DEVELOPMENT OF DEMAND FORECASTING MODEL FOR NEW PRODUCT

NORATIKAH BINTI ABU

UNIVERSITI TEKNOLOGI MALAYSIA
DEVELOPMENT OF DEMAND FORECASTING MODEL FOR NEW PRODUCT

NORATIKAH BINTI ABU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2016
To my beloved mother Maziah binti Ab Rahman
 My late father Abu bin Abdullah
 Along, Ngah, Nodi, Ayu, Adik
 My supportive supervisor
 Lecturers and friends
ACKNOWLEDGEMENT

First and foremost, I am very grateful to Allah The Almighty for giving me the strength to finish this research. I wish to acknowledge the extraordinary help in variety of ways I received from my supervisor, Prof. Dr. Zuhaimy Ismail for his guidance, comments and encouragement. I am really appreciating his support.

I would like to extend my most sincere gratitude to my family especially to my beloved mother, Maziah binti Ab Rahman for her support, encouragement and precise advice. Not forgotten to all my siblings that help me a lot.

Besides, I would like to thank Malaysian Ministry of Higher Education for the financial support through MyPhD Scholarship and Universiti Teknologi Malaysia for their financial allowance through Zamalah Scholarship.

Last but not least, I owe special thanks to all my teachers and lecturers who have taught me lots of knowledge. I am also grateful to all my friends wherever they are. Thanks for all your support and understanding.
ABSTRACT

Forecasting new product sales or service is a critical process in marketing strategies and product performance for an organisation. There are several methods to forecast new product sales or service and the common method used in industry nowadays is Bass Diffusion Model. Since the development of the Bass Diffusion Model in 1969, innovation of new diffusion theory has sparked considerable research among marketing science scholars, operational researchers and mathematicians. This research uses basic Bass Diffusion Model and the model is modified to analyse and forecast the vehicle demand in Malaysia. The objective of the proposed model is to represent the level of spread for the demands of new cars in the society in terms of a simple mathematical function. Since the amounts of available data are limited, a modified Bass Diffusion Model is developed to forecast the demand of new products. The selections of analogous product, parameter estimation method and different value potential market are discussed. A procedure of the proposed diffusion model is presented and the parameters of the model are estimated. The results obtained by applying the proposed model and numerical calculation show that the modified Bass Diffusion Model is robust and effective to forecast the demand of new product sales. This research concludes that the proposed modified Bass Diffusion Model has significantly contributed to forecast the level of spread for new product.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Background of the Study 1
1.3 Problem Statement 4
1.4 Objective of the Study 4
1.5 Scope of the Study 5
 1.5.1 Scope of the Data 5
 1.5.2 Scope of the Model 5
1.6 Expected contribution of the Study 5
1.7 Organization of the Thesis 7
LITERATURE REVIEW

2.1 Introduction 9
2.2 Demand Forecasting 10
2.3 New Product Demand Forecasting 13
2.4 Bass Diffusion Model 14
2.5 Bass Diffusion Model with Decision Variables 21
2.6 Combining Bass Diffusion Model 22
2.7 Grey Forecasting Model 24
2.8 Conclusions 29

RESEARCH METHODOLOGY

3.1 Introduction 30
3.2 Research Framework 30
3.3 Bass Diffusion Model 32
3.4 Mathematical Derivation of Bass Diffusion Model 32
3.5 Parameter Estimation 38
 3.5.1 Ordinary Least Square Estimation 39
 3.5.2 Genetic Algorithm 40
 3.5.3 Forecasting by Analogy 42
3.6 Procedures 42
 3.6.1 New Product Identification 43
 3.6.2 Data Exploration 44
 3.6.3 Parameter Estimation 44
 3.6.4 Forecasting 44
3.7 Example of Calculations by using Bass Diffusion Model 45
3.8 Grey Forecasting Model 48
 3.8.1 Procedures of Grey Forecasting Model 50
3.8.2 Derivation of Modified Bass Diffusion Model with Grey Theory 55

3.8.3 Procedures of Modified Bass Diffusion Model with Grey Theory 56

3.9 Forecast Evaluation 61

3.9.1 Mean absolute percentage error 61

3.10 Conclusions 62

4 PARAMETER ESTIMATION IN BASS DIFFUSION MODEL 63

4.1 Introduction 63

4.2 Data Type and Case Studies Data 63

4.3 Parameter Estimation for

Limited Data case 65

4.3.1 OLS Estimation for Persona 65

4.3.2 OLS Estimation for Myvi 66

4.3.3 GA Estimation for Persona 67

4.3.4 GA Estimation for Myvi 68

4.3.5 Comparison of Estimation Methods 69

4.3.5.1 Comparison Estimation Method for Persona 69

4.3.5.2 Comparison Estimation Method for Myvi 70

4.4 Parameter Estimation for

Unavailable Data case 70

4.4.1 Parameter Estimation using OLS 71

4.4.2 Modeling Demand Forecast for

Inspira using OLS 75

4.4.3 Parameter Estimation using GA 76

4.4.4 Modeling Demand Forecasting for

Inspira using GA 77

4.4.5 Comparison of Methods 77
5 MODELING DIFFUSION OF NEW VEHICLE IN MALAYSIA

5.1 Introduction 81
5.2 BDM for Persona with Limited Data 82
5.3 BDM for Perodua with Limited Data 84
5.4 Comparison of BDM Application for Limited Data 87
5.5 Market Potential for Limited Data Case 88
5.6 Market Potential for Unavailable Data Case - Inspira 91
5.7 Modeling Forecasting Demand for Inspira 92
5.8 Conclusions 94

6 MODIFIED BASS DIFFUSION MODEL WITH GREY THEORY

6.1 Introduction 96
6.2 Modified BDM for Limited Data Case 96
 6.2.1 Modified BDM for Persona 97
 6.2.2 Modified BDM for Myvi 100
 6.2.3 Comparison Methods for Limited Data case 102
 6.2.4 Comparison for Limited Data Case 103
 6.2.5 Market Potential for Limited Data Case 105
 6.2.6 Modeling Forecasting of Persona Using Modified BDM 107
6.3 Modified BDM for Unavailable Data Case 111
6.3.1 Comparison for Unavailable Data Case 114
6.3.2 Market Potential for Unavailable Data Case 116
6.3.3 Modeling Forecasting of Inspira Using Modified BDM 118
6.4 Conclusion 120

7 CONCLUSION 122

7.1 Introduction 122
7.2 Summary of Research 122
 7.2.1 Conclusion for BDM 123
 7.2.1.1 Conclusion for Limited Data Case 123
 7.2.1.2 Conclusion for Unavailable Data Case 124
 7.2.2 Conclusion for Modified BDM 125
 7.2.2.1 Conclusion for Limited Data Case 125
 7.2.2.2 Conclusion for Unavailable Data Case 126
7.3 Suggestions for Future Researches 127

REFERENCES 129
Appendices A – C 137-148
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The uses of Bass diffusion model</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>The uses of Grey Forecasting models</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Forecasting results of mobile phones subscribers in China</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of parameter estimation on Persona by OLS</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Forecasting results of Persona using OLS</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of parameter estimation on Myvi using OLS</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Forecasting results of Myvi using OLS</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Estimation result for Persona using GA</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Forecasting results of Persona using GA</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>Estimation result for Myvi using GA</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Forecasting results of Myvi using GA</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of estimation method for Persona</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of estimation method for Myvi</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Results of Parameter Estimation using OLS</td>
<td>72</td>
</tr>
<tr>
<td>4.12</td>
<td>Results of forecasting Inspira from OLS</td>
<td>77</td>
</tr>
<tr>
<td>4.13</td>
<td>Results of Parameter Estimation using GA</td>
<td>78</td>
</tr>
<tr>
<td>4.14</td>
<td>Forecasting results of Inspira from GA</td>
<td>79</td>
</tr>
<tr>
<td>4.15</td>
<td>Comparison of estimation method for Inspira</td>
<td>80</td>
</tr>
</tbody>
</table>
5.1 Actual and forecasted sales data for Persona with
 \(m = 219803 \)
5.2 Actual and forecasted sales data for Myvi
5.3 Comparison of MAPE for limited data case
5.4 Comparison of MAPE for different market potential value
5.5 Actual and forecasted sales data for Persona with
 \(m = 387192 \)
5.6 Forecasting results of Inspira with different market potential
5.7 Actual and forecasted sales data for Inspira
6.1 Results of parameter estimation on Persona
6.2 Actual and forecasted data of Persona
6.3 Results of parameter estimation on Myvi
6.4 Actual and forecasted values for Myvi
6.5 MAPE for limited data case
6.6 MAPE for Persona
6.7 Comparison MAPE Persona using different market potential
6.8 Actual and forecasted data of Persona using modified BDM
6.9 Results of parameter estimation using modified BDM
6.10 Results of forecasting Inspira from three analogous products
6.11 MAPE for Inspira
6.12 Comparison MAPE Inspira using different market potential
6.13 Actual and forecasted data of Inspira using modified BDM
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Literature review roadmap</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Conceptual structure of Bass Diffusion Model</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Bass diffusion model procedure</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Current mobile phone subscribers in China</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Cumulative mobile phone subscribers in China</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Actual and fitted cumulative numbers of mobile phone subscribers in China</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>Grey forecasting model procedures</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Modified Grey forecasting model procedures</td>
<td>60</td>
</tr>
<tr>
<td>4.1a</td>
<td>Sales of Persona from 2007 to 2011</td>
<td>64</td>
</tr>
<tr>
<td>4.1b</td>
<td>Sales of Myvi from 2005 to 2012</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Forecasted Current Sales of Iswara</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Forecasted Cumulative sales of Iswara</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Actual and Forecasted Current Sales of Wira aeroback</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Actual and Forecasted Cumulative Sales of Wira aeroback</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Current sales of Persona using BDM</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Cumulative sales of Persona</td>
<td>85</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.3</td>
<td>Current sales of Myvi</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Cumulative sales of Myvi</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Current sales of Persona using BDM</td>
<td>91</td>
</tr>
<tr>
<td>5.6</td>
<td>Cumulative sales of Persona using BDM</td>
<td>92</td>
</tr>
<tr>
<td>5.7</td>
<td>Forecasting current sales of Inspira</td>
<td>94</td>
</tr>
<tr>
<td>5.8</td>
<td>Forecasting cumulative sales of Inspira</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Current sales of Persona using modified BDM</td>
<td>99</td>
</tr>
<tr>
<td>6.2</td>
<td>Cumulative sales of Persona using modified BDM</td>
<td>100</td>
</tr>
<tr>
<td>6.3</td>
<td>Current sales of Myvi using modified BDM</td>
<td>102</td>
</tr>
<tr>
<td>6.4</td>
<td>Cumulative sales of Myvi using modified BDM</td>
<td>103</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison current sale of Persona</td>
<td>105</td>
</tr>
<tr>
<td>6.6</td>
<td>Comparison cumulative sale of Persona</td>
<td>106</td>
</tr>
<tr>
<td>6.7</td>
<td>Current sales of Persona using different market potential</td>
<td>107</td>
</tr>
<tr>
<td>6.8</td>
<td>Cumulative sales of Persona using different market</td>
<td>108</td>
</tr>
<tr>
<td>6.9</td>
<td>Current sales of Persona using modified BDM</td>
<td>110</td>
</tr>
<tr>
<td>6.10</td>
<td>Cumulative sales of Persona using modified BDM</td>
<td>111</td>
</tr>
<tr>
<td>6.11</td>
<td>Current sales of Inspira using three analogous products</td>
<td>114</td>
</tr>
<tr>
<td>6.12</td>
<td>Cumulative sales of Inspira using three analogous products</td>
<td>114</td>
</tr>
<tr>
<td>6.13</td>
<td>Current sales of Inspira using basic BDM and modified BDM</td>
<td>116</td>
</tr>
<tr>
<td>6.14</td>
<td>Cumulative sales of Inspira using basic BDM and modified BDM</td>
<td>116</td>
</tr>
<tr>
<td>6.15</td>
<td>Current sales of Inspira using different market potential</td>
<td>118</td>
</tr>
<tr>
<td>6.16</td>
<td>Cumulative sales of Inspira using different</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.17</td>
<td>Current sales of Inspira using modified BDM</td>
<td>120</td>
</tr>
<tr>
<td>6.18</td>
<td>Cumulative sales of Inspira using modified BDM</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(m \) - Potential market
\(p \) - Coefficient of innovation
\(q \) - Coefficient of imitation
\(F(t) \) - Cumulative distribution function
\(f(t) \) - Probability density function
\(S(t) \) - Sales at time \(t \)
\(Y(t) \) - Cumulative number of adopters
\(S(t)^* \) - Size of peak sales
\(t^* \) - Time of peak sales
\(\frac{dx}{dt} \) - Derivative of the unknown function \(x \)
\(x \) - Background value of \(\frac{dx}{dt} \)
\(x^{(0)}_{(k)} \) - Actual value
\(x^{(0)}_{(r)} \) - Predicted value
\(x^{(l)}_{(k)} \) - Accumulated generating operator (AGO)

BDM - Bass Diffusion Model
GA - Genetic Algorithm
OLS - Ordinary Least Square
MAPE - Mean Absolute Percentage Error
MMAPE - Modified Mean Absolute Percentage Error
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publication / Presentations in Journals / Conferences</td>
<td>137</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Coding</td>
<td>139</td>
</tr>
<tr>
<td>C</td>
<td>New Product Forecasting System</td>
<td>144</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an introduction to the research. It begins with background of the study, the problem statements, objectives and scope of the study. This chapter also includes expected contributions of the study. Finally the organization of the thesis ends this chapter.

1.2 Background of Study

Forecasting is the science of predicting future outcomes. In particular, it also can be defined as process of predicting the values of a certain quantity over a certain time horizon based on past trends and a number of relevant factors. Forecasting is a common activity in various organizations and plays an important role in our daily life. Forecasting can be seen applied to areas such as weather, earthquakes, stock market, and economics. One of the main issues in forecasting is its accuracy. It is impossible to make forecast with zero error, but we can do our best to minimize the error. Nowadays, with fierce competition forecasting was played a main role in many economic and managerial fields. Forecasting methods are either qualitative or quantitative. Qualitative forecasting is one which relies mainly on judgments and opinions which may or may not be based on numerical data. On the other hand,
quantitative forecasting uses mathematical or simulation models based on historical data or relationships between variables. Frequently a qualitative forecast is made based on intuition or gut-feeling, then modified using qualitative data for more precise result.

Demand forecasting is an iterative process and a critical part of the supply chain that links supply to demand so that service providers have products available when and where they need them. It is essential for a firm to enable it to produce the required quantities at the right time and plan well in advance taking into view various factors of productions. Moreover, it is often critical in better planning for labour and allocation of national resources.

New product demand forecasting is a process that determines a reasonable estimate of sales attainable before the product is introduced under a given set of conditions. New product can mean different things to different people. Crawford and Benedetto (2008) stated that new product can mean six different things. They are new-to-the world products, new-to-the firm products, additions to existing product lines, improvements and revisions to existing products, repositioning and cost reductions. The need for accurate forecast new product is evident to an organization. However, achieving an accurate forecast is not easy in spite of the availability of many forecasting techniques. In this research, we focus on new product demand forecasting which receives less attention among the researchers.

Kahn (2006) stated that new product receive less attentions especially when counting number of publications on each respective topic. Today, there is a range of statistical tools available to enable managers to carry out forecasting using historical data. When sales pattern are relatively stable, more data should lead to more accurate forecasting. However, when it comes to a new product, forecasting becomes more difficult as a company has no available historical data directly relating to the product. Various studies have proposed different models to forecast new product sales. There is little systematic understanding and few guidelines about which model works best and there is no clear evidence of which of them would be best to recommend for accurate forecasting.
With growing economy, market competition becomes stronger. Facing such challenges, companies try to decrease their overall cost while attempting to maintain high customer satisfactions. One of the effective methods is to make forecast for the future demand in advance to predict sales which is used for successive operation planning and management. Accurate and effective demand forecasting can produce precise prediction of future sales which can significantly reduce management cost, inventory cost and transportation cost. When there is historical data, we are able to identify the number of demand each year and can control the production. When dealing with new products, there are some problems that need to be considered. First, new product forecasting has low credibility and low accuracy because there is no historical data to base on. Rather many conclusions are based on assumptions only. Second, the time to forecast new product is longer because it requires more manual attention. Finally, researchers face the problem of data uncertainty and data scarcity when it comes to new product. This research deals with all these problems of forecasting vehicle demand and to determine which method is the most appropriate for forecasting new product.

This study focuses on demand for new car models in Malaysia. It is hopes that the results will become real contribution for automotive industry to know their performance on new product. In Malaysia, there are two automobile industry organizations; Perusahaan Otomobil Nasional Berhad (PROTON) and Perusahaan Otomobil Kedua Sendirian Berhad (PERODUA). Proton was incorporated in May 7, 1983 and launched the first Malaysian car, the Proton Saga, commercially on July 9, 1985. Since 1985, Proton still has been producing new models like Saga, Waja, Perdana and many more. Perodua was established later after the success of Proton and become second largest automobile manufacturer. In 1992 Perodua was established and launched their first car, the Perodua Kancil in August 1994.

During the last few decades, while many people had studied forecasting, new product demand forecasting has received less attention among the researchers. In view of this, this research will study the new product demand forecasting using specific method and will experiment with some of the applications for forecasting for selected new products in Malaysia.
1.3 Problem Statement

Proton and Perodua are the national car makers in Malaysia, which see demands of their various models increasing every year. Because of high demands, the companies produce new models and add features to enhance their existing products to gain consumer satisfaction. The problem is that they do not have specific time frame when they are supposed to produce new product or make modifications. Currently they just randomly assume that they will need to produce new car model or make modifications to the existing models five years after the launch of a new car. This study will investigate and develop a model to help Proton and Perodua in their decision of new products. The research questions include;

1. How to determine the maximum sales of the new product?
2. How to determine the time of peak sales of the new product?

1.4 Objectives of the Study

The main objectives of this research are to;

b. Develop a new Modified Bass Diffusion (MBD) model for forecasting new product demand based on selected industry.
c. Use a combined MBD and Grey model for improving forecast accuracy in forecasting new product demand.
d. Develop an experiment using MBD model for Proton and Perodua cars.
e. Develop a computerized system to perform MBDM forecasting or Proton and Perodua cars.
1.5 Scope of the Study

The scope of this study will focus on two subtopics; the data, in which types of data to be used will be discussed; and the forecasting models, in which the types of models used and presented, will be discussed.

1.5.1 Scope of the Data

The data used in this study are Proton and Perodua annual sales data for all models from January 2000 to December 2011. The data are obtained from Proton, Perodua and Malaysian Automotive Association (MAA).

1.5.2 Scope of the Model

In this thesis, forecasting method, Bass Diffusion Model and Grey Forecasting Model are used for forecasting new product demand. These will be applied to investigate the forecasting of new product demands for vehicles in Malaysia.

1.6 Expected Contribution of the Study

Although many researches had been done in investigating the forecasting of demands for new products, there are as yet no methods which are able to determine it for the car widely. This study attempts to find the best model for forecasting new car products in Malaysia. The expected contributions of this study are five.

First, the guidelines and procedures for using Bass Diffusion Model as the method in new product forecasting are presented. These guidelines will be useful for
the purpose of this current research as well as for those conducting a similar study. It is needed since ways and procedures on how to make forecast for new product cannot be found in detail in any literature. These guidelines also present the method and ways to determine the peak value of sales along with its timing. The details of it can be found in Chapters 3 and 4.

Second, this study presents how a forecast of a new product with no historical data may be determined by using data of analogous products. From the entire available similar products in the company, only one product will be used as an analogy to the new product. Chapter 4 shows the details on forecasting new product with no historical data and the expected output can make it easier for company to choose which product is the best as an analogy to the new product.

Third, this study attempts to develop a new model for forecasting new product with limited data and no historical data. A modified Bass Diffusion Model with Grey theory was proposed and applied to the Proton and Perodua data. This is due to the poor accuracy of Basic BDM when used on such data. The theoretical and experimental framework of the modified Bass Diffusion Model can be found in Chapters 3 and 6.

Fourth, the best model for forecasting new product is expected from this study as this study compares basic Bass Diffusion Model with the modified BDM using Grey theory. From the experiment and application to the real data from Proton and Perodua, this study shows that the modified Bass Diffusion Model with Grey theory give higher accuracy than the basic BDM. The details of it can be found in Chapter 6.

The last contribution from this study is the development of a system for forecasting new product using modified Bass Diffusion Model. This program needs to be developed as it is not available in any of the current statistical packages. This program is useful not only for the Proton data only, but can also be applied to any data with the minimum of four data. Using this program, user can choose either to
use parameters manually or automatically determine by the system. This program is useful and friendly use and they do not have to know the equation behind the program. The development of this system can be found in Appendix C.

1.7 Organization of the Thesis

This thesis consists of seven chapters, followed by reference and appendices. Chapter 1 begins with an introduction to the whole thesis, background of study, problem statement, objectives of study, case study, scope and expected contributions from the study, and lastly thesis organization.

Chapter 2 presents the literature review of this research. Various past works by different researchers are referred to and described. This review includes the details of the demand and new product forecasting, Bass Diffusion Model with its applications and some extensions, and forecasting using Grey model.

Chapter 3 discusses the research methodology used in this thesis. The chapter starts with an introduction of Bass Diffusion Model with its theoretical and empirical studies. Then the details of Grey model forecasting are discussed. The techniques of combining BDM with Grey model are also presented and forecast measurement end this chapter.

Chapter 4 focuses on results obtained from the experiment involving Bass Diffusion Model (BDM) when applied to vehicle sales data of Proton and Perodua. The aim of this chapter is to explore the development of BDM in forecasting new product. The chapter begins with exploring estimation methods such as ordinary least square (OLS) and genetic algorithm (GA), from which one method will be used for forecasting using BDM with limited and unavailable data. Discussions in this chapter end with a summary.
Chapter 5 discusses the results for the limited data case of the two automobile companies, Perusahaan Otomobil Nasional Sendirian Berhad (Proton) and Perusahaan Otomobil Kedua Sendirian Berhad (Perodua). Based on the results from limited data case, we proceed to the unavailable historical data case for Proton. An experiment was conducted to test the effect of different market potential on forecasting new product demand. The discussion in this chapter closes with a summary.

Chapter 6 describes the results of a modified BDM with Grey theory in forecasting demand for new vehicles in Malaysia. It begins with an introduction followed by the results of modified BDM model in limited and unavailable data case. Next, it discusses the effects of different market potential values on forecasting results of new vehicle. It closes with a suggestion of the best model for forecasting new product.

Chapter 7 presents the summary and conclusion of this research. Besides these, some suggestions for future research regarding extension of the combined model is also given in this chapter.
REFERENCES

