MODELLING AND FORECASTING EXCHANGE RATE OF US DOLLAR AGAINST MALAYSIAN RINGGIT USING HYBRID ARIMA-GARCH AND ARIMA-EGARCH MODELS

ASMA’ BINTI MUSTAFA

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of

Master of Science

Faculty of Science
Universiti Teknologi Malaysia

MAY 2017
To my beloved family, teachers and friends.
ACKNOWLEDGEMENT

First and foremost, praise to the Almighty God I was finally able to successfully complete this thesis. I want to express my deepest gratitude to my main supervisor, Prof. Madya Dr. Maizah Hura bt Ahmad for all her contribution in giving ideas and sharing her valuable knowledge in this research. Without her patience, consideration and passion in providing guidance for me, I was unable to present this thesis completely. I also want to express my sincere appreciation to my co-supervisor, Dr. Norazlina bt Ismail for all her support and helpful comments and suggestions in enhancing this research work.

To my lovely family especially my parents, thank you very much for all the continuous support and prayers that give me confidence and strength to continue my journey in this garden of knowledge. For always there through thick and thin in my life, I am very grateful.

Last but not least, I want to dedicate special thanks to all my friends and those who involved directly or indirectly in contributing towards the realization of this project.
ABSTRACT

Modelling and forecasting financial time series data has become the area of interest in financial world. However, the data exhibits certain stylized facts that must be handled by an appropriate models. Thus, this study was conducted to develop hybridization models between Autoregressive Integrated Moving Average (ARIMA) model and Generalized Autoregressive Conditional Heterocedasticity (GARCH) family model for daily exchange rate data. Later, the performance of modelling and forecasting for the best models among them will be compared. GARCH family models are divided into two categories which are symmetric (GARCH) and asymmetric (EGARCH) models. In this study, daily data of U.S. Dollar exchange rate against Malaysia exchange rate (USD/MYR) is used from the period of 1st November 2010 until 30th August 2016 collected from the Central Bank of Malaysia. The data are divided into two parts where 90% of the data is used as in-sample period taken from 1st November 2010 until 3rd February 2016. Meanwhile, for another 10% is used for the out-sample period taken from 4th February 2016 until 30th August 2016. EViews software and Microsoft Excel are used in this study to analyze the data. The performance of the hybrid models are evaluated using AIC, MAE, RMSE and MAPE. Results showed that, hybrid ARIMA-EGARCH model is the best model in modelling and forecasting daily exchange rate data compared to hybrid ARIMA-GARCH model.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.0 Introduction 1

1.1 Background of the Study 2

1.2 Statement of Problem 3

1.3 Objectives of the Study 4
1.4 Scope of the Study 5
1.5 Significance of the Study 5
1.6 Limitation of the Study 6
1.7 Organization of the Report 6

2 LITERATURE REVIEW 7
2.0 Introduction 7
2.1 Stylized Facts of Volatility 7
2.2 Reviews on Exchange Rate Data 8
2.3 Reviews on ARIMA Model 12
2.4 Reviews on GARCH Model 14
2.5 Reviews on Hybrid ARIMA-GARCH (symmetric) Models 16
2.6 Reviews on Hybrid ARIMA-GARCH (asymmetric) Models 18
2.7 Summary of the Reviews 21

3 RESEARCH METHODOLOGY 23
3.0 Introduction 23
3.1 Box-Jenkins Method 23
 3.1.1 Stationary Time Series Model 24
 3.1.2 Nonstationary Time Series Model 25
 3.1.2.1 Nonstationary in Mean 25
 3.1.2.2 Nonstationary in Variance and Autocovariance 26
3.1.3 Testing for Stationarity 27

3.2 Model Identification 29

3.3 Parameter Estimation 31

3.3.1 Ordinary Least Square Estimation 31

3.3.2 Maximum Likelihood Estimation 32

3.4 Diagnostic Checking 33

3.4.1 Jarque-Bera Test 34

3.4.2 Breusch-Godfrey Serial Correlation LM Test 35

3.4.3 ARCH-LM Test 36

3.5 Forecasting 37

3.6 Operational Framework on ARIMA Models 38

3.7 GARCH Family Models 39

3.7.1 Symmetric GARCH Model 39

3.7.1.1 GARCH Model 39

3.7.2 Asymmetric GARCH Model 41

3.7.2.1 EGARCH Model 41

3.8 Hybrid Models 42

3.8.1 General Equation of Hybrid Models 43

3.9.1.1 Hybrid ARIMA-GARCH Model 43

3.9.1.2 Hybrid ARIMA-EGARCH Model 44

3.8.2 Model Identification 45

3.8.3 Parameter Estimation 45
3.8.4 Diagnostic Checking 45
 3.8.4.1 Correlogram Squared Residuals 46
3.8.5 Forecasting 47
3.9 Operational Framework on Hybrid Models 48
3.10 Performances of Hybrid Models 49

4 DATA ANALYSIS 51
4.0 Introduction 51
4.1 Data used in the study 51
4.2 ARIMA Models 52
 4.2.1 Stationarity Testing 53
 4.2.2 Model identification 55
 4.2.3 Parameter Estimation 58
 4.2.4 Diagnostic checking 60
 4.2.4.1 Jarque-Bera Test 60
 4.2.4.2 Breusch-Godfrey Serial Correlation LM Test 61
 4.2.4.3 ARCH-LM Test 62
4.3 Hybrid ARIMA-GARCH Model 63
 4.3.1 Model Identification 63
 4.3.2 Parameter Estimation 64
4.3.3 Diagnostic Checking
 4.3.3.1 Jarque-Bera Test
 4.3.3.2 ARCH-LM Test
 4.3.3.3 Correlogram Squared Residuals
4.3.4 Forecasting
4.4 Hybrid ARIMA-EGARCH Model
 4.4.1 Model Identification
 4.4.2 Parameter Estimation
 4.4.3 Diagnostic Checking
 4.4.3.1 Jarque-Bera test
 4.4.3.2 ARCH-LM Test
 4.4.3.3 Correlogram Squared Residuals
 4.4.4 Forecasting
4.5 Performances of Hybrid Models

5 SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY

5.0 Introduction
5.1 Summary
5.2 Conclusions
5.3 Suggestions for future study

REFERENCES

Appendices A-E
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the reviews on exchange rate and hybrid models</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Family of transformation</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of the behaviour of ACF and PACF</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Descriptive statistics of exchange rate series</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>ADF test of the original exchange rate data</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>ADF test for first difference of transformed series</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Equations of ARIMA ((p,d,q)) model and AIC value</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Breusch-Godfrey Serial Correlation LM Test</td>
<td>60</td>
</tr>
<tr>
<td>4.6</td>
<td>Heteroscedasticity Test</td>
<td>61</td>
</tr>
<tr>
<td>4.7</td>
<td>Equation of hybrid ARIMA-GARCH models and AIC values</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Heteroscedasticity Test</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlogram of Standardized Residuals Squared</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Equation of hybrid ARIMA-EGARCH models and AIC values</td>
<td>74</td>
</tr>
<tr>
<td>4.11</td>
<td>Heteroscedasticity Test</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Correlogram of Standardized Residuals Squared</td>
<td>79</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of AIC values for hybrid ARIMA (2,1,2)-GARCH (1,3) and hybrid ARIMA (2,1,2)-EGARCH (3,1) model</td>
<td>81</td>
</tr>
<tr>
<td>4.14</td>
<td>Evaluation criteria for hybrid ARIMA (2,1,2)-GARCH (1,3) and hybrid ARIMA (2,1,2)-EGARCH (3,1) model</td>
<td>82</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>ARIMA modelling approach</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart for hybridization of ARIMA-GARCH and ARIMA-EGARCH models</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Daily exchange rate series from 1st November 2010 to 30th August 2016</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Plot of first difference of the transformed exchange rate series</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph of Comparison between Real Exchange Rate series, Transformation series and Return (First Difference of Transformation)</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlogram of ACF for returns</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlogram of PACF for returns</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>Descriptive statistics of the Residuals for ARIMA (2,1,2)</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Volatility clusterings in the Residuals for ARIMA (2,1,2)</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlogram of ACF for residual</td>
<td>63</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlogram of PACF for residual</td>
<td>64</td>
</tr>
<tr>
<td>4.10</td>
<td>Descriptive statistics for residuals of hybrid ARIMA (2,1,2)-GARCH (1,3)</td>
<td>68</td>
</tr>
<tr>
<td>4.11</td>
<td>Volatility clustering for residuals of hybrid ARIMA(2,1,2)-GARCH(1,3)</td>
<td>70</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.12</td>
<td>In-Sample Forecasting Results of ARIMA (2,1,2)-GARCH (1,3)</td>
<td>72</td>
</tr>
<tr>
<td>4.13</td>
<td>Out-Sample Forecasting Results of ARIMA (2,1,2)-GARCH (1,3)</td>
<td>73</td>
</tr>
<tr>
<td>4.14</td>
<td>Correlogram of ACF for residual</td>
<td>74</td>
</tr>
<tr>
<td>4.15</td>
<td>Correlogram of PACF for residual</td>
<td>74</td>
</tr>
<tr>
<td>4.16</td>
<td>Descriptive statistics for residuals of hybrid ARIMA (2,1,2)-EGARCH (3,1)</td>
<td>78</td>
</tr>
<tr>
<td>4.17</td>
<td>Volatility clustering for residuals of hybrid ARIMA (2,1,2)-EGARCH (3,1)</td>
<td>79</td>
</tr>
<tr>
<td>4.18</td>
<td>In-Sample Forecasting Results of ARIMA (2,1,2)-EGARCH (3,1)</td>
<td>82</td>
</tr>
<tr>
<td>4.19</td>
<td>Out-Sample Forecasting Results of ARIMA (2,1,2)-EGARCH (3,1)</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

ACF - Autocorrelation Functions
ADF - Augmented Dickey-Fuller
AIC - Akaike Information Criterion
AICc - Corrected Akaike Information Criterion
AME - Absolute Mean Error
AR - Autoregressive Process
ARCH - Autoregressive Conditional Heteroscedasticity
ARMA - Autoregressive Moving Average
ARIMA - Autoregressive Integrated Moving Average
BIC - Bayesian Information Criterion
EGARCH - Exponential Generalized Autoregressive Conditional Heteroscedasticity
EViews - Econometrics Views
GARCH - Generalized Autoregressive Conditional Heteroscedasticity
JB - Jarque-Bera
LM - Lagrange Multiplier
MA - Moving Average
MAE - Mean Absolute Error
MAPE - Mean Absolute Percentage Error
MaxAPE - Maximum Absolute Percentage Error
PACF - Partial Autocorrelation Functions
RMSE - Root Mean Square Error
SSE - Sum of Square
SBIC - Schwarz Bayesian Information Criteria
TIC - Theil Inequality Coefficient
LIST OF SYMBOL

\(\phi_p \) - AR polynomial
\(\theta_q \) - MA polynomial
\(\varepsilon_t \) - error term at time \(t \)
\(\delta \) - constant term
\(\lambda \) - minimum residual mean square error value
\(\Delta \) - lag order of the autoregressive process
\(H_0 \) - null hypothesis
\(H_1 \) - alternative hypothesis
\(\hat{\theta} \) - tested time series
\(\sigma_t^2 \) - estimated conditional variance
\(\varepsilon_{t-i}^2 \) - past squared return
\(\sigma_{t-j}^2 \) - past of conditional variance
\(\alpha_0 \) - mean of the volatility
\(\alpha_i \) - size effect
\(\beta_j \) - degree of volatility persistence
\(\gamma_i \) - sign effect
\(n \) - sample size
\(\hat{\rho}_k^2 \) - squared sample autocorrelation at lag \(k \)
\(d \) - amount of differencing
\(p \) - autoregressive part order
\(q \) - moving average part order
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Parameter Estimation for ARIMA models by using the method of OLS</td>
<td>92</td>
</tr>
<tr>
<td>B</td>
<td>Parameter Estimation for ARIMA-GARCH models by using the method of OLS and MLE</td>
<td>94</td>
</tr>
<tr>
<td>C</td>
<td>Parameter Estimation for ARIMA-EGARCH models by using the method of OLS and MLE</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Descriptive Statistics for Real (In-sample) Data</td>
<td>108</td>
</tr>
<tr>
<td>E</td>
<td>Descriptive Statistics for Transform Data</td>
<td>109</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Introduction

In business and economic fields, modelling and forecasting of time series data is a common research activity in areas such as crude oil price, gold price, exchange rate and stock market. In general, time series data for financial markets always exhibit uncertainty and variability in market changes which are called volatility. In the aspect of exchange rate, volatility refers to the measure of fluctuations of currency. Exchange rate volatility become a major concern as it can give impact on international trade, economic growth, macroeconomic variables as well as export and import for a country. For example, exchange rate volatility induces uncertainty into international transaction that leads to the decreases in international trade and economic welfare (Wong and Lee, 2016). Therefore, modelling and forecasting of exchange rate plays a crucial role for government, financial agencies and institution and also academicians which can help them to gain useful information in making great decisions for a better future.

Our country, Malaysia, is not an exception to the exchange rate volatility. As exchange rate is one of the key indicators for Malaysia’s economic growth, depreciation or appreciation of ringgit is of interest to many people including investors, policy makers, financial analysts as well as researchers. It is a known fact that for the past two years, ringgit Malaysia (MYR) had dropped to its lowest level in 17 years since the Asian financial crisis in 1998. One of the main factors contributing to the falling ringgit is declining of oil prices in June 2014 as Malaysia is one of the main oil exporters throughout the world.
1.1 Background of the Study

Modelling and forecasting volatility of financial time series data has been an increasing interest over the last few years. This is due to the fact that volatility plays a crucial role for many financial and economic applications such as in investment, risk management, monetary policy making and security valuation. Volatility can be defined as a condition where the conditional variance changes between extremely high and low value.

In the current study, exchange rate data from the period of 1st November 2010 until 30th August 2016 will be used as the set for real data. The reason these data are chosen as a case study is because it is not only volatile but also play a salient role in economic growth. Exchange rate can be defined as a price for which the currency of a country can be exchanged for another country's currency. Foreign exchange market is the responsible party that determined the rate of exchange between different currencies.

Fluctuations of exchange rate are the increase or decrease in the value of currency against other currency at international level. Generally, fluctuation in exchange rate occurred due to the demand and supply of the currency in foreign exchange market. In simple words, value of one currency will increase if the demand is increased and depreciate when its supply is increased. Other factors that influence the variations and fluctuations in exchange rates include interest rate, inflation, political stability and economic performance.

Financial analysts started to model and explain the behaviour of exchange rate returns and volatility using time series econometrics models because of unexpected events that occurred such as non-constant variance in the financial markets and uncertainties in prices and returns (Ramzan et. al, 2012). Conditional heteroscedastic models are the most common and frequently applied models for exchange rate series (Zakaria and Abdalla, 2012).
Hence, the current study aims to investigate performances of hybrid Box-Jenkins ARIMA models with the GARCH family models. The performances of modelling and forecasting between these models will be compared.

1.2 Statement of Problem

Over the past few decades, fluctuations and movements of exchange rate have created an interest among financial economists, policy makers and academician. Consequently, various types of case studies and methods were applied to the data in order to handle certain characteristics that exist in the series.

Autoregressive Moving Average (ARMA) model had been widely applied to various types of time series data because of its ability in handling nonstationary data and it is easy to implement. Nevertheless, it is unable to handle nonlinearity and volatility features that exist in the data series. For this purposes, other appropriate model that have the ability to capture the volatility of daily exchange rate data are required. Generalized Autoregressive Conditional Heteroscedasticity (GARCH) family model is a well-known and frequently applied method especially in handling volatility for data series. Hence, GARCH family model are used in this study to capture the volatility effect in the series.

GARCH family models can be categorized into types which are symmetric and asymmetric. In this study, for symmetric models, GARCH model is chosen, while for asymmetric models, EGARCH model is chosen. Hence, the current study is conducted to investigate the performance of hybrid ARIMA with symmetric GARCH, specifically ARIMA-GARCH and hybrid ARIMA with asymmetric GARCH, specifically ARIMA-EGARCH for daily exchange rate data.

The combination of linear ARIMA model with nonlinear GARCH model is necessary so that the conditional mean and conditional heteroscedasticity of the exchange rate series can be captured. Furthermore, by combining these models, it can
be an effective way to overcome the drawbacks of each component and able to improve the accuracy of forecasting.

1.3 Objectives of the study

The current study is conducted with the following objectives:

1) To develop the best hybrid ARIMA-GARCH model for exchange rate data.

2) To develop the best hybrid ARIMA-EGARCH model for exchange rate data.

3) To compare the modelling and forecasting performances of ARIMA-GARCH and ARIMA-EGARCH models for exchange rate data.
1.4 Scope of the Study

This study focuses mainly on the hybridization between ARIMA model and GARCH family models in modelling and forecasting volatile data by using E-Views software. GARCH family models can be divided into two groups which are symmetric and asymmetric. In the current study, for symmetric, GARCH model is chosen while for asymmetric, EGARCH model is chosen. Daily data of U.S. Dollar exchange rate against Malaysia exchange rate (USD/MYR) is used in this study. The duration of the data is from the period of 1st November 2010 until 30th August 2016 obtained from the Central Bank of Malaysia (Bank Negara Malaysia). For modelling, the performance will be compared through the value of AIC, while for forecasting performance, three evaluation criteria will be compared which are RMSE, MAE and MAPE.

1.5 Significance of the Study

Through this study, we will model and forecast the exchange rate data using hybrid ARIMA-GARCH and ARIMA-EGARCH models. Generally, ARIMA models can handle nonstationary data while the GARCH family models have the ability to capture nonlinear characteristics of the variance in the series. Therefore, it is hoped that this study can produce the best model for predicting volatile data.

Forecasting’s accuracy of exchange rates play a crucial role because substantial amount of trading takes place through the currency exchange market. It can also affect economic growth for a country in cases of appreciation and depreciation of currency that occurred in foreign exchange market. Hence, forecasting of exchange rate can provide useful information which helps the financial institutions, policy makers and investors to make correct decisions in order to mitigate their losses in financial market.
1.6 Limitation of the Study

Daily data of U.S. Dollar exchange rate against Malaysia exchange rate (USD/MYR) from 1st November 2010 until 30th August 2016 were used in the current study. For time series models, hybridization between Box-Jenkins ARIMA with the GARCH family models is chosen. Since the data encountered symmetric and asymmetric properties, the performances between hybrid ARIMA-GARCH and ARIMA-EGARCH model will be compared.

1.7 Organization of the Report

This report comprise of five chapters. Chapter 1 starts with the introduction to the current study, followed by the background of the study, statement of problem, objectives of the study, scope of the study and significance of the study. Then, it describes the limitation of the study and end with the thesis organization.

Chapter 2 presents previous works that are related to the current study. In this chapter, reviews on exchange rate data and reviews on hybridization of ARIMA models with GARCH family models are presented.

Chapter 3 discusses the research methodology for the current study. It consists of Box-Jenkins ARIMA methodology, GARCH family models methodology and hybridization of ARIMA with GARCH family models methodology.

Chapter 4 presents the analysis of hybrid ARIMA-GARCH and ARIMA-EGARCH models. The best hybrid model in modelling the series will be chosen based on Akaike’s Information Criterion (AIC) while for forecasting, the best hybrid model is selected based on the values of RMSE, MAE and MAPE.

The last chapter which is Chapter 5 presents the summary and conclusions made from this study. This final chapter ends with some suggestions for future research.
REFERENCES

