FABRICATION OF CuW ELECTRODE FOR PRODUCING MICRO-HOLE ON WC-Co USING EDM PROCESS

MEHDI HOURMAND

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Advanced Manufacturing Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JUNE 2013
This thesis dedicated to…

My mother and father, who taught me that the best kind of knowledge to have is that, which is learned for its own sake

My beloved brother and sister

My love to you will always remain and thank you so much for being

So patient and being there for me.
ACKNOWLEDGMENT

First of all, gratefulness of thanks to our creator, “ALLAH” for his continuous blessing, which make this work neither the first nor the last.

I would like to express my deepest and heartfelt gratitude and appreciations to my Supervisor, Professor Dr Noordin bin Mohd Yusof for his valuable guidance, continuous support and encouragement throughout this project. His comments and advice during the research has contributed immensely towards the success of this work. In addition, his patient guidance and suggestions has helped me in learning more.

I also would like to thank to all of the technicians in the Production Laboratory, Machine Shop, Metrology Laboratory and Material Laboratory, Faculty of Mechanical Engineering, for their cooperation and assistance me in the various laboratory tasks. I am also grateful to fellow researchers in the Production Laboratory for their advice and support. I would like to express my sincere appreciation to all of my friends in Universiti Teknologi Malaysia for coloring my daily live and helped me in one-way or another.

Lastly, I would also like to express my special thanks to my mother and my family members for their trust in me and continuously supporting me throughout this project. Less but not least, I would like to thank those who have contributed directly or indirectly towards the success of this study.
ABSTRACT

Micro-machining is one of the fundamental technologies for manufacturing miniaturized parts and products with size of between 1 to 999 µm. A micro-mold cavity is required for the mass production of micro component using injection molding machine. Moreover, micro-holes are also required in a micro-die. Nowadays, WC and its composite (WC-Co) are the widely used material in the making of cutting tools, dies and other special tools and components. Therefore, machining of WC is an important activity in manufacturing. Micro-EDM is one of the most effective methods for machining WC. Unfortunately there is limited information available about fabricating micro-hole electrode made from CuW for electrical discharge machining. This includes information on suitable electrode material for electrical discharge machining of CuW, the processing method and suitable parameter for micro-EDM of CuW and WC-Co. In this research, PGM WHITE 3 is used as the dielectric fluid, Cu-W as the micro-electrode, WC-Co as the workpiece material and Sodik AG40L as the die-sinking machine selected for the project. Process parameters investigated are polarity and voltage while the effects investigated are time of machining, end wear and diameter of hole. An electrode with a diameter of 372.76 µm has been successfully fabricated using selected process. Results of the experiment show that Micro-electrode with negative polarity has lower end wear of tool than positive polarity. Negative polarity of micro-electrode is used for micro-EDM of hole and positive polarity of micro-electrode is used for facing of micro-electrode. Lowest end wear of electrode has been achieved at P of CuW (-), Ip (0.4 A), ton (1 µs), Df (0.5), Sr (20 rpm), Eg (50). Lowest hole diameter has been achieved at P of CuW (+), Ip (0.4 A), ton (1 µs), Df (0.5), Sr (20 rpm), Eg (70). The shortest time of machining is achieved at P of CuW (-), Ip (0.4 A), ton (1 µs), Df (0.5), Sr (20 rpm) Eg (70) when investigating 50, 70 and 90V.
ABSTRAK

Mikro-pemesinan adalah salah satu teknologi asas untuk pembuatan bahagian-bahagian dan produk bersaiz kecil dengan saiz antara 1-999 μm. Sebuah rongga mikro acuan diperlukan untuk pengeluaran besar-besaran komponen mikro menggunakan mesin suntikan acuan. Selain itu, mikro-lubang juga diperlukan dalam mikro-die. Kini, karbida tungsten dan komposit (WC-Co) adalah bahan yang digunakan secara meluas dalam pembuatan alat pemotong, die dan alat-alat dan komponen khas yang lain. Oleh itu, pemesinan WC adalah aktiviti yang penting dalam pembuatan. Mikro-EDM adalah salah satu kaedah yang paling berkesan untuk pemesinan WC. Malangnya maklumat mengenai pembuatan elektrod mikro-lubang yang diperbuat daripada CuW yang diperlukan untuk pemesinan nyahcas elektrik adalah amat terhad. Ini termasuk maklumat mengenai bahan elektrod yang sesuai untuk pemesinan nyahcas elektrik CuW, kaedah pemprosesan dan parameter yang sesuai untuk mikro-EDM CuW dan WC-Co. Dalam kajian ini, PGM WHITE 3 digunakan sebagai bendalir dielektrik, CuW adalah seperti mikro elektrod, WC-Co sebagai bahan benda kerja dan mesin Sodick AG40L EDM Die Sinking dipilih untuk projek. Parameter proses yang disiasat adalah kekutuban dan voltan manakala kesan yang disiasat adalah masa pemesinan, Kehausan hujung dan garispusat lubang. Elektrod dengan garispusat 372.76 μm telah berjaya dihasilkan menggunakan proses yang dipilih. Keputusan ujikaji menunjukkan bahawa mikro-elektrod dengan kekutuban negatif mempunyai kehausan hujung yang lebih rendah daripada kekutuban positif mikro-elektrod. Kekutuban negatif mikro elektrod digunakan untuk Mikro EDM lubang manakala kekutuban positif mikro elektrod digunakan untuk facing mikro-elektrod. Kehausan hujung elektrod terendah telah dicapai dengan P CuW (-), Ip (0.4 A), t_on (1 μs), Df (0.5), Sr (20 rpm), Eg (50). Lubang diameter terendah telah dicapai dengan P CuW (+), Ip (0.4 A), t_on (1 μs), Df (0.5), Sr (20 rpm), Eg(70). Masa yang singkat pemesinan telah dicapai dengan P CuW (-), Ip (0.4 A), t_on (1 μs), Df (0.5), Sr (20 rpm), Eg (70 ) apabila menkaji 50, 70 dan 90V.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLE</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Overview 1
1.2 Research Questions 4
1.3 Problem Statement 4
1.4 Objective of Study 4
1.5 Scope of Study 5
1.6 Organization of Report 5

2 LITERATURE REVIEW 7
2.1 Introduction 7
2.1.1 Conventional Material Removal Processes 7
2.1.2 Non-conventional Process 8
2.1.3 Hybridized 8
2.2 Electrical Discharge Machining (EDM) 9
2.2.1 Sparking and Gap Phenomena in EDM 10
2.3 Micro-EDM 11
2.3.1 Definition of Micro-EDM 11
2.3.2 Types of Micro-EDM 12
2.3.3 Role of Micro-EDM in Micromachining 13

2.4 Material of Electrode 14
2.4.1 Copper 14
2.4.2 Copper Tungsten 15
2.4.3 Graphite 17
2.4.4 Brass 17
2.4.5 Copper Graphite 18
2.4.6 Zinc Alloys 18
2.4.7 Silver Tungsten 18
2.4.8 Tungsten 19

2.5 Tungsten Carbide- 6% Cobalt 19

2.6 Dielectric 20
2.6.1 Dielectric Fluid for PGM WHITE 3 20
2.6.2 PGM WHITE 3 21

2.7 EDM Parameter 21

2.8 EDM Performance Measure (Machining Characteristics) 23
2.8.1 Material Removal Rate (MRR) 23
2.8.2 Electrode Wear Rate (EWR) 24
2.8.3 Surface Roughness (SR) 25

2.9 Suitable Electrode and Parameter for Using EDM of Copper Tungsten 25

2.10 Tool Electrode Fabricate Process of Micro-EDM 27
2.10.1 Wire Electro-Discharge Grinding (WEDG) 28
2.10.2 Rotating Sacrificial Disk 29
2.10.3 Stationary Sacrificial Block 30
2.10.4 Moving Block Electro Discharge Grinding (MBEDG) 32
2.10.5 Micro Turning Process 33
2.10.6 Hybrid of Micro EDM 36

3 RESEARCH METHODOLOGY 38

3.1 Introduction 38

3.2 Process of Fabricating Micro-electrode 39
3.3 Process of Electrical Discharge Machining Micro-hole 39
3.4 Material of Micro-electrode 40
3.5 Sacrificial Electrode Material 41
3.6 Dielectric Material 41
3.7 Machine and Equipment 42
    3.7.1 EDM Machine 42
    3.7.2 WEDM 44
    3.7.3 Milling Machine 45
    3.7.4 Grinding Machine 46
    3.7.5 Optical Microscope 47

4 RESULTS 48
    4.1 Introduction 48
    4.2 Process of Fabricating Electrode 48
    4.3 Cu Block Electrode 51
        4.3.1 Preparing Cu Block and Setting on EDM Machine 52
    4.4 Micro Electrode 52
        4.4.1 Preparing CuW and Setting on EDM Machine 53
    4.5 Machining Parameters 53
    4.6 Measuring Micro-hole Electrode in the EDM Machine 55
    4.7 Machining Process of Micro-hole on Tungsten Carbide 58
    4.8 Facing of Micro-hole Electrode with WC Sacrificial Electrode 58
    4.9 Results 59

5 DISCUSSION 63
    5.1 Introduction 63
    5.2 Cu Block Electrode Development 63
    5.3 Effect of Polarity on Micro-EDM of Tungsten Carbide 64
    5.4 Effect of Voltage on EDM of WC 66

6 CONCLUSION AND RECOMMENDATION 69
    6.1 Conclusion 69
    6.2 Recommendation for Future Work 70

REFERENCES 71
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical properties of copper electrode (Che Haron <em>et al.</em>, 2001)</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Specification of copper tungsten, Hubei Fotma Machinery Co.Ltd (&quot;Tungsten Copper,&quot; 2011)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical properties of copper tungsten electrode (Lee &amp; Li, 2001)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical properties of graphite electrode (Lee &amp; Li, 2001)</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Properties of WC- 6%Co (Zhengui <em>et al.</em>, 1998)</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical composition of CuW composition (Wang &amp; Lin, 2009)</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristic of AG40L Sodick electrical discharge machine</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Rotating Axis specification of C-axis Unit (sec-10)</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Characteristic of AQ537L wire electrical discharge machine</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Facing parameters of micro-hole electrode</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Amount of response for variable polarities</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Amount of response for variable polarities</td>
<td>61</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Steps of different incidence in EDM: (a) occurrence of spark at the closest point between workpiece and electrode, (b) melting and vaporization of workpiece and electrode materials during spark on-time, (c) vaporized cloud of materials suspended in dielectric fluid, and (d) removal of molten metal and occurrence of next spark (Jameson, 2001)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Representation of sparking and gap phenomena in EDM: (a) model of EDM gap phenomena and (b) discharge phenomena in EDM gap (Kunieda et al., 2005)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic representation of (a) die-sinking micro-EDM (Kunieda et al., 2005), (b) micro-WEDM (Kunieda et al., 2005), (c) drilling micro-EDM (Lim et al., 2003), and (d) milling micro-EDM (Bleys et al., 2004)</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The different kinds of electrode wear (El-Hofy, 2005)</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Wire electro-discharge machining (Lim et al., 2003)</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Electrode machined using running wire (Lim et al., 2003)</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Rotating sacrificial disk (Lim et al., 2003)</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Electrode machined using rotating disk (Lim et al., 2003)</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Stationary sacrificial block (Lim et al., 2003)</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Tapered tool electrode machined using a stationary sacrificial block (Lim et al., 2003)</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>Uneven diameter machined using a stationary sacrificial block (Lim et al., 2003)</td>
<td>32</td>
</tr>
<tr>
<td>2.12</td>
<td>Moving BEDG process for on-machine tool fabrication (Asad et al., 2007)</td>
<td>33</td>
</tr>
</tbody>
</table>
2.13 Deflection of micro-shaft during machining (Asad et al., 2007) 34
2.14 A 100 µm diameter micro-shaft fabricated using conventional µ-Turning (Asad et al., 2007). 34
2.15 The tool geometry of commercially available PCD inserts for finishing light cut (Asad et al., 2007) 35
2.16 (a) Resolution of cutting forces. (b) Actual cutting observed under a tool scope with commercially available PCD insert (Asad et al., 2007). 35
2.17 Concept of sharp edge to reduce the F_x component (Asad et al., 2007). 36
2.18 Concept of hybrid process for micro-EDM (Asad et al., 2007). 37
3.1 Equipments used for fabricating micro-electrode and holes 38
3.2 Flow chart of fabricating process of micro-electrode 39
3.3 Flow chart of process of Electrical Discharge Machining 40
3.4 AG40L Sodick electrical discharge machine 42
3.5 AQ537L wire electrical discharge machine 44
3.6 Milling machine 46
3.7 Grinding machine 47
3.8 Zeiss Stemi 2000C microscope 47
4.1 Process of fabrication of micro-hole electrode 50
4.2 Engineering drawing of Cu block electrode 51
4.3 Various views of electrode raw material 52
4.4 Micro-electrode that fabricating with roughing parameters 54
4.5 Micro-electrode that fabricating with finishing parameters 54
4.6 Micro-electrode that fabricating with finishing parameters 55
4.7 Micro-electrode after machining micro-hole 55
4.8 Micro-electrode touches gage block and find the first position (X_1) 57
4.9 Micro-electrode touches gage block and find the second position (X_2) 57
4.10 Micro-electrode before facing process
59
4.11 Micro-electrode after facing process
59
4.12 Hole with diameter of 404.08µm at P of CuW (-), \( I_p \) (0.4 A),
\( t_{on} \) (1 µs), \( D_f \) (0.5), \( S_r \) (20 rpm), \( E_g \) (70 V) 60
4.13 Hole with diameter of 411.9µm at P of CuW (+), \( I_p \) (0.4 A),
\( t_{on} \) (1 µs), \( D_f \) (0.5), \( S_r \) (20 rpm), \( E_g \) (70 V) 60
4.14 Hole with diameter of 415.88µm at P of CuW (+), \( I_p \) (0.4 A),
\( t_{on} \) (1 µs), \( D_f \) (0.5), \( S_r \) (20 rpm), \( E_g \) (50 V) 61
4.15 Hole with diameter of 421.8µm at P of CuW (+), \( I_p \) (0.4 A),
\( t_{on} \) (1 µs), \( D_f \) (0.5), \( S_r \) (20 rpm), \( E_g \) (90 V) 62
5.1 Copper block electrode development: (a) without slot, (b)
two slots, (c) two partial slots, (d) four partial slots 64
5.2 Effect of polarity on end wear of electrode 65
5.3 Effect of polarity on time of machining 65
5.4 Effect of electrode polarity on diameter of hole 66
5.5 Effect of voltage on end wear of electrode 67
5.6 Effect of voltage on time of machining 67
5.7 Effect of voltage on diameter of hole 68
## LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sum of thickness of gage block and diameter of micro-electrode</td>
</tr>
<tr>
<td>AgW</td>
<td>Silver tungsten</td>
</tr>
<tr>
<td>BEDG</td>
<td>Stationary sacrificial block electro discharge grinding</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>CuW</td>
<td>Copper tungsten</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of micro-electrode</td>
</tr>
<tr>
<td>D_f</td>
<td>Duty factor, unit: %</td>
</tr>
<tr>
<td>ECM</td>
<td>Electrical chemical machining</td>
</tr>
<tr>
<td>EDG</td>
<td>Electrical discharge grinding</td>
</tr>
<tr>
<td>EDM</td>
<td>Electrical discharge machining</td>
</tr>
<tr>
<td>E_g</td>
<td>Gap-load voltage, unit: V</td>
</tr>
<tr>
<td>EWR</td>
<td>Electrode wear ration</td>
</tr>
<tr>
<td>I_p</td>
<td>Peak current, unit: A</td>
</tr>
<tr>
<td>L</td>
<td>Length of gage block</td>
</tr>
<tr>
<td>MBEDG</td>
<td>Moving block electro discharge grinding</td>
</tr>
<tr>
<td>Micro-EDM</td>
<td>Micro electrical discharge machining</td>
</tr>
<tr>
<td>MRR</td>
<td>Material removal rate</td>
</tr>
<tr>
<td>P</td>
<td>Polarity</td>
</tr>
<tr>
<td>R_C</td>
<td>Resistor-capacitor power supply</td>
</tr>
<tr>
<td>R_a</td>
<td>Average surface roughness</td>
</tr>
<tr>
<td>R_max</td>
<td>Peak-to-valley surface roughness</td>
</tr>
<tr>
<td>S_r</td>
<td>Electrode rotational speed, unit: rpm</td>
</tr>
<tr>
<td>SR</td>
<td>Surface roughness</td>
</tr>
<tr>
<td>t</td>
<td>Machining time in minutes</td>
</tr>
<tr>
<td>t_m</td>
<td>Machining times (min)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>( t_{on} )</td>
<td>Pulse duration, unit: ( \mu s )</td>
</tr>
<tr>
<td>( W )</td>
<td>Tungsten</td>
</tr>
<tr>
<td>( W_a )</td>
<td>Weight of workpiece material and electrode after machining (g)</td>
</tr>
<tr>
<td>( W_b )</td>
<td>Weight of workpiece material and electrode before machining (g)</td>
</tr>
<tr>
<td>WC</td>
<td>Tungsten carbide</td>
</tr>
<tr>
<td>WC-Co</td>
<td>Tungsten carbide with Cobalt</td>
</tr>
<tr>
<td>WEDG</td>
<td>Wire electrical discharge grinding</td>
</tr>
<tr>
<td>WEDM</td>
<td>Wire electrical discharge machining</td>
</tr>
<tr>
<td>( W_f )</td>
<td>Final weight of workpiece in machining (g)</td>
</tr>
<tr>
<td>( W_i )</td>
<td>Initial weight of workpiece before machining in (g)</td>
</tr>
<tr>
<td>( X_1 )</td>
<td>First position of micro-electrode touches the gage block</td>
</tr>
<tr>
<td>( X_2 )</td>
<td>Second position of micro-electrode touches the gage block</td>
</tr>
<tr>
<td>( \rho_s )</td>
<td>Density ( g/mm )</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Micro-machining is one of the fundamental technologies to miniaturize parts and products. Based on CRIP committee of Physical and chemical processes, manufacture products are between 1 to 999 µm (Masuzawa & Tönshoff, 1997). Recently, the miniaturization of products is an important paradigm in every aspects of the society such as information technology, biotechnology, environmental and medical industries. In the process of product miniaturization and industrial realization of nanotechnology, micromachining is an important supporting technology which can overcome the challenges associated with the requirement of the process (M. Rahman et al., 2010). A micro-mold cavity is required for mass production of micro component, that can be produced by injection molding (Lim et al., 2003). Moreover, micro-holes are used in the micro-die (Mark et al., 2009). Hard-to-machined materials are used for micro-injection that should be machined very accurately and complex shape in three-dimensional forms in the micron range (Lim et al., 2003).

Among the difficult-to-cut materials tungsten carbide (WC) is an extremely hard material used extensively in manufacturing because of its superior wear and corrosion resistance. Nowadays, WC and its composite (WC-Co) have a great influence in the production of cutting tools, dies and other special tools and components due to their high hardness, strength and wear resistance over a wide
range of temperature (Mahdavinejad & Mahdavinejad, 2005); thus, recently machining of WC plays significant roles in manufacturing (Jangra et al., 2012).

On the other hand, among the non-conventional methods, electro-discharge machining (EDM) and electro-chemical machining (ECM) are the only methods capable of machining WC–Co composites (Mahdavinejad & Mahdavinejad, 2005). However, it was demonstrated by Watson and Freer (1980) that ECM process generates a resistant oxide layer on the tungsten carbide surface promoting very slow material removal rate; which is further decreased when high cobalt percentage is used in the alloy. Although the material removal rate by ECM can be increased compared to EDM for other conductive materials, the EDM process is more suitable for machining carbides and other refractory materials as mentioned by Singh (2007). However, the cost of production will be higher as ECM process itself is less cost-effective compared to EDM (Singh, 2007). Due to lower material removal rate and ability to provide shiny surface, so far electro-chemical machining has been reported to be used for finishing purpose only for the machining of tungsten carbide (Masuzawa & Kimura, 1991).

Electrical Discharge Machining (EDM) is one of the important and cost-effective non-conventional methods for machining of extremely hard and brittle materials (Guitrau, 1997). EDM or spark machining removes electrically conductive material by means of rapid, repetitive spark discharges from electric pulse generators with the dielectric fluid supplying between the tool and workpiece. No mechanical cutting forces exist between the workpiece and tool. The non-contact machining process has been endlessly evolving from a mere tools and dies making process to a micro-scale application machining. Micro-EDM is the application of EDM in micro-field. The low energy range is becoming important when the EDM process is used in micro-field. Micro-EDM has similar characteristics as EDM except that the size of tool, discharge energy and axis movement resolutions are in micron level (Masuzawa, 2000). At the present time, micro-EDM is a widespread technique used in industry for high-precision machining of all types of conductive materials such as: metals, metallic alloys, graphite, or even some ceramic materials, of whatsoever hardness (Puertas et al., 2004). Micro-EDM has been used extensively in the field of
micro-mold making, production of dies, cavities and even complex 3D structures (Alting et al., 2003). The major advantage of EDM or micro-EDM over the conventional machining process is that it is an electro-thermal process of removing metal regardless of hardness where the force between the workpiece and tool is negligible. Thus, the error caused by the tool deformation due to force is almost zero (Tsai & Masuzawa, 2004). Furthermore, there are no chatters, mechanical stress and vibration problem during the machining as there is no direct contact between the electrode and the workpiece (K. Ho & Newman, 2003). Consequently, micro-EDM can be used as one of the most effective methods of machining WC (Jahan et al., 2009).

According to Jahan et al. (2009), between AgW, CuW and W electrodes for machining of WC, AgW electrode produces smoother and defect-free nanosurface with the lowest $R_a$ and $R_{\text{max}}$ among the three electrodes. Besides, a minimum amount of material migrates from the AgW electrode to the WC workpiece during the finishing micro-EDM. On the other hand, a CuW electrode achieves the highest MRR followed by AgW and W. In the case of electrode wear, the W electrode has the lowest wear followed by CuW and AgW. Also, Jameson (2001) stated that copper tungsten is often used for machining of tungsten carbide. Due to its high cost and limited availability of Silver Tungsten, it has a very limited range of applications (Kern, 2008). As result, CuW is chosen as micro-EDM electrode.

Consequently, micro-holes are used in the WC micro-die (Mark et al., 2009) and CuW is used as micro-hole electrode to fabricate the micro-holes in WC micro-dies. There is less information about fabricating CuW micro-hole electrode that is used for electrical discharges machining WC. This includes information about which electrode material is suitable for EDM machining of CuW, the process setting and suitable parameter for micro-EDM. This research carries out to fabricate to CuW micro-hole electrode for electrical discharge machining of WC.
1.2 Research Questions

- What is the suitable material of electrode, process and methodology for fabricating a CuW electrode with a diameter of less than 400 µm for producing micro-holes using the EDM process?
- How to fabricate the electrode of micro-EDM?
- What are the effects of various Electrical Discharge Machining process parameters when EDMing WC?

1.3 Problem Statement

Limited information is available about fabricating micro-hole electrode made from CuW for electrical discharge machining. This includes information on suitable electrode material for electrical discharge machining of CuW, the processing method and suitable parameter for micro-EDM of CuW and WC-Co.

1.4 Objective of Study

- To identify suitable material of electrode, process and methodology for fabricating a CuW electrode with a diameter of less than 400 µm for producing micro-holes using the EDM process.
- To fabricate the above electrode using the EDM process.
- To evaluate the effects of various Electrical Discharge Machining process parameters when micro-EDMing WC.
1.5 Scope of Study

The scopes of the project are:

1. AG40L Sodik die-sinking machine is used for experiment.
2. PGM WHITE 3 is used as dielectric fluid.
3. Cu-W is used as micro-hole electrode material.
4. WC-Co is used as workpiece material.
5. Process parameters investigated are polarity and voltage while the effects investigated are time of machining, end wear and diameter of hole.

1.6 Organization of Report

This project report is organized as below:

Chapter 1 (Introduction): this chapter introduces the research area and describes the problem.

Chapter 2 (Literature Review): this chapter reviews the previous literature related to type of material removal rate, EDM, micro-EDM, fabrication process of micro-electrode and material of block electrode, micro-electrode and workpiece.

Chapter 3 (Research Methodology): this chapter describes the methodology and equipment are used in this research.

Chapter 4 (Result): this chapter describes the detail of fabrication process of micro-electrode and all of the results.
Chapter 5 (Discussion): this chapter illustrates the steps of developing Cu block electrode and evaluating the effect of polarity and voltage during micro-EDMing of micro-hole on WC-Co for time of machining, end wear and diameter of hole.

Chapter 6 (Conclusion and Recommendation): this chapter describes conclusion of results and recommendation for future work.
REFERENCES


