NOVEL ULTRAFILTRATION FLAT SHEET MIXED MATRIX MEMBRANES
FOR ARSENIC AND LEAD REMOVAL AND FOULING MITIGATION

RASOUL JAMSHIDI GOHARI

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

MAY 2014
To my parents, my wife and my son
ACKNOWLEDGEMENT

In the name of Allah, the beneficent and merciful.

Here, I would like to deeply express my sincere gratitude and appreciation to my supervisor Prof. Dr. Ahmad Fauzi Ismail for all his intellectual support and constructive advice during the whole process of my thesis. His guidance and constant encouragement have given me valuable inputs from time to time through this study. He put a tremendous amount of effort into providing opportunities for me to learn and grow. His friendship personality makes my working experience with him very useful for my future research activities and carrier my sincerely thanks has been given to my co-supervisor Dr. Lau Woei Jye for his kindly helpful guidance during the whole process of this research. I would like to give my thanks to Prof. Dr. Takeshi Matsuura (University of Ottawa, Canada) who has spent his valuable time for reviewing my manuscripts and giving his valuable suggestions and constructive criticism. My gratitude and appreciation is also extended to the rest of Advanced Membrane Technology Research Center (AMTEC) members for their direct or indirect participation in this study, especially Mr. Mohd Sohaimi Abdullah and Mr. Ng Be Cheer.

Finally, my deepest gratitude goes to my beloved wife, Atefeh Ahmadi, who always gives me encouragement, reassurance and valuable support during all the difficult time of my study. Thanks also to my lovely son, Radmehr, as his presence always inspires me.
ABSTRACT

The aim of this work is to develop novel, efficient and environmental friendly water treatment technology with low cost and low energy consumption for adsorptive removal of selected heavy metals such as arsenic (As) and lead (Pb) from aqueous system as well as membrane fouling mitigation. In order to overcome the shortages of adsorption and membrane technology, porous asymmetric nanocomposite flat sheet ultrafiltration (UF) mixed matrix membranes (MMMs) incorporated with hydrophilic metal oxide nanoparticle adsorbents were prepared through the phase inversion process. Prior to the fabrication and characterization of MMMs, metal oxide nanoparticles, i.e. Fe-Mn binary oxide (FMBO) with high As adsorption capacity and hydrous manganese dioxide (HMO) with high Pb adsorption capacity were synthesized and used as inorganic fillers and adsorbents in flat sheet polyethersulfone (PES)-based MMMs. The effects of impregnating inorganic metal oxide nanoparticles on the PES-based MMMs morphology, pure water flux, adsorption capacity, surface pattern formation and membrane fouling mitigation were studied by varying the loading of the metal oxide nanoparticles. Both flat sheet PES/HMO and PES/FMBO MMMs were characterized using scanning electron microscope (SEM), contact angle goniometer, atomic force microscope (AFM) and Fourier transforms infrared (FTIR) spectrometer. The best performing membranes prepared from the FMBO/PES ratio of 1.5:1 demonstrated the pure water flux as high as 94.6 L/m².h.bar and maximum As(III) uptake capacity of around 73.5 mg/g. On the other hand, the experimental results showed that with increasing HMO:PES weight ratio from zero to 2.0 times, the membrane water flux was increased from 39.4 to 573.2 L/m².hr.bar (more than 14 times) and the optimized membranes fabricated from the HMO/PES ratio of 2.0:1 showed the highest Pb(II) adsorption capacity i.e. 204.1 mg/g. The continuous UF experiments showed that the optimized MMMs could achieve promising results by removing selected heavy metals from water samples by producing permeate of high quality to meet the maximum contaminant As level set by World Health Organization (WHO), i.e.<10 μg/L As and <15 μg/L Pb. Furthermore, the adsorptive performance of MMMs could be easily regenerated using alkaline and acidic solution. This work also contributed to the novel membrane design with present simple method to control nano-sized pattern formation (alignment of macromolecular nodules) on the polymeric membrane surface. Unlike the lithographical method, the proposed method allows the control of smaller nano-sized patterns of a large membrane area at a lower cost and further shows promising results in reducing membrane fouling due to the protein adsorption. Antifouling property of PES membrane was improved with increasing HMO:PES weight ratio from zero to 1.5 and most importantly, the initial pure water flux of the membranes could be nearly completely recovered by a simple deionized water washing.
Matlamat penyelidikan ini dijalankan adalah untuk membangunkan teknologi rawatan air yang terkini, cekap dan juga mesra alam disamping untuk menyingkirkan logam berat seperti arsenik (As) dan plumbum (Pb) daripada sistem akueus dan dalam masa yang sama dapat mengurangkan kotoran membran. Bagi mencapai matlamat ini, membran kepingan rata ultraturusan (UF) komposit nano berliang tak simetri yang digabungkan dengan partikel nano oksida logam telah dihasilkan melalui proses fasa-balikan. Sebelum proses pembuatan membran campuran (MMMs) dijalankan, oksida dedua Fe-Mn (FMBO) yang berkapsasiti jeraapan tinggi untuk As dan mang trauma dioksida (HMO) yang berkapsasiti jeraapan tinggi untuk Pb telah disintesis terlebih dahulu dan digunakan sebagai bahan pengisi bukan organik dan bahan penjerap dalam membran kepingan rata berasaskan polietersulfona (PES). Kesan penggabungan oksida logam bukan organik terhadap morfologi membran berasaskan PES, fluxus air tulen, kapasiti jeraapan, pembentukan corak permukaan dan pengurangan kotoran dikaji dengan mengubah suai kandungan oksida logam tersebut. Kedua-dua membran kepingan rata PES/HMO dan PES/FMBO telah dicirikan dengan menggunakan mikroskopi imbasan elektron (SEM), goniometer sudut sentuh, mikroskop daya atom (AFM) dan spektroskopi inframerah jelmaan Fourier (FTIR). Prestasi membantu yang terbaik telah dicapai menggunakan membran yang mempunyai kadar nisbah FMBO/PES sebanyak 1.5:1 dengan kadar fluxus air tulen setinggi 94.6 L/m².jam.bar dan kapasiti jeraapan boleh mencapai keputusan yang berkualiti tinggi sehingga mempengaruhi tahap aras pencemaran maksimum yang ditetapkan oleh Pertubuhan Kesihatan Sedunia (WHO) iaitu <10 μg/L bagi As dan <15 μg/L bagi Pb dalam menyingkirkan logam berat tersebut. Selain itu, prestasi penjerapan MMMs boleh diperolehi semula dengan menggunakan larutan beralkali dan berasi. Hasil kerja ini juga menyumbang kepada reka bentuk baru dalam mengawal pembentukan korak bersaiz nano pada permukaan membran polimer melalui kaedah penjajaran nodul makromolekul. Tidak seperti kaedah litografik, kaedah yang dicadangkan ini dapat mengawal korak bersaiz nano yang lebih kecil pada kawasan membran yang besar dengan kos yang lebih rendah dan seterusnya menunjukkan keputusan yang lebih baik dalam menyingkirkan kotoran pada membran yang diawasi protein. Sifat anti kotoran yang ditunjukkan oleh membran berasaskan PES dapat ditingkatkan dengan meningkatkan kadar nisbah berat HMO: PES daripada sifar kepada 1.5 dan yang paling penting, fluxus air tulen awal yang dicapai oleh membran boleh diperolehi semula sepenuhnya secara mudah dengan membasuh membran menggunakan air ternyahion.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBRIVATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Heavy Metals and their Removal Technologies 1
1.2 Heavy Metals Removal based on Membrane Technology 4
1.3 Membrane Fouling and its Mitigations 5
1.4 Problem Statements 6
1.5 Objectives of the Study 8
1.6 Scopes of the Study 9
1.7 The Significance of Research 10

2 LITERATURE REVIEW 11

2.1 Overview of Membrane Technology 11
2.2 Membrane Classification 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Inorganic Membranes</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Organic Membranes</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Membrane Structure</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Symmetric Membranes</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Asymmetric Membranes</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Synthetic Membrane Preparation</td>
<td>15</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Membrane Phase Inversion Process</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Precipitation by Solvent Evaporation</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Precipitation from the Vapor Phase</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4.3</td>
<td>Precipitation by Controlled Evaporation</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4.4</td>
<td>Thermal Precipitation</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4.5</td>
<td>Immersion Precipitation</td>
<td>17</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Membrane Configuration</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Flat Sheet Membranes</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Hollow Fiber Membrane</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Mixed Matrix Membrane (MMM)</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Preparation of MMM</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Inorganic Particle size in MMMs</td>
<td>22</td>
</tr>
<tr>
<td>2.4.3</td>
<td>MMM Potential</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Heavy Metals</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Arsenic</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>Arsenic Distribution in the Environment</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>Arsenic Toxicity and Human Health Effects</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1.3</td>
<td>Regulations and Guidelines Applicable to Arsenic</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Lead</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Lead Distribution in the Environment</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Lead Toxicity and Drinking Water Regulations</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Heavy Metals Removal based on Membrane Technology</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Reverse Osmosis (RO)</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>Nanofiltration (NF)</td>
<td>29</td>
</tr>
<tr>
<td>2.6.1.3</td>
<td>Electro Dialysis (ED)</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1.4</td>
<td>Ultrafiltration (UF)</td>
<td>31</td>
</tr>
</tbody>
</table>
2.7 Adsorption Process
 2.7.1 Adsorption Isotherm 32
 2.7.2 Adsorption Kinetic Models 33
2.8 Heavy Metal Removal by Adsorbents 34
 2.8.1 Activated Carbon (AC) Adsorbents 34
 2.8.2 Iron Oxide Coated Sand (IOCS) Adsorbents 35
 2.8.3 Nanoparticle Adsorbents 36
 2.8.4 Metal Oxides Adsorbents 36
2.9 Metal Oxide Adsorbents Selection and Study of Importance of using Porous Host Medias for Metal Oxide Adsorbents Impregnation 37
 2.9.1 FMBO Nanoparticles for Arsenic Removal 38
 2.9.2 HMO Nanoparticles for Lead Removal 39
 2.9.3 Importance of using Metal Oxide Adsorbents with Porous Host Medias 40
2.10 Adsorptive Removal by MMMs 41
2.11 Membrane Fouling 44
 2.11.1 Internal and External Fouling 44
 2.11.2 Reversible and Irreversible Fouling 45
 2.11.3 Fouling Models 45
 2.11.4 Fouling by Proteins 46
2.12 Mitigation of Membrane Fouling 47
 2.12.1 Application of Surface-Patterned Membranes for Membrane Fouling Mitigation 47
 2.12.2 Study of Membrane Surface Pattern by Atomic Force Microscopy (AFM) 52
 2.12.3 Metal Oxide Nanoparticles for Membrane Fouling Mitigation 53

3 RESEARCH METHODOLOGY 55
3.1 Research Design 55
3.2 Operation Framework 56
3.3 Material Selection 57
3.3.1 Solvent and Pore Forming Additive 57
3.3.2 Polymeric Matrix 59
3.3.3 Inorganic Adsorbent Fillers 60

3.4 Synthesize of Metal Oxide Adsorbents 61
3.4.1 Preparation of HMO Inorganic Adsorbent 61
3.4.2 Preparation of FMBO Inorganic Adsorbent 61

3.5 Preparation of PES/FMBO and PES/HMO Dope Solution 62

3.6 Casting the Suspension to Fabricate Asymmetric Flat Sheet Membranes through Dry-wet Phase Inversion Process 63
3.6.1 Fabrication of PES/FMBO MMMs 65
3.6.2 Preparation of PES/HMO MMMs 65

3.7 Performance Evaluation of PES/FMBO and PES/HMO MMMs for Removing Heavy Metals 66
3.7.1 Heavy Metals Measurement 66
3.7.1.1 Analysis Selected Heavy Metals by FAAS 67
3.7.1.2 Analysis Selected Heavy Metals by GFAAS 67
3.7.2 Batch As(III) Adsorption Study 68
3.7.3 Batch Pb(II) Adsorption study 69
3.7.4 pH Effect Study 70
3.7.5 Kinetic Studies 70
3.7.6 Continues Filtration Process Study for Heavy Metals Removal 70

3.8 Evaluation of the Effect of Surface Pattern Formation on the Membrane Fouling Mitigation 71
3.8.1 Surface Pattern Meassurment on the Surface of the PES MMMs 71
3.8.2 BSA UF Study on the Surface Patterned Membrane 72

3.9 Evaluation of the Effect of Metal Oxide Nanoparticles on PES MMMs in terms of Fouling Mitigation 73
3.9.1 Bovine Serum Albumin (BSA) 73
3.9.2 Cross Flow of MMMs UF Experiments for Fouling Mitigation Studies 74

3.10 Characterization Study 76
4 RESULTS AND DISCUSSION

4.1 Adsorptive Removal of Arsenite from Contaminated Water Samples by PES/FMBO UF Flat Sheet MMMs
 4.1.1 Introduction 80
 4.1.2 Results and Discussion 81
 4.1.2.1 Characterization of the FMBO Particles and MMMs 81
 4.1.2.2 Adsorption Isotherm 89
 4.1.2.3 pH Effect Study on PES/FMBO MMMs 91
 4.1.2.4 Adsorption Kinetics 93
 4.1.2.5 Performance of MMM in As(III) Removal before and after Regeneration Process 94
 4.1.3 Conclusion 96

4.2 Adsorptive Removal of Pb(II) from Aqueous Solution by Novel PES/HMO UF MMM
 4.2.1 Introduction 98
 4.2.2 Results and Discussion 100
 4.2.2.1 Characterization of the HMO Nanoparticles and PES/HMO MMMs 100
 4.2.2.2 Adsorption Isotherm 106
 4.2.2.1 pH Effect Study on the PES/HMO MMMs 109
 4.2.2.2 Adsorption Kinetics 110
4.2.2.3 Continuous Membrane Filtration Process for Adsorptive Removal of Pb(II) and Membrane Regeneration 112

4.2.3 Conclusion 114

4.3 Effect of Surface Pattern Formation on Membrane Fouling and its Control in Phase Inversion Process 116

4.3.1 Introduction 116

4.3.2 Results and Discussion 118

4.3.2.1 Characterization 118

4.3.2.2 BSA UF Study 120

4.3.3 Conclusion 125

4.4 Improving Performance and Antifouling Capability of PES UF Membranes via Blending with Highly Hydrophilic Hydrous Manganase Dioxide Nanoparticles 126

4.4.1 Introduction 126

4.4.2 Results and Discussion 128

4.4.2.1 TEM 128

4.4.2.2 XRD 129

4.4.2.3 FTIR 130

4.4.2.4 Contact Angle and Hydrophilicity 130

4.4.2.5 SEM 131

4.4.2.6 AFM 132

4.4.2.7 Ultrafiltration of Protein 133

4.4.2.8 Water Flux Behavior of Membranes 134

4.4.3 Conclusion 137

5 CONCLUSION AND RECOMMENDATIONS 138

5.1 General Conclusion 138

5.2 Recommendations 140

REFERENCES 142

Appendices A-F 171-181
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Organic membrane materials (Hsieh et al., 1996).</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Arsenic decontamination by RO process.</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Arsenic and lead removal by different types of NF process.</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Arsenic and lead removal by metal oxide adsorbents.</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Host-supported metal oxides for lead and arsenic decontamination.</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of recent studies on the MMM UF performance with respect to pure water flux and anti-fouling property.</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical properties of NMP.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Typical properties of PVP.</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Properties of typical commercial grade PES.</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Typical properties of MnSO₄.H₂O and FeSO₄.7H₂O.</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Composition and viscosity of PES/FMBO casting dope.</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Composition and viscosity of PES/HMO casting solution.</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of membranes with respect to pure water flux, contact angle and overall porosity.</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Langmuir and Freundlich isotherm parameters for As(III) adsorption on MMMs adsorbent at pH 3-4.</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of maximum As(III) adsorption capacities for different adsorbents.</td>
<td>91</td>
</tr>
</tbody>
</table>
4.4 Properties of membranes with respect to pure water flux, contact angle, overall porosity and pore size. 106

4.5 Lungmuir and Freundlich isotherm parameter for Pb(II) adsorption on MMMs at pH 7-8. 108

4.6 Comparison of maximum Pb(II) adsorption capacities for different adsorbents. 108

4.7 Adsorption kinetic parameters obtained by different models. 111

4.8 Ratio of average roughness, \(R_{a,\text{perp}} / R_{a,\text{Para}} \). 119

4.9 Flow direction and initial flux used as denominator for flux normalization. 120

4.10 Pure water flux, total resistance, reversible resistance, irreversible resistance and flux recovery for PES control membrane and PES/HMO-0.5, PES/HMO-1 and PES/HMO-1.5 MMMs. 136
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map of the regions affected by high arsenic concentrations and arsenic poisoning (WHO, 2004).</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Membrane separation process (Beerlage, 1994).</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Membrane classification (Giorno, 2010).</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Cross section of asymmetric membranes (Khulbe et al., 2007).</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematics of flat sheet membrane modules (a) plate-frame and (b) spiral wound (Ray and Jain, 2011).</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>The structure of hollow fiber membrane (Ahmed, 2005).</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematics of polymer (organic)/inorganic filler MMMs. (a) Symmetric flat dense MMM and (b) Asymmetric hollow fiber MMM (Ismail et al., 2009).</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Fabrication process of the metal oxide/ MMMs.</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>The map of the world-wide arsenic contaminated areas (Amini et al., 2008).</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematics of membrane fouling mechanisms: (a) pore blockage, (b) pore constriction, (c) intermediate blockage and (d) cake filtration (Judd, 2010).</td>
<td>46</td>
</tr>
<tr>
<td>2.10</td>
<td>Hollow fiber membrane with(a) microstructured inner surface and (b) The spinneret with microstructured outer surface (Çulfaz et al., 2011b).</td>
<td>48</td>
</tr>
</tbody>
</table>
2.11 Cross-sectional SEM images of surface patterned membrane and flat sheet membrane: (a) prism type and (b) flat sheet type (Lee et al., 2013).

2.12 Cross-sectional SEM images of two kinds of patterned membrane and flat sheet membrane: (a) pyramid type, (b) prism type, and (c) flat sheet type. All membranes were prepared by a modified immersion precipitation process with the same polymer solution (solution 3; PVDF 1.5 g, DMF 4.5 g, acetone 4 g) (Won et al., 2012).

2.13 (a) Schematic of the NIL process for patterning the surface of the UF membranes. (b) and (c) are topographic AFM image of the pristine and imprinted membranes (Maruf et al., 2013).

2.14 (a) and (b) are representative top surface and crosssectional SEM images of the pristine membrane, respectively; (c) and (d) are representative top surface and cross-sectional SEM images of the imprinted membrane, respectively (Maruf et al., 2013).

2.15 3D AFM images of the surface patterned hollow fiber membranes with different share rate (Chung et al., 2002).

3.1 Schematic of experimental design.

3.2 Chemical Structure of NMP.

3.3 Chemical structure of PVP.

3.4 Chemical structure of PES.

3.5 Dope preparation equipment.

3.6 Penumatically-controled flat sheet casting machine.

3.7 Schematic of suface pattern mesurment in dirction parallel and perpendicular to the rows of alignment macromolecular nodules in the surface of membrane.
3.8 The Figure shows the sequence of the BSA UF and washing experiments. Figure also shows length of each step (min) and flow direction (parallel, perpendicular).

3.9 Schematic diagram of cross flow UF system.

4.1 Morphology and particle size of synthesized FMBO particles.

4.2 XRD patterns of (a) FMBO particles, (b) PES membrane and (c) PES/FMBO-1.5 mixed matrix membrane.

4.3 FTIR spectra of FMBO particles (a) before and (b) after batch As(III) adsorption experiment.

4.4 3D AFM images on membrane surface prepared from different FMBO/PES ratio, (a) PES, (b) PES/FMBO-0.5, (c) PES/FMBO-1 and (d) PES/FMBO-1.5 membrane.

4.5 SEM photographs of the cross section (numbered as 1) and top surface (numbered as 2) of membranes prepared from different FMBO/PES ratios (a) PES, (b) PES/FMBO-0.5, (c) PES/FMBO-1 and (d) PES/FMBO-1.5 membrane.

4.6 High magnification SEM micrographs of the cross section of membranes prepared from different FMBO/PES ratios (a) PES, (b) PES/FMBO-0.5, (c) PES/FMBO-1 and (d) PES/FMBO-1.5 membrane.

4.7 EDX analysis of the top surface of PES/FMBO-1.0 membrane.

4.8 Adsorption isotherms for As(III) by MMMs with different FMBO:PES ratio (a) PES/FMBO-0.5, (b) PES/FMBO-1 and (c) PES/FMBO-1.5 membranes. (Experimental conditions: membrane weight= 1.0 g/L, pH = 3-4, temperature= 298 K, contact time = 48 h).

4.9 Effect of pH on the As(III) uptake of optimum PES/FMBO-1.5 membrane (Experimental conditions:
initial As(III) concentration = 10 mg/L, membrane weight = 1.0 g/L, temperature = 298 K and contact time = 48 h).

4.10 As(III) adsorption kinetics onto optimum PES/FMBO-1.5 membrane and change of As(III) concentration in aqueous solution as a function of time. (Experimental conditions: initial As(III) concentration = 20 mg/L, membrane weight = 1.0 g/L, pH = 7.5 and temperature = 298 K).

4.11 As(III) removal from aqueous solution using optimum PES/FMBO-1.5 membrane with continuous UF process before and after membrane regeneration (Experimental conditions: initial As(III) concentration: 97.58 µg/L, pH: 7.5, pressure: 2 bar and temperature: 298 K).

4.12 FT-IR spectra of HMO nanoparticles before (a) and after (b) Pb(II) adsorption.

4.13 3D AFM surface images of the membranes with different HMO/PES ratios, (a) PES, (b) PES/HMO-0.5, (c) PES/HMO-1.0, (d) PES/HMO-1.5 and (e) PES/HMO-2.0 MMM.

4.14 Water contact angle of membranes, (a) PES, (b) PES/HMO-0.5, (c) PES/HMO-1, (d) PES/HMO-1.5, PES/HMO-2(e) membrane.

4.15 SEM micrographs of the top surface (numbered as 1) and cross-section (numbered as 2) of membranes prepared at different HMO/PES ratio, (a) PES, (b) PES/HMO-0.5, (c) PES/HMO-1, (d) PES/HMO-1.5 and (e) PES/HMO-2 membrane.

4.16 Adsorption isotherms for Pb(II) by PES/HMO MMMs with different HMO:PES ratio (a) PES/HMO-0.5, (b) PES/HMO-1, (c) PES/HMO-1.5 and (d) PES/HMO-2 membrane. (Experimental conditions: concentration of membrane in lead solution = 1.0 g/L, pH = 7–8, temperature= 25°C and contact time = 48 h).
4.17 Effect of feed pH on the Pb(II) removal using PES/HMO-2 membrane (Experimental conditions: initial Pb(II) concentration = 200 ppm, concentration of membrane in lead solution = 1.0 g/L, stirring speed: 200 rpm, temperature = 25°C and contact time = 48 h).

4.18 Pb(II) adsorption kinetics onto PES/HMO-2.0 membrane as a function of time. (Experimental conditions: initial Pb(II) concentration (C₀) = 200.0 mg/L, concentration of membrane in lead solution = 1.0 g/L, pH = 7.0 and temperature = 25°C).

4.19 Pb(II) removal from aqueous solution using PES/HMO-2 membrane with continuous UF process (a) virgin membrane and (b) reused membrane after undergoing 2 h regeneration process (Experimental conditions: initial Pb(II) concentration: 148.5 µg/L, pH: 7, pressure: 0.5 bar and temperature: 25°C).

4.20 The 3D AFM images show that macromolecular nodules (nodular aggregates) are aligned more to the direction of casting blade motion as the FMBO/PES ratio increases progressively from 0 (a) to 0.5 (b) to 1.5 (c) and to 2.0 (d).

4.21 The Figure shows a minimum in the contact angle versus Filler/PES ratio plot.

4.22 Shows that the normalized fluxes during BSA ultrafiltration (shown as treatment B in Figure 3.8) are: step d (perpendicular) > step g (parallel) and i (perpendicular) > b (parallel).

4.23 Shows that the normalized flux increases during the washing period (shown as treatment W in Figure 3.8) for steps c and f (parallel) and decreases for steps e and j (perpendicular).

4.24 The Figure shows strong turbulence at the membrane surface when the feed flow direction is perpendicular a)
and lifting of deposited BSA molecules when the flow
direction is parallel b) to the aligned nodular aggregates.

4.25 Morphology and particle size of synthesized HMO
particles.

4.26 XRD patterns of (a) PES/HMO-1.5, (b) PES membrane
and (c) HMO nanoparticles.

4.27 FTIR spectra of (a) HMO nanoparticles, (b) PES
membrane and (c) PES/HMO-1.5.

4.28 Pure water flux and contact angle of membranes prepared
from different HMO:PES ratio.

4.29 EDX analysis of the top surface of PES/HMO-1.0
membrane.

4.30 Pore size and porosity of membrane prepared from
different HMO:PES ratio.

4.31 Separation performance of membranes in removing BSA,
pepsin and trypsin using feed solution containing 200
ppm solute.

4.32 Flux versus time for the PES control membrane and
PES/HMO MMMs (PES/HMO-0.5, PES/HMO-1 and
PES/HMO-1.5) at 1 bar during three steps: (i) water flux
for 30 min, (ii) 1000 ppm BSA solution flux for 120 min
and (iii) water flux for 30 min after washing with DI
water.
LIST OF ABBRIVATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectroscopy</td>
</tr>
<tr>
<td>AC</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscope</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>As(III)</td>
<td>Arsenite</td>
</tr>
<tr>
<td>As(V)</td>
<td>Arsenate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CA</td>
<td>Cellulose acetate</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>DI</td>
<td>Dionized water</td>
</tr>
<tr>
<td>ED</td>
<td>Electrodialysis</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAAS</td>
<td>Flame atomic absorption spectroscopy</td>
</tr>
<tr>
<td>FMBO</td>
<td>Fe-Mn binary oxide</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform Infrared spectroscopy</td>
</tr>
<tr>
<td>GFAAS</td>
<td>Graphite furnace atomic absorption spectrometry</td>
</tr>
<tr>
<td>GS</td>
<td>Gas separation</td>
</tr>
<tr>
<td>HMO</td>
<td>Hydrous manganese dioxide</td>
</tr>
<tr>
<td>IOCS</td>
<td>Iron oxide coated sand</td>
</tr>
<tr>
<td>MAC</td>
<td>Maximum acceptable concentration</td>
</tr>
<tr>
<td>MC</td>
<td>Membrane contactor</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum contaminant level</td>
</tr>
<tr>
<td>MD</td>
<td>Membrane distillation</td>
</tr>
<tr>
<td>MF</td>
<td>Microfiltration</td>
</tr>
<tr>
<td>MMM</td>
<td>Mixed matrix membrane</td>
</tr>
<tr>
<td>NIL</td>
<td>Nanoimprint lithography</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NMP</td>
<td>N-Methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>PAN</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PES</td>
<td>Polyethersulfone</td>
</tr>
<tr>
<td>PI</td>
<td>Polyamide</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PSF</td>
<td>Polysulfone</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>TMP</td>
<td>Transmembrane pressure</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>USPEA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffractometers</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>Membrane surface area</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>Equilibrium adsorption constant</td>
</tr>
<tr>
<td>C_e</td>
<td>-</td>
<td>Equilibrium concentration</td>
</tr>
<tr>
<td>C_f</td>
<td>-</td>
<td>Protein concentration in feed</td>
</tr>
<tr>
<td>C_p</td>
<td>-</td>
<td>Permeat concentration</td>
</tr>
<tr>
<td>C_0</td>
<td>-</td>
<td>Initial concentration of adsorbate</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>Diameter</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>Permeat flux</td>
</tr>
<tr>
<td>g</td>
<td>-</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>Hour</td>
</tr>
<tr>
<td>J_p</td>
<td>-</td>
<td>Permeat flux</td>
</tr>
<tr>
<td>J_w</td>
<td>-</td>
<td>Pure water flux</td>
</tr>
<tr>
<td>K_f</td>
<td>-</td>
<td>Freundlich constant</td>
</tr>
<tr>
<td>K_1</td>
<td>-</td>
<td>Pseudo-first order rate constant</td>
</tr>
<tr>
<td>K_2</td>
<td>-</td>
<td>Pseudo-second order rate constant</td>
</tr>
<tr>
<td>L</td>
<td>-</td>
<td>Liter</td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>Meter</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
<td>Pseudo-first order rate constant</td>
</tr>
<tr>
<td>q_e</td>
<td>-</td>
<td>Amount of metal ion adsorbed at equilibrium</td>
</tr>
<tr>
<td>q_m</td>
<td>-</td>
<td>Maximum capacity of the adsorbent</td>
</tr>
<tr>
<td>q_t</td>
<td>-</td>
<td>Amount of adsorbate adsorbed at any given time</td>
</tr>
<tr>
<td>q_0</td>
<td>-</td>
<td>Maximum solid phase concentration of the solute</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td>Protein rejection</td>
</tr>
<tr>
<td>R_a</td>
<td>-</td>
<td>Surface roughness</td>
</tr>
<tr>
<td>$R_{a,par}$</td>
<td>-</td>
<td>Surface roughness in the parallel direction of casting</td>
</tr>
<tr>
<td>$R_{a,per}$</td>
<td>-</td>
<td>Surface roughness in the perpendicular direction of casting</td>
</tr>
<tr>
<td>R_F</td>
<td>-</td>
<td>Flux recovery</td>
</tr>
</tbody>
</table>
R_{ir} - Irreversible resistance
R_r - Reversible resistance
R_t - Total resistance
t - Time
V - Volume
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>171</td>
</tr>
<tr>
<td>B</td>
<td>Preparation of heavy metals for batch studies</td>
<td>173</td>
</tr>
<tr>
<td>C</td>
<td>Heavy metals analysis in ppb level</td>
<td>174</td>
</tr>
<tr>
<td>D</td>
<td>Freundlich isotherm model calculation</td>
<td>175</td>
</tr>
<tr>
<td>E</td>
<td>Langmuir isotherms model calculation</td>
<td>178</td>
</tr>
<tr>
<td>F</td>
<td>Calibration curves</td>
<td>181</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Heavy Metals and their Removal Technologies

Heavy metals are classified as metallic elements with atomic number between 63.5 and 200.6, and a density more than 5.0 g/cm³ that are found in the earth’s crust (Srivastava and Majumder, 2008). Heavy metals can enter the water sources through the natural erosion of soil and rocks. However, the majority of heavy metals contamination also comes from rapid development of anthropogenic activities, especially in developing countries (Fu and Wang, 2011). These hazardous materials, contrary to some organic pollutants, metabolically are not degradable and have tendencies to accumulate in bodies of living beings. Many of them are well-known to be toxic or carcinogenic and their accumulation at higher levels even causes death to human. The most common hazardous heavy metals found in the surface and ground water sources are arsenic and lead. The following is a brief description on these two heavy metals.

Arsenic, is a silver-grey semi-metallic chemical element with earthly abundance of around 2.5 mg/kg. It is ubiquitous and ranks twentyish element in the earth’s crust and 14th in seawater. Arsenic has relative molar mass of 74.92 g/mol; density of 5.73 g/cm³ at 25°C and melting point of 817°C (Mandal and Suzuki, 2002). Arsenic normally occurs in two oxidation states: arsenate and arsenite. In surface waters it exists in the form of arsenate, As(V). In ground waters it mostly exists in the form of arsenite, As(III). As(V) is easily removed when compared to As(III). On the other hand, As(III) is considerably more toxic, soluble and mobile
than As(V) where As(III) is sixty times more toxic than As(V) (Singh and Pant, 2004; Hossain, 2006).

Arsenic contaminated drinking water is a worldwide problem. The existence of arsenic in drinking water has been reported in more than 70 countries like USA, China, Bangladesh and Cambodia (Jain and Ali, 2000; Smedley and Kinniburgh, 2002). Figure 1.1 shows a map of the regions affected by high arsenic concentrations and arsenic poisoning.

![Figure 1.1](image)

Figure 1.1 Map of the regions affected by high arsenic concentrations and arsenic poisoning (WHO, 2004).

Generally, human exposure to arsenic compounds comes from polluted water, food, and air contaminated by industrial and agricultural activities (DeSesso *et al.*, 1998; Santra *et al.*, 2013). This is of special concern for the reason that in liquid form arsenic is odorless and colorless, making it impossible to recognize by sight only. Arsenic is extremely toxic to human being; some studies show that long term
drinking of arsenic contaminated groundwater can lead to cancer of the bladder, lungs, skin, kidney and liver (Santra et al., 2013). The World Health Organization (WHO) has been well known to establish standards for arsenic in drinking water since 1958. Nowadays, guideline for acceptable arsenic concentration in drinking water is 10 ppb (WHO, 1996).

On the other hand, lead a chemical element with symbol Pb, is a member of group 14 of the periodic table and can be found in the environment in oxidation states: 0, +2, and +4, whereas it infrequently occur in elemental state, Pb(0) (Weast, 1974). While in aqueous solution lead generally can form two classes of compounds: namely plumbous, Pb(II) and plumbic, Pb(IV). Sources of lead which can be released in the environment can be divided in two main categories: natural and anthropogenic sources (Wilkin, 2007; USEPA, 2010). The majority of lead polluted drinking water sources are related to industrial and wastewater effluents, pesticides and waste leachate from lead-acid batteries, paints and pigments to surface and ground water sources (USEPA, 2010).

Lead is very harmful material and has been recorded as the second most toxic and hazardous material after arsenic by the 2007 cerclapriority list of hazardous materials (ATSDR, 2007). Lead has the ability to accumulate in the body by lodging in the folds of the intestine or by being absorbed by the body in dissolved form and depositing in the bones. It is reported that the human exposure to lead has harmful effects on kidney, central nervous and reproductive systems and is more hazardous to children. At the present time, lead toxicity is well-known and many famous organizations around the world have set the maximum contaminant level (MCL) of lead in drinking water at the accessible lowest levels. The United States Environmental Protection Agency (USEPA) guidelines have regulated the maximum permissible concentration of lead in drinking water at 15 ppb (Momčilović et al., 2011).

Traditionally, techniques such as chemical precipitation, coagulation and flocculation and ion exchange resins have been used for removing heavy metals (González-Muñoz et al., 2006; Smara et al., 2007; Pang et al., 2011). The market for
nanotechnology used in water and wastewater worldwide reached USD 1.6 billion in 2007 and is expected to reach USD 6.6 billion in 2015 (Kaiser, 2006). Recently, applicability of nanosized metal oxide adsorbents, extensively have been studied for effective removal of some toxic heavy metals from aqueous effluents. Hua et al. (2012) have reviewed the use of nanosized metal oxides for decontaminating hazardous heavy metals from water/wastewater. Zhang et al. (2007c), investigated using of Fe-Mn binary oxide (FMBO) particles for arsenic decontamination, while Su et al. (2010) used hydrous manganese dioxide (HMO) adsorbent for removing some toxic heavy metals like Pb (II), Zn (II) and Cd (II). However, the above mentioned technologies are incapable of decreasing concentration of heavy metals in real water treatment to the level required by law or are prohibitively expensive or require post treatment steps. The use of membrane separation process in the treatment of polluted water containing toxic heavy metals is an attractive and appropriate method and are being applied more and more frequently (Danış, 2005).

1.2 Heavy Metals Removal based on Membrane Technology

Membrane technology offers a flexible method for meeting multiple water quality objectives and is applied in a wide range of uses. The first recorded study of the membrane process and innovation of osmosis dates back to middle of 18th century when Nollet showed that a pig’s bladder was able to pass preferentially water and ethanol (Glater, 1998). This technology in addition of having ability for removing many contaminants such as bacteria and salts is attractive for heavy metals decontamination for small water systems. The membrane technology can address number of water quality problems whereas being comparatively easy to control. The main property which makes it being utilized in separation process is the capability of a membrane to control the permeability of chemical species through the membrane. Membrane separation processes are classified according to the driving force and pore size that cause the flow of permeate through the membrane.

They include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). Intensive investigations have been done for heavy metals
decontamination by RO and NF (Fu and Wang, 2011). UF and MF technologies are becoming widely applied for water and wastewater treatment. However, generally the pore sizes of these membranes are bigger than the size of dissolved heavy metal ions, heavy metals passing simply through these membranes. While only UF process especially in the form of micellar and polymer enhanced, is capable for effective removal some of heavy metal ions such as As(V) and Pb(II) (Ferella et al., 2007).

1.3 Membrane Fouling and its Mitigations

Another, important issue in the application of membrane technology in water and waste water treatment is fouling. Membrane fouling can be defined as the increasing accumulation of contaminants on the membrane that causes a growth in the trans membrane pressure (TMP) requirement for the constant permeates flux or a decrease in the water flux through the membrane in constant-pressure operation. It can happen at the surface which is called macro-fouling or inside the pore or pore fouling or micro-fouling.

Membrane fouling can be mitigated by increasing membranes hydophilicity properties and membrane surface modification; this is generally valuable if proteins are the foulant, because proteins have a tendency to adsorb more intensely on hydrophobic membrane surfaces (Wilf and Alt, 2000). Membrane surface modification intensively has also been studied to change its properties to decrease fouling (Rana and Matsuura, 2010). This can be done by several methods like physical and chemical modifications such as ultraviolet irradiation (Nyström and Järvinen, 1987; Zhang et al., 2002; Taniguchi et al., 2003; Wei et al., 2006), graft polymerization (Ulbricht and Belfort, 1996; Wavhal and Fisher, 2002; Liu et al., 2008), micro-patterning (Lee et al., 2013) and/o nanoimprint lithography (NIL) on the membrane surface (Maruf et al., 2013). Recently surface hydrophilization of the polymeric membranes for the decreasing fouling property has also been widely investigated by dispersing metal oxide nanoparticles into dope solutions by many metal nanoparticles such as titanium dioxide, aluminum oxide, silicon dioxide and zirconium oxide (Ng et al., 2013).
1.4 Problem Statements

Nowadays, the toxicity of hazardous heavy metals has been well known and many organizations around the world adjusted the maximum acceptable concentration of heavy metals in contaminated-water at very low concentration. Stringent drinking water regulations are made in order to lower the MCL of heavy metal concentration. For instance, since 2006, USEPA and WHO have decided to reduce the maximum arsenic concentration in drinking water from 50 part per billion (ppb) to 10 ppb (Mohan and Pittman Jr, 2007). The stiffening of regulations generates strong demands to improve methods for removing pollutants from the water and controlling water-treatment residuals.

Conventionally, many treatment methods such as chemical precipitation (Harper and Kingham, 1992), coagulation and flocculation (Bilici Baskan and Pala, 2010) and ion exchange (Kartinen Jr and Martin, 1995) could be employed for heavy metals decontamination, but they are found to have inconsistent and/or incomplete elimination of heavy metals. In order to meet the MCL required by law, additional post-treatment process always is required to complete the treatment process, which indirectly would increase the overall cost of treatment. Although membrane technology is reported to be used for heavy metals removal when it is operated in NF or RO mode (Oh et al., 2004; Chan and Dudeney, 2008), the relatively high energy consumption resulted from high operating pressure remains as a concern to many. Low pressure driven membranes like MF and UF on the other hand are not effective in removing heavy metals, mainly due to their porous structure which offers minimal/none resistance against arsenic (Brandhuber and Amy, 1998).

Adsorption is now recognized as an effective and economic method for heavy metal wastewater treatment. The adsorption process offers flexibility in design and operation and in many cases will produce high-quality treated effluent. In addition, because adsorption is sometimes reversible, adsorbents can be regenerated by suitable desorption process (Harper and Kingham, 1992; Fu and Wang, 2011). Recent investigations show many of metal oxide nanoparticles have high adsorption capacity and selectivity for removing some of hazardous heavy metals from
contaminated water (Deliyanni et al., 2007; Hua et al., 2012). This partially can be attributed to their high surface areas and activities because of their size-qualification effect (Henglein, 1989). However, as the size of metal oxides reduces from micrometer to nanometer levels, the increased surface energy inevitably leads to their poor stability. Consequently, nano sized metal oxides are prone to agglomeration due to Van der Waals forces or other interactions (Pradeep and Anshup, 2009; Hua et al., 2012). Their high adsorption capacity and selectivity would be significantly reduced or even lost. Furthermore, metal oxide nanoparticles are not capable for using in fixed beds or any other flow-through system due to excessive pressure drops or difficult separation from aqueous solutions and poor mechanical strength, on the other hand, unfortunately, it may be extremely difficult to remove 100 % of these metal oxides from aqueous solution, even if they have unique properties (Li et al., 2012)

Another problem for using of metal oxide nanoparticles in real application for water treatment is their nontoxicity effect, while, they can enter through the skin and can be translocated to lymph nodes, and if they enter blood circulation, they can be distributed throughout the body and taken up into the liver, spleen, bone marrow, heart and other organs (Mishra et al., 1996). So, not only can nanoparticles have adverse effects on their own, if they are associated with or comprised of toxic metal ions they may release them into the body once they are exposed to the various and complicated chemistries.

To overcome these problems and promote the applicability of metal oxide adsorbent nanoparticles in real water and wastewater treatment and heavy metal decontamination, researchers in recent years have focused on impregnating nanoparticles into porous host media such as Bentonite (Randelović et al., 2012), alginate (Guo and Chen, 2005), zeolite (Li et al., 2011b), diatomite (Jang et al., 2006; Jang et al., 2007), cellulose (Guo et al., 2007) and porous polymer (Pan et al., 2009; Su et al., 2009). But compared to other host materials, porous polymeric hosts are a particularly attractive option partly because of their controllable pore size and surface chemistry as well as their excellent mechanical strength for long-term use (Hua et al., 2012).
In the development and practical use of UF membranes, one of the main problems that should be addressed is fouling, while, fabricating of low fouling membrane is significant and attractive subjects. Therefore, in this study to be practically useful, current proposed investigation is to fabricate low fouling membrane via impregnating hydrophilic metal oxide particles in the polymeric structure of the membranes and also surface modification must further be improved with respect to fouling resistance, stability and the membrane performance.

1.5 Objectives of the Study

Based on the problem statement identified, the major objective of this research was to fabricate and characterize novel nanocomposite UF MMMs, to remove selected heavy metals from aqueous system. Therefore the objectives of this research are:

1) To fabricate and characterize polyethersulfone (PES)/FMBO mixed matrix membranes (MMMs) for removing arsenite from contaminated water samples.

2) To prepare and characterize PES/HMO MMMs for removing lead from polluted waters.

3) To study the effect of impregnating inorganic metal oxide particles in the PES matrix in terms of surface pattern formation and BSA fouling mitigation.
1.6 Scopes of the Study

In order to achieve the above mentioned objectives, the following scopes of works have been identified:

1) Synthesizing FMBO through chemical precipitation process using low cost chemical such as potassium permanganate, ferrous sulphate and sodium hydroxide as precipitant factor.

2) Preparing HMO nanoparticles by chemical precipitation process using very cheap materials, i.e. potassium permanganate, manganese sulphate and sodium hydroxide.

3) Characterizing the FMBO and HMO particles using, Fourier Transform Infrared spectroscope (FTIR), X-ray diffractometer (XRD) and Transmission Electron Microscope (TEM).

4) Fabricating and characterizing the MMMs in the form of flat sheet by dispersion metal oxide particles into PES dope solution. The MMMs formation process was carried out based on dry-wet phase inversion process.

5) Investigating the performance of MMM embedded with different loadings of inorganic metal oxides nanoparticles for heavy metals removal under different process conditions.

6) Evaluating sustainability of membranes in terms of BSA fouling mitigation and adsorbents regeneration.
1.7 The Significance of Research

The significance of this current research is the development of novel, efficient and environmental friendly water treatment technology with low cost and low energy consumption for hazardous heavy metal decontamination. The hydrophilic nanosized metal oxide adsorbents with high adsorption capacity for As(III) and Pb(II) removal has been synthesized and was used as inorganic filler for mixed matrix membranes preparation. Besides showing promising results in eliminating selected heavy metal ions from contaminated drinking water, the resultant mixed matrix membranes also exhibited excellent antifouling properties against proton desorption, mainly due to the nano-sized pattern formed on membrane surface coupled with improved surface hydrophilicity. As high as 97.5% of the original adsorption capacity of PES/HMO-2.0 MMM for Pb(II) adsorption, and 87.5% of the original adsorption capacity of PES/FMBO-1.5 MMM for As(III) adsorption, could be easily recovered after subjecting the membranes to a simple desorption process using acidic and alkaline solution.

Beerlage, M., A.M (1994). *Polyimide ultrafiltration membranes for non-aqueous system*., netherlandes

Li, X., He, K., Pan, B., Zhang, S., Lu, L. and Zhang, W. (2012). Efficient As(III) removal by macroporous anion exchanger-supported Fe–Mn binary oxide:

TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism.

ZnO/PbS heterostructured functional nanocomposite utilizing the surface

Mahapatra, A., Mishra, B. G. and Hota, G. (2013). Electrospun Fe2O3–Al2O3
nanocomposite fibers as efficient adsorbent for removal of heavy metal ions
from aqueous solution. Journal of Hazardous Materials 258–259(0): 116-
123.

Assessment of metal removal, biomass activity and RO concentrate treatment

water using manganese oxide-coated-alumina: Performance evaluation and
mechanistic details of surface binding. Chemical Engineering Journal

58(1): 201-235.

Mandal, M. K., Sant, S. B. and Bhattacharya, P. K. (2011). Dehydration of aqueous
acetonitrile solution by pervaporation using PVA–iron oxide nanocomposite
membrane. Colloids and Surfaces A: Physicochemical and Engineering

investigation into the sorption of heavy metals from wastewaters by
polyacrylamide-grafted iron(III) oxide. Journal of Hazardous Materials
91(1–3): 221-238.

María Arsuaga, J., Sotto, A., del Rosario, G., Martínez, A., Molina, S., Teli, S. B.
and de Abajo, J. (2013). Influence of the type, size, and distribution of metal
oxide particles on the properties of nanocomposite ultrafiltration membranes.
Journal of Membrane Science 428(0): 131-141.

