WEIGHTAGE FACTORS FOR MALAYSIA GREEN HIGHWAY ASSESSMENT

MOHD AFFENDI BIN ISMAIL

A thesis submitted in partial fulfilment of the Requirements for the award of the degree of Master of Engineering (Construction)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

NOVEMBER 2013
To my beloved; Ismail Mohamed, Zainab Abd. Rahman, Rozana Zakaria and Assoc. Prof. Ir. Dr Rosli Mohamad Zin, and to all my research partners.

May God bless all of us.
ACKNOWLEDGEMENTS

Foremost, I would like to express my utmost gratitude to my supervisor Dr Rozana Zakaria for providing incessant support, patience, motivation and enthusiasm as well as for sharing immense knowledge. Her guidance helped me throughout conducting the research and writing of this thesis. I could not have a better advisor and mentor for my postgraduate study. My appreciation goes to my co-supervisor, Assoc. Prof. Ir. Dr Rosli Mohamad Zin, for his great effort in helping me especially in the absence of my supervisor.

I would like to thank our faculty members especially Prof Dr. Muhd Zaimi Abd, Majid as the project leader, the project coordinator Mr Hasrul Haidar Ishak, Malaysia Highway Authority (LLM) and the rest of Malaysia green highway index Flagship research group for their encouragement, funding, insightful comments, and hard questions. I thank my fellow research mates for the stimulating discussions, for the sleepless nights that we were working together to meet the deadlines and for all the enjoyable moments that we shared in the last few months.

Last but not the least, I would like to thank my family; my parents, for giving birth to me in the first place and supporting me spiritually throughout my life.
A green highway is an effort to achieve sustainable approach for sustainable infrastructure. Key requirements for realizing green highway goals comprise of the fulfilment of Green Highway Index (GHI). GHI development and establishment of its criteria provide alternative and appropriate options for highway assessments. The weightage factors help to set the priorities of green highway elements according to their numbering value. The aim of this research is to establish weightage factors for the green highway criteria to be used in the Malaysia Green Highway assessment. An extensive literature review was undertaken on five major criteria identified in the Malaysia green highways assessment which are Sustainable Design and Construction Activities (SDCA), Energy Efficiency (EE), Material and Technology (MT), Environmental and Water Management (EWM), and Social and Safety (SS). In overall, 133 variables were selected from five main criteria to run the weightage Factor Analysis of Malaysia Green Highway Assessment. The elements were confirmed by 140 respondents, participating in questionnaire surveys, and were analysed using SPSS 18.0. A pilot analysis was undertaken by the reductions of factors to select a number that was easy to analyse but explained most of the variance using Factor Analysis. Factor score was calculated for each variable by multiplying the mean value of criterion with respective Factor Loading. The calculation of weightage factor was done by determining the ratio of percentage of population over the percentage of sample in a main criterion. Criterion with higher weightage was considered more important than another. Out of 133 criteria, 7 criteria were chosen for SDCA: 4 for EWM, another 4 for MT, 6 for EE and 7 for SS. The results show that all of these five main criteria served as essential basis for the development of Malaysia Green Highway Assessment.
ABSTRAK

Lebuhraya hijau adalah suatu pendekatan lestari ke arah mencapai prasarana yang mampan. Kunci kehendak dalam mencapai sasaran lebuhraya hijau merangkumi kepatuhan terhadap Indeks Lebuhraya Hijau (GHI). Pembangunan GHI dan kewujudan kriterianya menyediakan alternatif dan pilihan yang bersesuaian terhadap penilaian lebuhraya hijau. Faktor pemberat membantu menetapkan keutamaan elemen lebu raya hijau berdasarkan nilai penomboran mereka. Matlamat kajian ini adalah untuk menghasilkan faktor pemberat kepada kriteria yang mana akan digunakan dalam cadangan Penilaian Lebuhraya Hijau Malaysia. Sebuah kajian literatur telah dijalankan secara menyeluruh terhadap lima kriteria utama yang dikenalpasti dalam cadangan Penilaian Lebuhraya Hijau Malaysia iaitu Rekabentuk Lestari dan Aktiviti Pembinaan (SDCA), Kecekapan Tenaga (EE), Bahan dan Teknologi (MT), Pengurusan Air dan Alam Sekitar (EWM), serta Sosial dan Keselamatan (SS). Secara keseluruhan, 133 pembolehubah telah dipilih daripada lima kumpulan utama untuk menjalani Analisis Faktor pemberat bagi Penilaian Lebuhraya Hijau Malaysia. Elemen-elemen ini ditentusahkan oleh 140 responden, yang menyertai kajian soal selidik dan dianalisis menggunakan perisian SPSS 18.0. Satu analisis awalan dijalankan dengan pengurangan faktor untuk memilih bilangan faktor yang senang dianalisis tetapi menerangkan keseluruhan varian menggunakan kaedah Analisis Faktor. Skor Faktor dikira untuk setiap pembolehubah dengan mendarabkan Nilai Purata dengan Beban Faktor masing-masing. Pengiraan Faktor Pemberat dilakukan dengan menentukan nisbah peratusan populasi terhadap peratusan sampel dalam satu kriteria utama. Daripada 133 kriteria, 7 kriteria dipilih untuk SDCA, 4 kriteria bagi EWM, 4 kriteria untuk MT, 6 kriteria untuk EE dan 7 kriteria bagi SS. Keputusan menunjukkan kesemua lima kriteria utama menyediakan asas yang diperlukan kepada pembangunan penilaian lebuhraya hijau Malaysia.
TABLE OF CONTENTS

CHAPTER
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi
LIST OF TERMINALOGIES xvii

1 BACKGROUND AND INTRODUCTION 1

1.0 Background of the Research 1
1.1 Problem Statement 2
1.2 Aim and Objectives 3
1.3 Scope of the Study 4
1.4 Brief Research Methodology 5
1.5 Significance of the Research 5
1.6 Outline of the Thesis 5
2 LITERATURE REVIEW

2.0 Introduction 6
2.1 History of Green Highway 7
2.2 Highway, Sustainability and Green Ideas 7
2.3 Conceptual and Definitions of Green Highway Assessment 8
2.4 The Proposed Malaysia Green Highway Assessment Criteria 12
 2.4.1 Sustainable Design and Construction Activities 12
 2.4.2 Material and Technology 13
 2.4.3 Energy Efficiency 14
 2.4.4 Environmental and Water Management 15
 2.4.5 Social and Safety 17
2.5 Statistical Approach on Weightage Analysis 18
 2.5.1 The Conceptual of Research Survey and Data Set 18
 2.5.2 Optional Statistical Method 21
2.6 Summary 25

3 RESEARCH METHODOLOGY

3.0 Introduction 26
3.1 Research Design and Procedure 26
 3.1.1 Phase 1 – Green Highway Review 27
 3.1.2 Phase 2 – Expert Discussion 27
 3.1.3 Phase 3 – Questionnaire Survey 28
 3.1.4 Phase 4 – Factor Score Calculation 30
 3.1.5 Phase 5 – Weightage Factor Calculation 30
3.2 Instrumentation 30
3.3 Operational Framework 31
3.4 Data Analysis Procedures 32
 3.4.1 Data Types Analysis 32
 3.4.2 Missing Value Analysis using SPSS 36
 3.4.3 Mean Value Analysis using SPSS 38
 3.4.4 Factor Analysis using SPSS 38
3.4.4.1 Fundamental of Factor Analysis 39
3.4.4.2 Steps in Factor Analysis Operation 42
3.5 Weightage Factor for the Malaysia Green Highway Assessment 51
 3.5.1 Calculation of Factor Score 51
 3.5.2 Calculation of Weightage Factor 52
 3.5.2.1 Scale weighting 52
 3.5.2.2 Proportional weighting 52
 3.5.2.3 Mixed or integrated weighting 53
 3.5.3 Applying Weightage Factor 54
 3.5.3.1 Applying Weightage Factor Analysis for
 Elements Description (Variables) 54
 3.5.3.2 Applying Weightage Factor Analysis for
 Sub Criteria 54
 3.5.3.3 Applying Weightage Factor Analysis for Criteria 54
 3.5.3.4 Applying Weightage Factor Analysis for Main
 Criteria 54
 3.6 Research Schedule 56
 3.7 Summary 59

4 DATA ANALYSIS AND RESULTS 60

4.0 Introduction 60
4.1 The Analysis 60
 4.1.1 Part I: Demographic of Respondents 61
 4.1.1.1 Type of Company 61
 4.1.1.2 Position in Company 62
 4.1.1.3 Education Level 64
 4.1.1.4 Working Experience 65
 4.1.1.5 Involvement in Highway Development 66
 4.1.1.6 Level of Awareness on Green Development 67
 4.1.1.7 Involvement in Green Development 68
4.1.2 Part II: Criteria and Elements of Malaysia Green Highway Assessment

4.1.2.1 Missing Value Analysis using SPSS 69
4.1.2.2 Mean Value Analysis using SPSS 71
4.1.2.3 Factor Analysis using SPSS 92
4.1.2.4 Weightage Factor for Malaysia Green Highway Assessment 102

4.2 Summary 117

5 CONCLUSION AND RECOMMENDATIONS 122

5.0 Introduction 122
5.1 Summary of Findings 123
5.2 Problems Faced During the Study 128
5.3 Suggestions for Future Works 128
5.4 Conclusion 129

REFERENCES 130

LIST OF APPENDICES 141
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Variety Definitions of Green Highway</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Simplified Comparison of Various Green Highway Assessment/Model</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Simplified Criteria of Various Green Highway Assessment</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Proposed Elements of Malaysia Green Highway</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Comparison between Principle Component Analysis and Factor Analysis</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Comparison of Various Statistical Decision Making Methods</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Template for Questionnaire Design</td>
<td>27</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Differences between Parametric and Non-Parametric Statistic</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Test of Parametric and Nonparametric Statistics</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Selecting a Statistical Test in Details</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Factors Set for Social and Safety</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Assumptions in Factor Analysis Model</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Applications of Factor Analysis</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Critical Chi-Square Values</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Research Schedule for Two Years Project Period</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Description of Research Schedule</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Respondent’s Type of Company</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Respondent's Position in Company</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Respondent's Education Level</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Respondent's Work Experience</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Involvement of Respondents in Highway Development</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Level of Awareness of Respondents on Green Development</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Involvement of Respondents in Green Development</td>
<td>67</td>
</tr>
</tbody>
</table>
Table 4.8 Original Raw Data of Material and Technology 69
Table 4.9 Replaced Missing Values 69
Table 4.10 Final Mean of Material and Technology 69
Table 4.11 Mean of Sustainable Design and Construction Activities 70
Table 4.12 Template for Sustainable Design and Construction Activities 72
Table 4.13 Mean of Material and Technology 73
Table 4.14 Template for Material and Technology 75
Table 4.15 Mean of Environmental and Water Management 77
Table 4.16 Template for Environmental and Water Management 80
Table 4.17 Mean of Energy Efficiency 82
Table 4.18 Template for Energy Efficiency 85
Table 4.19 Mean of Social and Safety 87
Table 4.20 Template for Social and Safety 89
Table 4.21 Final Variables for Each Main criteria after Mean Value Analysis 90
Table 4.22 Statistical test of Chi-Square with Critical Chi-Square Values 92
Table 4.23 Kendal’s W Test Statistic 95
Table 4.24 Kaiser-Meyer-Olkin and Bartlett's Test 95
Table 4.25 Cronbach’s Alpha Test 95
Table 4.26 Total Variance Explained 96
Table 4.27 Pattern Matrix Tabulation 99
Table 4.28 Legend for Pattern Matrix Tabulation 101
Table 4.29 Final Factors and Variables for Every Main criteria 102
Table 4.30 Factor Score for Element’s Description, Sub Criteria and Criteria 103
Table 4.31 Factor Score of Malaysia Green Highway Assessment 104
Table 4.32 Comparison of Percentage of Categories from Major Rating System 105
Table 4.33 Weightage Factor for Elements Description 107
Table 4.34 Weightage Factor for Sub-Criteria 109
Table 4.35 Weightage Factor for Criteria 111
Table 4.36 Weightage Factor for Main criteria 113
Table 4.37 Tabulation of Weightage Factors from Highest to Lowest 115
Table 4.38 Weightage Factor for All Main Criteria 118
Table 5.1 Simplified Major Elements of Green Highway 125
<table>
<thead>
<tr>
<th>Table 5.2</th>
<th>Criteria & Sub-Criteria of Malaysia Green Highway Assessment</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.3</td>
<td>Tabulation of Weightage Factors from Highest to Lowest</td>
<td>128</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Breakdown of Roads into State Roads and Federal Roads</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Various Green Highway Research of Interest</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Graphic of HDI versus Energy Consumption</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>CO₂ Emissions by Sector in Malaysia by 1999</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Average CO₂ Emissions per Kilometres from New Passenger Cars</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Operational Framework</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Determining the Type of Variables</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Missing Value Analysis Patterns</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Descriptive Missing Value Analyses</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Relations between F, X and e</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Variable Relationship Test</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Descriptive Analysis</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Reliability Analysis</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Scree Plot Test</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Respondent’s Type of Company</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Respondent's Position in Company</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Respondent's Education Level</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Respondent's Working Experience</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Involvements of Respondents in Highway Development</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Level of Awareness of Respondents on Green Development</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Involvements of Respondents in Green Development</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Mean and Average Index of Sustainable Design and Construction Activities</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Mean and Average Index of Material and Technology</td>
<td>74</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Mean and Average Index of Environmental & Water Management</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Mean and Average Index of Energy Efficiency</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Mean and Average Index of Social and Safety</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Scree Plot Test</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Factor Score of Malaysia Green Highway Assessment</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Comparison of Percentage of Categories of Major Rating System</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Main criteria Weightage and Percentage</td>
<td>118</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BTU</td>
<td>British Thermal Unit</td>
</tr>
<tr>
<td>DID</td>
<td>Department of Irrigation and Drainage</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>DWNP</td>
<td>Department of Wildlife and National Parks</td>
</tr>
<tr>
<td>EE</td>
<td>Energy Efficiency</td>
</tr>
<tr>
<td>EWM</td>
<td>Environmental and Water Management</td>
</tr>
<tr>
<td>GREENLITES</td>
<td>Green Leadership in Transportation Environmental Sustainability</td>
</tr>
<tr>
<td>GREENROADS</td>
<td>Greenroads Rating System</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>ID</td>
<td>identification of criteria within a main criteria</td>
</tr>
<tr>
<td>I-LAST</td>
<td>Illinois-Livable and Sustainable Transportation Rating System</td>
</tr>
<tr>
<td>ILH@M</td>
<td>Indeks Lebuhraya Hijau Malaysia</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>LLM</td>
<td>Malaysia Highway Authority</td>
</tr>
<tr>
<td>MASMA</td>
<td>Manual Saliran Mesra Alam Malaysia</td>
</tr>
<tr>
<td>MT</td>
<td>Material and Technology</td>
</tr>
<tr>
<td>MVA</td>
<td>Mean Value Analysis</td>
</tr>
<tr>
<td>NWSC</td>
<td>National Water Services Commission</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>PWD</td>
<td>Public Works Department</td>
</tr>
<tr>
<td>REAM</td>
<td>Road Engineering Association of Malaysia</td>
</tr>
<tr>
<td>SDCA</td>
<td>Sustainable Design and Construction Activities</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Science</td>
</tr>
<tr>
<td>SS</td>
<td>Social and Safety</td>
</tr>
<tr>
<td>TEP</td>
<td>Tons Equivalent Petroleum</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Assessment</td>
<td>a process of gather, analyse, interpret, using information</td>
</tr>
<tr>
<td>Criteria</td>
<td>standard/rule/test on which a judgment/decision can be based</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>special set of scalars associated with linear equations</td>
</tr>
<tr>
<td>Element Description</td>
<td>brief explanation of the sub criteria</td>
</tr>
<tr>
<td>Factors</td>
<td>group of variables within the same tendency</td>
</tr>
<tr>
<td>Factor Loading</td>
<td>correlation coefficients between the variables and factors</td>
</tr>
<tr>
<td>Factor Score</td>
<td>scoring to evaluates something according to numerical value</td>
</tr>
<tr>
<td>Main criteria</td>
<td>five main criteria of proposed Malaysia Green Highway Assessment (SDCA, EE, MT, EWM and SS)</td>
</tr>
<tr>
<td>Models</td>
<td>rating index/collaboration/framework/initiatives</td>
</tr>
<tr>
<td>Stratum</td>
<td>a subset (part) of the population which is being sampled</td>
</tr>
<tr>
<td>Sub Criteria</td>
<td>a subset of main criteria</td>
</tr>
<tr>
<td>Variables</td>
<td>element description used in factor analysis</td>
</tr>
<tr>
<td>Variance</td>
<td>a measure of how far a set of numbers is spread out</td>
</tr>
<tr>
<td>Weightage</td>
<td>value/importance of something compared with another thing</td>
</tr>
</tbody>
</table>
CHAPTER 1

BACKGROUND AND INTRODUCTION

1.0 Background of Research

A green highway is a roadway constructed in a way that integrates transportation functionality and ecology. An environmental approach is used throughout the planning, design, and the construction. Green highways have invaluable benefits to environment; A green highway will benefit transportation, the ecosystem, urban growth, public health and surrounding communities. Landfill usage is favourably reduced as construction involves recycled materials. In addition, by using cutting-edge technologies in design, critical habitats and ecosystems are protected from the encroachment of highway infrastructure. Furthermore, a green highway provides superior watershed-driven storm water management that prevents leaching of metal and toxins flow into the streams and rivers. Accomplishment of green highway infrastructure calls for focus on integrating transportation needs. This objective can be realized by considering ecological protection, by avoiding subsequent environmental destruction and excessive resource consumption as well as by incorporating sustainable development concepts into infrastructure projects. A green highway necessitates commitment from all parties involved, such as business concerns, drivers and the government as their involvement can ensure that the green concept is long lasting. Reducing the pollution and preserving the nature must be the aim of every green development.
To achieve a green highway, harmonization of highway needs with local ecological protection considerations needs to be focussed. Moreover the questions such as how to avoid subsequent environmental destruction and excessive resource consumption and how to incorporate sustainable development concepts into highway projects need to be answered. In this regard, development of the green highway assessment system is the key to promoting sustainability and green highway construction. Hence, this study will come out with several fundamental elements of green highway development within Malaysian context. These elements will ultimately provide an essential guidance for the establishment of Malaysia’s green highway framework model of assessment. Additionally, many parties in Malaysian highway industry will much benefit by incorporating green characteristics in managing and developing roads, pathways, expressways and other such concerns.

1.1 Problem Statement

The effects on local environment, economic and social along the pathway are significantly contributed by highway development. Present days have witnessed the raise in awareness and concern among government, concessions, and public on the importance of making the world a convivial place to live in, ensuring progressive growth as well as achieving sustainability. In addition to ideas of green highway, the world countersigned various efforts of assessments like the establishment of Greenroads® and GreenLITES®. Greenroads® is a rating system that distinguishes more sustainable, new, reconstructed and rehabilitated roads. Greenlites® is a self-certification program that distinguishes transportation projects and operations based on the extent to which they incorporate sustainable choices. However, these contemporary models and assessments of green highway performance has encountered several problems for instance, each single assessment is only valid to be used in a certain areas, as the criteria underlined in the model are restricted to particular areas only.
Practically, every single assessment model of green highway is different from the other. This is because each model is generally being designed and built based on local capacity in particular regions, encompassing local needs only. For instance, an assessment model for a region is sometimes not suitable to be applied to other areas. This problem might be contributed by different elements of weightage used in every single model.

The elements of current highway assessment are limited and not do vary in terms of practicability, as for example, if ‘Model A’ does not have assessment criteria for social and safety for ‘Highway B’, the models are not dependable and cannot be used, as the weightage factor is being affected. On the other hand, there is no standardization between models of assessment as they come out with their own interpretation. In order to adapt with this problem, Malaysia highway authority and other responsible parties will have to come up with some kind of new list of elements to be considered in developing the weightage of Malaysia green highway assessment elements. This can be accomplished by undertaking several studies involving in-depth analysis of several key phases, which is planning, designing, construction, operation and maintenance of highway development.

1.2 Aims and Objectives

The aim of this research is to establish green highway weightage factor of green highway criteria to be used in Malaysia Green Highway assessment. The study was carried out based on the following objectives:

i. to determine critical criteria and elements of green highway,
ii. to develop green highway weightage factor for green highway assessment, and
iii. to analyse the weightage factor for Malaysia green highway.
1.3 Scope of the Study

This research determines factors and elements to be used for Malaysia Green Highway assessment. Possible elements, criteria and sub criteria related to highway were gathered from various assessments, ratings, initiatives and collaborations. The statistical and mathematical models in the market were studied to calculate weightage factors. A pilot analysis was conducted through reductions of factors conduct using factor analysis method. To carry out the weightage factor analysis, 133 variables were selected. Factor score and weightage factors were calculated for each variable. Several parties from government and private sectors, including Malaysia Highway Authorities, highway concessionaires like PLUS and MTD, contractors, suppliers and others related personnel, were approached for comments, views, perceptions and suggestions towards the problems. The weightage factors for criteria, sub criteria and element descriptions were established for Malaysia green highway assessment model.

1.4 Brief Research Methodology

The research methods employed for this study included the review of literature including books, journals and information from Internet. Data were collected using questionnaire; the respondents were individuals who were involved with the highway construction. Several analyses were conducted to identify the elements, contributing most in the green highway, this would establish green highway weightage factor to be used in developing Malaysia green highway assessment model.
1.5 Significance of Research

Effective green highway infrastructures enable people to access vital services such as healthcare and education, to travel for employment, to transport and sell goods, to access social networks, and to make their voices heard in the political arena. Ultimately, a green highway will support the sustainable principles as it leads to improved social development, economic growth and friendly environment. Thus, providing a weightage factor of green highway criteria is a sustainable goal to achieve more reliable, comfortable and convenient highway assessment system.

1.6 Outline of the Thesis

This thesis consists of 5 Chapters. A brief summary of each is outlined as follows: Chapter 1 comprises of introductory section which develops the reason for the direction of this research. It is also states the research background, research problems, research objectives, brief discussion on methodology, research scope and significance of the research. Chapter 2 describes the key terms used in the research as well as summarises the current state of knowledge by examining relevant background literature. This chapter also comprises the literature review on the history of green highway, the relation between highway, sustainability and green ideas, the concepts and definitions of green highway assessment, the proposed Malaysia green highway assessment criteria and statistical approaches to weightage analysis. Chapter 3 describes the research methodology in detail including the research plan, data collection method, type of data collected, respondents involved, pilot study, reliability, validity and data analysis. This chapter also explains how the data were acquired and how the respondents were selected and approached. Chapter 4 presents the analysis and interpretation of qualitative data using SPSS 18.0 software. The end of this chapter summarise the weightage factors for Malaysia green highway assessment. Chapter 5 concludes the findings from the research. This chapter also shows the most relevant factors for Malaysia green highway assessment, the limitations of the research and the suggestions for the future study.
REFERENCES

