MULTI-FLOOR FACILITY LAYOUT IMPROVEMENT USING SYSTEMATIC LAYOUT PLANNING AND SIMULATION

SEYEDEH SABEREH HOSSEINI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Industrial Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
Thanks God to enable me performing this research, I would like to dedicate this dissertation to my beloved father and mother who taught me how to be strong and ambitious and to my beloved brother and best friends whose positive energies always support me the best way.
ACKNOWLEDGEMENTS

A debt of gratitude to my talented supervisor, Assoc. Prof. Dr. Wong Kuan Yew for his high dedication, advises and superb guidance, which prepared me in overcoming the challenges in this master project.

I would also like to thank my co supervisor, Dr. Seyed Ahmad Helmi bin Syed Hassan for his kind guidance and all those who have been involved in making this project a success.

And finally, warm thanks to the manager and personnel of METALKUB Company for their support and providing data that is used in the facility layout planning analysis.
Every factory encounters with different layout problems from time to time and the operating efficiency of a manufacturing company is significantly influenced by its plant layout. Lack of consideration to facility planning and work flow design, as the company grows, is common. METALKUB is such a company that produces different types of cards and it is located in Iran. This company is facing with two problems in its production layout of which one of them is high distance between packaging department at first floor and pickup storage in ground floor that have high frequency of flow each day. Workers should walk through a long distance between these two departments which lead to high travelling time. Another problem is cross-traffic between some departments at first floor. The objective of this project is minimizing total traveling time, distance and number of cross-traffic. Systematic Layout Planning is employed to identify work/information flow through operation of products. Using this information, design alternative is created which decreases the travelling time and distance of the production flow. The effectiveness of proposed layout is determined using ARENA simulation academic version. Total travel distance from packaging process until keeping in warehouse is reduced significantly by 8417.5 m to 5023 m, which subsequently reduces time of travel as well. The number of cross-traffic is decreased from 38 to 24.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**
1.1 Introduction
1.2 Background of research
1.3 Objective of study
1.4 Scope of study
1.5 Significance of study
1.6 Organization of thesis
1.7 Conclusion

2 **LITERATURE REVIEW**
2.1 Introduction
2.2 Facility layout planning
2.2.1 Objectives of facilities planning
2.2.2 Factor affecting facilities layout planning

2.3 Traditional types of facilities layout

2.4 Non Traditional Types of Facilities Layout

2.5 Reviews on Layout Planning Techniques

2.6 Multi floor facility layout

2.6.1 The size and shape of building

2.6.2 Available time and movement

2.6.2 Departmental information

2.6.4 Objective function

2.7 Previous researches which improved Multi-Floor Facility Layout

2.8 Techniques for facilities layout

2.9 Heuristic procedures for the FLP

2.9.1 Apple’s Plant Layout Procedures

2.9.2 Reed’s Plant layout Procedure

2.9.3 Muther’s Systematic Layout Planning (SLP) Procedure

2.10 Simulation

2.10.1 Trends in Simulation

2.10.2 Simulation Software

2.11 Comparison this project with other previous works

2.12 Conclusion

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Design

3.2.1 Phase I

3.2.2 Phase II

3.2.3 Phase III
3.2.3.1 Input Data and Activities
3.2.3.2 Flow of Materials Analysis
3.2.3.3 The activity relationship chart
3.2.3.4 Relationship Diagram
3.2.3.5 Space Requirements
3.3.3.6 Space available
3.2.3.7 Space Relationship Diagram
3.2.3.8 Modifying Constraints
3.2.3.9 Practical Limitations
3.2.3.10 Develop Layout Alternatives
3.2.3.11 Evaluation
3.2.4 Phase IV
3.2.5 Phase V
3.3 Conclusion

4 PROBLEM IDENTIFICATION
4.1 Introduction
4.2 Problem Identification
 4.2.1 Material flow between departments
4.3 Company Process Mapping
4.4 Flow analysis and measurement
4.5 Distance measurement
 4.5.1 From-To chart analysis
 4.5.2 Overall From-To-Chart
 4.5.3 Overall From-To-Chart with Closeness Rating
4.6 Conclusion

5 SYSTEMATIC LAYOUT PLANNING
5.1 Introduction
5.2 Input Data
 5.3.1 Standard Time
5.3.2 Standard Time Determination 59
5.3 Flow Of Materials 63
5.4 Activity Relationship Chart 63
5.5 Relationship Diagram 64
5.6 Space requirements 66
5.7 Space Available 66
5.8 Space Relationship Diagram 67
5.9 Modifying Constraints 68
5.10 Practical Limitation 69
5.11 Develop Layout Alternatives 69
 5.11.1 Design I 69
 5.11.2 Design II 70
 5.11.3 Design III 71
5.12 Conclusion 72

6 DATA ANALYSIS AND MODELING 73
6.1 Introduction 73
6.2 Simulation Software: Arena 13.9 73
6.3 Performance Measures 75
6.4 Simulation Model Development 75
 6.4.1 Assumptions 77
 6.4.2 Model Verification 78
 6.4.3 Model Validation 79
6.5 Conclusion 83

7 SIMULATION EXPERIMENTATION AND RESULTS 84
7.1 Introduction 84
7.2 Experimentation 84
 7.2.1 Experiment 1: Layout Design 1 85
 7.2.2 Experiment 2: Layout Design 2 87
 7.2.3…Experiment 3: Layout Design 3 88
7.3 Cost estimation for layouts improvement 90
7.4 Discussion 92
7.5 Conclusion 93

8 CONCLUSION AND RECOMMENDATION 94
8.1 Introduction 94
8.2 Summary of the study 94
8.3 Research findings 95
8.4 Recommendation 95
8.5 Conclusion 96

REFERENCE 97
APPENDIX A-J 100-142
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and limitations of fixed product layout</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Advantages and limitations of Cellular layout</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Advantages and limitations of product layout</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Advantages and limitations of process layout</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Layout Planning Techniques and Time line</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of previous projects</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of previous projects</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Label of departments</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Distance between departments</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Number of material flow between departments per day</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Total distance travelled between departments per day</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Activity closeness relationship</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Overall from to chart with closeness rating</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Wedding cards processes</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Packets of Wedding process</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Christmas and personal card processes</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>Packets Process for Christmas and personal card</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>classic cards and posters cards processes</td>
<td>62</td>
</tr>
<tr>
<td>5.6</td>
<td>Packets process for classic cards and posters cards process</td>
<td>62</td>
</tr>
<tr>
<td>5.7</td>
<td>Preliminary suggestions for activity relationship chart between departments</td>
<td>64</td>
</tr>
<tr>
<td>5.8</td>
<td>Space requirement information</td>
<td>67</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>The results of running the simulation model</td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td>Comparison between simulated and actual values</td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td>The overall distance for layout design 1</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td>Performance measures for Layout Design 1</td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td>From-to chart for the total travelled distance between departments</td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td>Performance measures for design 2</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>The overall from-to chart for layout design 3</td>
</tr>
<tr>
<td>7.6</td>
<td></td>
<td>The performance measures for layout design 3</td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td>The results that have been obtained by simulation</td>
</tr>
<tr>
<td>7.8</td>
<td></td>
<td>The results that have been obtained manually</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nontraditional types of facilities layout</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>SLP Procedures(Tompkins, 2010)</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>The cross-traffic of existing facility layout</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow Process Chart</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Christmas & personal cards and packets flow</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Classic and personal cards and packets flow</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>Wedding cards and packets flow</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>The overall material flow in the existing layout Number</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship diagram</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Space relationship diagram</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Layout design 1</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Layout design 2</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td>Layout design 3</td>
<td>72</td>
</tr>
<tr>
<td>6.1</td>
<td>Examples of Flowchart modules</td>
<td>74</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of Data Modules</td>
<td>74</td>
</tr>
<tr>
<td>6.3</td>
<td>The animation view of model</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>The simulation results for average transfer time</td>
<td>79</td>
</tr>
<tr>
<td>6.5</td>
<td>The warm-up period</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data and Sample Size of Cycle Time</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>Data of transportation time for Current Layout (40 Observations)</td>
<td>105</td>
</tr>
<tr>
<td>C</td>
<td>Data of transportation time for Layout Alternative 1</td>
<td>122</td>
</tr>
<tr>
<td>D</td>
<td>Data of transportation time for Layout Alternative 2</td>
<td>123</td>
</tr>
<tr>
<td>E</td>
<td>Data of transportation time for Layout Alternative 3</td>
<td>124</td>
</tr>
<tr>
<td>F</td>
<td>Symbols of Operation Process Chart (OPC)</td>
<td>125</td>
</tr>
<tr>
<td>G</td>
<td>Current Layout Model</td>
<td>126</td>
</tr>
<tr>
<td>H</td>
<td>Design I</td>
<td>130</td>
</tr>
<tr>
<td>I</td>
<td>Design II</td>
<td>135</td>
</tr>
<tr>
<td>J</td>
<td>Design III</td>
<td>140</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

With rapid increase of demand in production, industrial factories need to increase their potentials in production and effectiveness to compete against their market rivals. Therefore, the way to solve this production problem is very important. There are many ways to solve the problems concerning productivity such as quality control, total quality management, Standard time and plant layout. Facility Layout Problem (FLP) is described as the efficient formation of physical departments that are identified to be difficult and are normally NP-Hard (Enea et al. 2005). Layout designing objectives lead to minimize the total cost of material transportation and maximize the total closeness rating between some departments. On the other hand, as the criterion for evaluation of layout plans, satisfaction or goodness of closeness between pairs of facilities is also considered (Krishna and Jaafari, 2009).

Typically, the total distance travelled by the “materials” in the facility is used as a proxy for the cost of the facility layout and as a quality indicator in the facility design. Single floor problems and multi floor problems are the major classification. Researches for multi-floor facility layout problems (MFFLP) have been conducted
over a period of years as the multi-floor (multi story) plants which are favorable in terms of utilizing their site efficiently. MFFLPs are more complicated than single floor problems; consequently a lot of researches, using computers, have been conducted (Kohara and Yamamoto, 2008). The focus of this project is on the company with two-floor production operation in which the vertical transportations are done by elevator (Goetschalckx and Irohara, 2007).

The waiting time of vertical transportation, like using an elevator, is more than horizontal one; therefore, the minimization of total waiting time depends on the time consumed in vertical transportation in multi-floor layout (Matsuzaki et al. 1999). The background of the study and the problem definition are discussed in this chapter to describe what the objectives of the thesis are and how improvement challenges are supposed to be solved. Then, Systematic Layout Planning (SLP) is implied to find the better layout in order to decrease the distance and travelling time between departments that have high frequency of material flows between each other. In order to evaluate the proposed alternative layouts, ARENA simulation is used. All these concepts are briefly described in the scope of the study. After considering the scope of study, the goals and advantages are discussed as the significance of the study. Finally, the structure of the rest of the thesis is described to present how this project is going to accomplish the study.

1.2 Background of research

Multi-floor facilities are constructed in countries or areas with high land cost because usable land is either very limited and/or very expensive, especially as one gets closer to industrialized zones. A comparison between MFFLP and single-floor layout problem is, because of vertical traveling between floors, MFFLP is more challenging than single-floor layout problem. The layout analysts should be aware of some factors that may affect the quality and efficiency of any multi-floor facility
layout such as the number and location of vertical handling devices to put, the congestion and delays that may be occurred between departments (Tompkins et al. 2010).

The case study is the company of cards production where the plant layout of the manufacturing company is not properly designed. The materials at ground floor should be transferred by elevator to level one in order to send to different departments. The products after packaging at first floor should be shipped to the final product storage that is located at ground floor. There is a long distance between these two departments that consume a lot of time as well. Another problem which has been found at this company is the cross-traffic flow of materials between departments that occur at first floor. As a result, proper evaluation and improvement to the existing layout is done to overcome this problem. To experiment the manufacturing activities without actual implementation we can use some tools such as computer simulation which can be applied as a stochastic model to estimate the uncertainty of events. Simulation is capable to determine the movement and interactions of system components and can help to design the complex layout and also for examining the flexibility of a design which enables users to evaluate alternative solutions.

1.3 Objective of the study

i. Identify the layout problems in the manufacturing company
ii. Develop improved layouts using SLP
iii. Determine the effectiveness of the proposed alternative layouts using simulation
1.4 Scope of the study

The scopes of this project are as follow:

a) Three different types of cards processes in two floors of the company are considered to be improved
b) SLP procedure will be used to generate the alternative layouts.
c) ARENA software will be used to evaluate future layout alternatives for simulation.
d) The distance between each department is calculated using the rectilinear method.
e) Process total time, transfer time, distance, number of cross-traffic, output and cost are selected as performance measures. Travelling time and distances are quantified

1.5 Significance of study

SLP procedures are applied in this project to improve MFFLP using computer simulation. The greatest benefits to be expected of this study for the improvement processes are maximizing closeness rating and minimizing total travel time and distance. SLP uses a graphical representation and makes up a proximity matrix which depicts the closeness of each facility. Flowcharts can also be used to show quantitative relationships. By simulation, the movement and interaction of system component in departments could be estimated. It is able of aiding in the design of the most difficult automated materials handling system and also helps the user to estimate alternative solutions and to check the flexibility of a design (Eneyo and Pannirselvam, 1998).
1.6 Organization of thesis

Chapter 1 begins with an indication of Facilities Layout Planning explanations and its principles. The Objectives and Scopes of the study are defined. Background of problem and significance of finding are described at this chapter.

In chapter 2, some definitions, principles, and approaches of single FLP and MFFLP, heuristic procedures and simulation are demonstrated. Some previous studies which apply different types of solution methods and simulation on single FLP and MFFLP are reviewed in this chapter.

Chapter 3 provides the methodology which has been used to show the procedures of this research including types of data to be collected, tools and techniques to improve the layout and performance measures.

In chapter 4, the identification of problems that exist in current layout is described. The process flow for each product will be observed and documented. The distances travelled by the workers are calculated. Tools such as cross-over chart, From-To-Charts are used to illustrate the closeness importance between each department.

In Chapter 5, SLP will apply for the generation of layout alternatives. SLP is used in this case study as it is a procedural approach which incorporates both qualitative and quantitative data. Three alternatives layouts will be depicted to improve the facilities layout of the company.

Chapter 6 will apply the ARENA software to make the model from current layout and proposed improvement layouts. The types of data distribution will be
justified. The model will be validated and verified. The results will be analyzed and compared with the current layout. Finally the results of each alternative layout are compared to choose the one with the most significant improvement to the company.

1.7 Conclusion

In the beginning of this chapter, an overview of the MFFLP and the importance of facility layout as the main principle for this project are written. The objectives and scopes of study are described. It is indicated that the use of ARENA may improve the performance of company by minimizing its travelling time and distance. At the end of this chapter, the overall structure of the thesis is mentioned. Subsequently, the literature review of improving MFFLP by SLP and simulation will be discussed in the following chapter to further enhance the reader’s understanding.
REFERENCE

