10 mm/rev
4.27 Tool wear propagation graph MC7025 at various cutting speeds and 0.16 mm/rev
4.28 Tool wear propagation graph MC7025 at various cutting speeds and 0.22 mm/rev
4.29 Tool life influenced by a variety of feed rate at different cutting speed for MC7025
4.30 Tool life influenced by variety of cutting speed at different feed rate for MC7025
4.31 Taylor tool life equation for MC7025 at various feeds
4.32 Optical microscope images of worn MC7025 insert
4.33 Normal probability plot of residuals for cutting force data
4.34 Plot of residual versus predicted for cutting force data
4.35 Plot of residual versus run for cutting force data
4.36 Model of cutting force in 3D surface plot
4.37 Contour plot for cutting force model
4.38 Normal probability plot of residuals for total power consumption data
4.39 Plot of residual versus predicted for total power consumption data
4.40 Plot of residual versus run for total power consumption data 105
4.41 Model of total power consumption in 3D surface plot 105
4.42 Contour plot for total power consumption model 106
4.43 Normal probability plot of residuals for surface roughness data 107
4.44 Plot of residual versus predicted for surface roughness data 108
4.45 Plot of residual versus run for surface roughness data 108
4.46 Model of surface roughness in 3D surface plot 109
4.47 Contour plot for surface roughness model 109
4.48 Normal probability plot of residuals for tool life data 110
4.49 Plot of residual versus predicted for tool life data 111
4.50 Plot of residual versus run for tool life data 111
4.51 Model of tool life in 3D surface plot 112
4.52 Contour plot for tool life model 112
4.53 Desirability plot for optimization model of UTi20T 114
4.54 Overlay plot for optimization model of UTi20T 114
4.55 Normal probability plot of residuals for cutting force data 119
4.56 Plot of residual versus predicted for cutting force data 120
4.57 Plot of residual versus run for cutting force data 120
4.58 Model of cutting force in 3D surface plot 121
4.59 Contour plot for cutting force model 121
4.60 Normal probability plot of residuals for total power consumption data 123
4.61 Plot of residual versus predicted for total power consumption data 123
4.62 Plot of residual versus run for total power consumption data 124
4.63 Model of total power consumption in 3D surface plot 124
4.64 Contour plot for total power consumption model 125
4.65 Normal probability plot of residuals for surface roughness data 127
4.66 Plot of residual versus predicted for surface roughness data 127
4.67 Plot of residual versus run for surface roughness data 127
4.68 Model of surface roughness in 3D surface plot 128
4.69 Contour plot for surface roughness model 128
4.70 Normal probability plot of residuals for tool life data 130
4.71 Plot of residual versus predicted for tool life data 131
4.72 Plot of residual versus run for tool life data 131
4.73 Model of tool life in 3D surface plot 132
4.74 Contour plot for tool life model 132
4.75 Desirability plot for optimization model of MC7025 134
4.76 Overlay plot for optimization model of MC7025 134
4.77 Tool wear growth comparison between UTi20T and MC7025 at 150 m/min and 0.16 mm/rev 141
LIST OF SYMBOLS

\(a_p \) - Depth of cut
\(b \) - Shank width
\(C \) - Constant
\(C_e \) - End cutting edge angle
\(C_s \) - Side cutting edge angle
\(E \) - Energy required for machining process
\(\varepsilon \) - Experimental error
\(f \) - Feed rate
\(F_C \) - Main cutting force
\(F_X \) - Radial force
\(F_Y \) - Feed force
\(F_Z \) - Cutting force
\(h \) - Shank height
\(I \) - Current
\(l \) - Tool length
\(k \) - Specific energy requirement
\(K_I \) - Crater index
\(K_T \) - Depth of the crater
\(n \) - Exponent varies
\(P \) - Power consumed by machining process
\(P_C \) - Power consumption
\(P_0 \) - Idle power
\(r \) - Nose radius
\(R_a \) - Surface roughness
\(R_t \) - Surface profile
\(T \) - Tool life
\(V \) - Voltage
VB_B - Average of flank wear width in zone B
$VB_{B\text{max}}$ - Maximum of flank wear width in zone B
VB_N - Maximum width of notch wear
V_c - Cutting speed
\dot{v} - Material removal rate (MRR)
x_1 - Coded form for the cutting speed
x_2 - Coded form for the feed rate
α_b - Back rake angle
α_s - Side rake angle
θ_e - End relief angle
θ_s - Side relief angle
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The cutting insert brochure (Mitsubishi)</td>
<td>169</td>
</tr>
<tr>
<td>B</td>
<td>ISO coding for tool inserts</td>
<td>174</td>
</tr>
<tr>
<td>C</td>
<td>ISO coding designation for tool holder</td>
<td>176</td>
</tr>
<tr>
<td>D</td>
<td>Result data of cutting forces and power consumption</td>
<td>177</td>
</tr>
<tr>
<td>E</td>
<td>The result data of surface roughness</td>
<td>191</td>
</tr>
<tr>
<td>F</td>
<td>Computational schedule for calculation of regression</td>
<td>203</td>
</tr>
<tr>
<td>G</td>
<td>Procedure of collecting data</td>
<td>204</td>
</tr>
<tr>
<td>H</td>
<td>List of publications</td>
<td>207</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The first chapter begins with the background of the problem, which covers the problem statement. Following the problem statement are the objectives, scope and significance of the study, and the organization of the thesis.

1.1 Background

Machining processes are complex and dependant on many factors such as the process under consideration and its operating conditions, the workpiece material, and the cutting tool material. A particular combination of these factors will have an effect on machinability. In the case of the turning process, attempts have been made to measure or quantify machinability and it was done mostly in terms of:

1. Tool life which substantially influences productivity and the economics in machining. Investigations on the tool life as the response when cutting tool and cutting parameters are varied have been studied in several investigations, such as by Kurniawan et al. (2010), Rao et al. (2014), and Hu and Huang (2014).
2. Magnitude of cutting forces which affects dimensional accuracy. Cutting forces have been measured in several studies, such as by Kamely and Noordin (2011), Kadirgama et al. (2010), and Xie et al. (2013).
3. Surface finish which plays an important role on performance and service life of the product. Surface roughness at various machining conditions have been
investigated by several researchers, such as Devillez et al. (2011), Asiltürk and Akkuş (2011), Krishna et al. (2010), and Hwang and Lee (2010).

Nowadays sustainable development has been emphasized. In order to attain sustainable development, industries have resorted to sustainable manufacturing where the three pillars, namely; economic, social, and environmental were considered (Pusavec et al., 2010; Westkämper et al., 2000). Application of sustainability practices have been carried out in the various engineering fields, including manufacturing and design. It is known that industries gained financial and environmental advantages, produce products of best quality, became more competitive, have a larger market share and achieved increased profitability when these industries applied sustainable practices (Nambiar, 2010; Rusinko, 2007).

In manufacturing, sustainable practices include conserving energy and natural resources, implementing economically sound processes, and keeping negative environmental impacts to the minimum level, and simultaneously enhancing the safety of employee, community, and the products. Such practices can also be applied to machining processes which is part of the manufacturing system. Machining as an industry, is acknowledged as a production system, which is associated with the creation of economic wealth as well as the impact on the natural environment (Sarkis et al., 2010; Warren et al., 2001). Specifically for the turning process, sustainable machining can be implemented by taking into account the cutting conditions used during turning; such as the cutting parameters and cutting fluids, the cutting tool performance, the quality of machined surface, and the power consumed for cutting.

Use of cutting fluids is a common practice in machining, for increasing overall machinability, by reducing friction or temperature at the cutting region. However, their use has been recommended to be minimized whenever possible. Dry machining, without the use of any cutting fluid, has been investigated as a means towards sustainable manufacturing. Previous research was on dry turning was performed by Davoodi et al. (2012), Devillez et al. (2011), Kadirgama et al. (2010), Noordin et al. (2007), to name a few, with success to some extent. The use of proper cutting tools at suitable cutting parameters is determinant for optimal tool life, which
in turn influences the sustainability of the turning process. The quality of machined surface, or sometime termed as surface integrity, reflects the performance of the machining process. This includes the surface roughness of the machined surface. The power consumption during the cutting process needs serious attention since it is related to various aspects of sustainable manufacturing. Some works have been done on some machining processes, such as Aggarwal et al. (2008), Bhattacharya et al. (2009), Hanafi et al. (2012), and Bhushan (2013), but works involving the turning process are still lacking. Combination of the first three considerations with power consumption in turning is a good way forward towards sustainable machining.

1.2 Problem Statement

The machining industry is an important and strategic industry for the manufacturing sector (Wang et al., 2013). Based on the above, investigations have been carried out on machining processes by varying the cutting conditions and measuring the various machinability responses. Additionally, investigations involving newly developed cutting tools as well as newly developed workpiece materials were also undertaken. As mentioned previously; tool life, cutting forces and surface roughness are the responses normally investigated in machinability studies. The power consumption during machining is often neglected, and this holds true in the case of turning process. There was very limited research performed in investigating the power consumption machinability response. In line with making the turning process sustainable, there is a need to conduct a study on the turning process machinability, which also considers power consumption.

Stainless steel AISI 316L is the workpiece material of interest. Being highly corrosion resistant, this type of stainless steel is often used in medical devices, especially those in direct contact with the human body. Machining process is widely used in the manufacture of medical devices. However machinability data for this material is very limited. Therefore there is a need to evaluate the machinability during turning of stainless steel AISI 316L towards sustainable machining. The availability of machinability data obtained from the implementation of sustainable
machining of turning process will benefit the manufacturer of these high value added products as guidelines to calculate and measure the total power consumption is available in addition to information on common machinability aspects of cutting forces, surface roughness, and tool life.

1.3 Objectives

The objectives of the research are as follows:

1. To examine the influence of cutting conditions on various machinability parameters during the turning of stainless steel AISI 316L using uncoated and coated carbide tools.
2. To develop the mathematical models for the various machinability parameters thus enabling the determination of the optimized as well as the feasible region of cutting conditions for a given set of machinability parameters’ requirement.

1.4 Scope of Study

Considering the wide area of possible methods to achieve the objectives, some boundaries must be set and this research focuses within the following scope:

1. The cutting parameters were varied at 90, 150, and 210 m/min for cutting speed and 0.10, 0.16, and 0.22 mm/rev for feed, while the depth of cut was set constant at 0.4 mm. The turning process was performed dry (without cutting fluid).
2. Austenitic stainless steel AISI 316L was the workpiece material turned.
3. MC7025 coated carbide tool and UTi20T uncoated tool was the cutting tool materials used.
4. The machinability parameters investigated were the cutting forces, the total power consumption, the surface roughness and the tool life.
5. ALPHA 1350S 2-Axis CNC lathe was used to perform the cutting tests.
6. A three-component dynamometer, multi channel amplifier and the data acquisition system were utilized to obtain the cutting force data.
7. Mitutoyo Surftest SJ-301 was used to measure the surface roughness of the turned specimen.

8. Carl Zeiss Stemi 2000-C optical microscope was used to capture the wear of the cutting tool.

9. Portable power monitor ZN-CTX21 and its components were used to measure the power consumed on the main cable, spindle cable, and carriage cable which were installed in the box panel of the CNC lathe machine.

10. Wave Inspire ES software was used to display the total power consumed during turning.

11. The 3^2 or 3-level, 2-factor, full factorial design with 2 center points was used to develop the experimental plan.

1.5 Significance of Study

It was expected outcomes of this study would provide the followings:

1. By incorporating power consumption consideration together with the other machinability data, a reduction in energy consumption is expected thus making the machining process more sustainable.

2. Enhance our knowledge thereby providing a better understanding of the characteristics and application of the different cutting tools with the different cutting parameters when turning AISI 316L austenitic stainless steel.

3. The mathematical models developed will facilitate the optimization process.

1.6 Organization of Thesis

This thesis consists of six chapters, which begin with Chapter 1 as an introduction that contains the background, problem statement, objectives, scope and significance of study, and finally organization of thesis.
Chapter 2 provides the literature review for some topics, such as the definition of sustainability, sustainable production, power consumption, metal cutting and turning process, surface integrity, cutting insert, tool life and tool failure, and austenitic stainless steel. Chapter 3 describes the equipment and methodologies that were used and adopted.

The experimental results were presented in Chapter 4 and this includes the machining response data, such as cutting forces, total power consumption, surface roughness, and tool life. It also presents the data analysis and the development of the various mathematical models using the Design of Experiments (DOE) technique for predicting and optimizing the machinability parameters. Lastly, Chapter 5 provides the conclusion and recommendation for future work.

speed machining of AISI 1045 steel using Taguchi design and ANOVA. Production Engineering, 3(1), 31-40.

under minimum quantity lubrication using castor oil. *Advances in Mechanical Engineering, 7*(8).

Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters – the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52(0), 462-471.

