PERFORMANCE AND MODELLING OF TRANSVERSE RUMBLE STRIPS ON NOISE AND VIBRATION STIMULI

MOHD HANIFI BIN OTMAN

UNIVERSITI TEKNOLOGI MALAYSIA
PERFORMANCE AND MODELLING OF TRANSVERSE RUMBLE STRIPS ON NOISE AND VIBRATION STIMULI

MOHD HANIFI BIN OTHMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL 2016
Specially dedicated to my grandfather
ACKNOWLEDGEMENT

Firstly, I would especially like to thank my supervisor, Dr. Zaiton Haron who give me an opportunity to do the research in which I am interested in, and make this thesis possible in the Faculty of Civil Engineering at Universiti Teknologi Malaysia, Johor Bahru. I sincerely cannot help expressing how I should credit this thesis to her support, guidance and help whenever I dropped in her office and her encouragement and patience throughout the duration of my writing up.

I am also very grateful to my co-supervisor, Prof. Dr. Mohd Rosli Hainin for his warm, friendly and selfless advice and help. In addition, many thanks also to my other co-supervisors, Dr. Khairulzan Yahya and Dr. Mohd Badruddin Mohd Yusof for their guidance and support.

Very special thanks are also due to my father, mother, family and friends for their great support and encouragement in the whole remarkable days. Finally yet importantly, special thanks to my beloved wife, Zanariah Jahya for her help, advice, patience, encouragement and motivation throughout this journey. Many thanks to everybody who ever gave me help and support.
ABSTRACT

Transverse rumble strips (TRS) are commonly used in reducing vehicle speed and increasing drivers’ alertness on roadway through optical, sound and vibration effects. However, when inappropriately designed, TRS sound and vibration may become too excessive, thus compromise road users’ comfort and annoy local residents who live adjacent to the roadway. This study aims to contribute to the knowledge that will be used to improve the optimisation of TRS cross-section design for road user’s comfort and sustainable living of the neighbourhood. The objectives of this study were to: classify TRS profiles and assess the noise annoyance response towards TRS noise; measure and model TRS roadside noise level and analyse the possible tyre-TRS interaction mechanisms that involved in the TRS roadside noise generation; evaluate and estimate vehicle in-cabin TRS sound and vibration; develop the optimum TRS cross section design for road users’ comfort. Site investigation and social survey study had been carried out to classify the type of TRS profile used on the roadway and to assess the noise annoyance response towards TRS noise experienced by neighbourhood. Traffic noise assessment and controlled pass-by method were carried out to evaluate and estimate roadside noise level due to TRS and to analyse the possible tyre-TRS vibration mechanisms that were involved in the generation of TRS noise. In-cabin sound and vibration measurements were conducted to evaluate in-cabin vibration and sound due to TRS. Weber’s Law was used to determine appropriate vibration to road user comfort, hence optimum TRS cross section design was proposed. The results indicated that three main types of TRS profile existed on the road namely: raised rumbler, middle overlap and multi-layer overlap. Generally, respondents were annoyed with TRS noise. TRS noise depended on the factor of traffic volume, speed, TRS profile and thickness. TRS vibration depended on the factor of vehicle speed and TRS thickness. Raised rumbler’s profile generated the highest noise as a result from air pumping tyre-pavement mechanism. TRS optimum cross section design was proposed to enhance TRS performance in providing appropriate vibration to road user.
ABSTRAK

TABLE OF CONTENTS

CHAPTER TOPIC PAGE

TITLE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xx
LIST OF SYMBOLS xxi
LIST OF APPENDICES xxiii

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Aims and Objectives of Studies 6
1.4 Scopes of Study 6
1.5 Contribution of Study 7
1.6 Structure of Thesis 8
1.7 Chapter Summary 9
LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Background of TRS Application</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Effectiveness of TRS as Safety Measure</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Application of TRS in Malaysia and Elsewhere</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Physical Properties of TRS</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1 Thermoplastic Material</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2 Colour</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Traffic Noise</td>
<td>22</td>
</tr>
<tr>
<td>2.6.1 Source of Traffic Noise</td>
<td>23</td>
</tr>
<tr>
<td>2.6.2 Effects of Traffic Noise to Human</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3 Attitudes, Demographic Characteristic and Non-Acoustic Factors of Noise Annoyance</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Previous Studies on TRS Roadside Noise</td>
<td>30</td>
</tr>
<tr>
<td>2.8 TRS Sound and Vibration stimuli</td>
<td>31</td>
</tr>
<tr>
<td>2.8.1 TRS Vibration Stimuli</td>
<td>31</td>
</tr>
<tr>
<td>2.8.2 Whole Body Vibration</td>
<td>32</td>
</tr>
<tr>
<td>2.8.3 Root Mean Square (RMS) Frequency-Weighted Acceleration</td>
<td>35</td>
</tr>
<tr>
<td>2.8.4 Human Perception in TRS Vibration</td>
<td>36</td>
</tr>
<tr>
<td>2.8.5 Weber’s Law</td>
<td>37</td>
</tr>
<tr>
<td>2.8.6 Effects of TRS vibration</td>
<td>38</td>
</tr>
<tr>
<td>2.9 TRS Sound Stimuli</td>
<td>39</td>
</tr>
<tr>
<td>2.9.1 Tyre-pavement Noise Generation Mechanism</td>
<td>40</td>
</tr>
<tr>
<td>2.9.1.1 Radial and Tangential Vibrations of the Tyre-Tread</td>
<td>40</td>
</tr>
<tr>
<td>2.9.1.2 Carcass and Side Wall Vibrations</td>
<td>41</td>
</tr>
<tr>
<td>2.9.1.3 Air Pumping Mechanism</td>
<td>42</td>
</tr>
<tr>
<td>2.9.2 Human Perception in TRS Sound Stimuli</td>
<td>43</td>
</tr>
<tr>
<td>2.10 Previous Studies on Factors Influence TRS Noise and Vibration Stimuli</td>
<td>44</td>
</tr>
<tr>
<td>2.11 Research Gap</td>
<td>50</td>
</tr>
<tr>
<td>2.12 Chapter Summary</td>
<td>51</td>
</tr>
</tbody>
</table>
3 METHODOLOGY

3.1 Introduction 52
3.2 Classification of TRS Profiles and Assessing the Noise Annoyance Response towards TRS Noise
 3.2.1 Classification of TRS Profile Used on Roadway 54
 3.2.2 Assessing Community Annoyance Response Towards TRS Noise
 3.2.2.1 Structure of questionnaire 57
3.3 TRS Roadside Noise Level and Tyre-TRS Interaction Mechanisms
 3.3.1 Noise Level Arising When Hit by Actual Traffic 61
 3.3.1.1 Instrument and Samples 64
 3.3.1.3 Measuring Procedure 65
 3.3.2 TRS Noise level Arising by Single Vehicle 67
 3.3.2.1 Experimental Sites 69
 3.3.2.2 Test Procedure 70
 3.3.3 TRS-Tyre Interaction Mechanisms 73
3.4 Evaluating in-cabin sound and vibration 73
3.5 Data Analysis 78
3.6 Develop the Optimum TRS Cross-Section Design for Passengers’ Comfort 80
3.7 Chapter Summary 80

4 RESULTS

4.1 Introduction 81
4.2 Classification of TRS Profiles and Assessing the Noise Annoyance Response towards TRS Noise
 4.2.1 Classification of TRS Profile Used on Roadway 82
 4.2.2 Noise Annoyance Response towards TRS Noise
 4.2.2.1 Basic Socio-Demographic of Samples 89
 4.2.2.2 Annoyance Score Distribution 90
 4.2.2.3 Potential Causative Factor of Annoyance Score 91
4.2.2.4 Disturbance in Daily Life Caused by TRS Noise 93
4.2.2.5 Health Issues Caused by TRS Noise 94
4.2.2.6 Additional Comments 94

4.3 TRS Roadside Noise Level and Tyre-TRS Interaction Mechanisms
4.3.1 Roadside Noise Level Produced by TRS 95
4.3.1.1 Equivalent Sound Pressure Level 96
4.3.1.2 Effects of Traffic Volume 98
4.3.1.3 Effects of Traffic Speed 100
4.3.1.4 Correlation Test 101
4.3.1.5 Regression Analysis of TRS Roadside Noise from Actual Traffic 102
4.3.1.6 Regression Model 105
4.3.2 Assessing and Estimating Roadside Noise Level due to TRS by Single Vehicle 107
4.3.2.1 Effects of Vehicle’s Speed 107
4.3.2.2 Effects of TRS’s Thickness 112
4.3.2.3 Effects of TRS’s Width 113
4.3.2.4 Effects of TRS’s Spacing 114
4.3.2.5 Effects of TRS’s Profile 115
4.3.2.6 Correlation Statistics 117
4.3.2.7 Estimating the noise level due to TRS 118
4.3.3 Tyre-TRS interaction mechanisms 119

4.7 In-cabin Sound and Vibration due to TRS 121
4.7.1 Effects of Vehicle’s Speed 122
4.7.2 Effects of TRS Thickness 127
4.7.3 Effects of TRS’s Width 129
4.7.4 Effects of TRS’s Spacing 131
4.7.5 Effects of TRS’s Profile 134
4.7.6 Correlation Test 136
4.7.7 Model for \(\text{RMS}_w \) 137
4.7.8 Model for \(\text{RMS}_\Delta \) 138
4.7.9 Model for \(\text{LAeq}_{IVw} \) 139
4.7.10 Model for \(\text{LAeq}_{IVA} \) 141
5 DISCUSSION

5.1 Introduction 146
5.2 Classification of TRS Profiles and Assessing the Noise Annoyance Response towards TRS
 5.2.1 Classification of the Type of TRS Profile Used on Roadway 147
 5.2.2 Noise Annoyance Response towards TRS Noise 148
 5.2.2.1 Main Findings 149
 5.2.3 Study Limitations 151
5.3 TRS Roadside Noise Level and Tyre-TRS Interaction Mechanisms
 5.3.1 TRS Roadside Noise by Actual Traffic 152
 5.3.1.1 Main Findings 152
 5.3.2 TRS Roadside Noise by Single Vehicle 153
 5.3.2.1 Main Findings 154
 5.3.3 Tyre-TRS Vibration Mechanisms 154
 5.3.3.1 Main Findings 155
 5.3.4 Study Limitations 157
5.4 In-Cabin Vibration and Sound Due to TRS
 5.4.1 Main Findings 159
 5.4.2 Study Limitations 161
5.5 Determining the Optimum TRS Cross-Section Design for Drivers and Passenger’s Comfort
5.6 Chapter Summary 163
6 CONCLUSION

6.1 Introduction 164
6.2 Classification of TRS Profiles and Assessing the Noise Annoyance Response towards TRS Noise 164
6.3 TRS Roadside Noise Level and Tyre-TRS interaction Mechanisms 165
6.4 In-Cabin Vibration and Sound Due to TRS 165
6.5 The Optimum TRS Cross-Section Design for Drivers and Passenger’s Comfort 166
6.6 Recommendation for Future Work 167
6.7 Chapter Summary 168

REFERENCES 169

Appendices A-E 178 - 197
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical Specification of TRS in Malaysia (MOW, 2002)</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Frequency weightings and scaling factors for whole body vibration assessments (South, 2004)</td>
<td>54</td>
</tr>
<tr>
<td>2.3</td>
<td>The suggested human response to RMS acceleration (ISO, 1997b)</td>
<td>57</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanisms of tyre vibration and its dominant frequency range</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Approximate human perception of changes in sound level (Outcalt, 2001)</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of the socio-acoustics surveys study's sections.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>List of experimental sites and the TRSs sample characteristics</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Examples TRS profiles available in Malaysia</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Basic socio-demographic of respondents</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Potential Causative factor of annoyance score</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of TRS roadside noise to respondents' daily life</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation test between annoyance score and health issues</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Additional comments by respondents</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Properties and type of TRS</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Equivalent sound pressure level</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Equivalent impulse pressure level (L1eq)</td>
<td>98</td>
</tr>
<tr>
<td>4.10</td>
<td>LAeq vs. traffic volume</td>
<td>99</td>
</tr>
<tr>
<td>4.11</td>
<td>LAIeq vs. traffic volume</td>
<td>100</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>$\text{LAeq}{\text{ACTw}} - \text{LAeq}{\text{ACTwo}}$</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Correlation test of $\text{LAeq}_{\text{ACT, w}}$ with predictor variables</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Residual statistics of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Co linearity Statistics of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Parameter and variances of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>ANOVA of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Model summary of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Coefficient of $\text{LAeq}_{\text{ACTw}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>LAeq vs speed</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>LAeq vs. speed ($h<5\text{mm}$)</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>LAeq vs. speed ($h\geq 5\text{mm}$)</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>LAeq vs. thickness</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>LAeq vs. width</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>LAeq vs. spacing</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>LAeq vs. width</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Correlation LAeq_{CPB} single vehicle test</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Coefficient of $\text{LAeq}_{\text{CPB, w}}$ model</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Dimensions and profiles of TRS samples</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>RMS vs speed</td>
<td></td>
</tr>
<tr>
<td>4.33</td>
<td>LAeq vs. speed</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>RMS vs. speed, $h\geq 4\text{mm}$</td>
<td></td>
</tr>
<tr>
<td>4.35</td>
<td>RMS 14.4 vs. speed, $h<4\text{mm}$</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>LAeq vs. Speed, $h\geq 4\text{mm}$</td>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>LAeq vs. Speed, $h<4\text{mm}$</td>
<td></td>
</tr>
<tr>
<td>4.38</td>
<td>RMS vs. thickness</td>
<td></td>
</tr>
<tr>
<td>4.39</td>
<td>LAeq vs. thickness</td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td>RMS vs. width</td>
<td></td>
</tr>
<tr>
<td>4.41</td>
<td>LAeq vs. width</td>
<td></td>
</tr>
<tr>
<td>4.42</td>
<td>LAeq vs spacing</td>
<td></td>
</tr>
<tr>
<td>4.43</td>
<td>LAeq vs spacing</td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>RMS vs. profile</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.45</td>
<td>LAeq vs. profile</td>
<td></td>
</tr>
<tr>
<td>4.46</td>
<td>Correlation test of internal vibration and sound</td>
<td></td>
</tr>
<tr>
<td>4.47</td>
<td>Coefficient of RMS(_w) model</td>
<td></td>
</tr>
<tr>
<td>4.48</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.49</td>
<td>Coefficient of RMS(_A) model</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.51</td>
<td>Coefficient of LAeq(_IVw) model</td>
<td></td>
</tr>
<tr>
<td>4.52</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.53</td>
<td>Coefficient of LAeq(_IVA) model</td>
<td></td>
</tr>
<tr>
<td>4.54</td>
<td>Excluded variable</td>
<td></td>
</tr>
<tr>
<td>4.55</td>
<td>Recommended TRS Thickness to lower vehicle speed to anticipated speed</td>
<td></td>
</tr>
<tr>
<td>4.56</td>
<td>RMS(_wo) with added 13% of its value</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical TRS in Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Shoulder rumble strips (Morena, 2002)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Centerline rumble strips (Torbic, et al., 2009)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>TRS in several states in the USA – not rely on the optical effect</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Transverse pavement markings in the USA. (Meyer, 2001)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>The characteristic of TRS in Malaysia combining the effect of sound, vibration and optical</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>TRS that combine optical effects, vibration and auditory</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>a) TRS in Malaysia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) TRS in China (Liu, et al., 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) TRS at Lyngby, Denmark (Bendtsen, 2000)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Design of typical TRS in Malaysia (Othman et al., 2010)</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>TRS in Texas, USA- it has a gap in the middle to allow motorcycle passing through it without hitting the TRS (Carlson and Miles, 2003) a) The specification of TRS with middle 'gap' (Thompson, 2004) b) TRS in Texas, USA (Thompson, 2004)</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Good glass-bead dispersion of beads in thermoplastic (Lopez, 2004)</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Retro reflectivity using glass beads (Lopez, 2004)</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Noise source ranking for a vehicle during the pass-by noise test. (Braun et al., 2013)</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Relationship between traffic volume and noise level (Onuu, 2000)</td>
<td>24</td>
</tr>
</tbody>
</table>
2.11 How noise affects human (Issarayangyun, 2005) 26
2.12 Axes in orientation of human body (ISO, 1997b) 33
2.13 The main frequency weightings used for whole body measurement (South, 2004) 34
2.14 The RMS value from vibration vs. time graph (B&K, 2008) 35
2.15 The Radial and tangential vibrations of the tyre tread (Sandberg and Ejsmont, 2005) 41
2.16 Carcass and side wall vibration 42
2.17 Illustration of air pumping mechanism 42
2.18 Details and dimension of rumbler, orange and asphalt TRS (Meyer, 2006) 46
2.19 Accelerometer (Left) and Microphone (Right) (Meyer, 2006) 47
2.20 Layout of TRS in Lank and Steinauer (2011) study 48
2.21 Flowchart of rumble strips study research gap 50
3.1 Flowchart of the research methodology 53
3.2 Thickness measurement by using Barton comb profile meter 55
3.3 Numerical scale of annoyance score 57
3.4 Leq chart and equation (BK, 2011) 62
3.5 A-frequency weighting (BK, 2011) 62
3.6 Comparison of LAI, LAF and LAS (BK, 2011) 63
3.7 Pulsar Type 1 Sound level meter 64
3.8 Pulsar Acoustic Toolbox software interface 65
3.9 Traffic radar recorder 65
3.10 Measurement layout 66
3.11 Test vehicle - Perodua Myvi 68
3.12 Two examples of experimental site a) Parit Kudus 70
b) Impian Emas
3.13 CPB test- Ideal test site (ISO, 2003a) 71
3.14 Location of the sound level meter 72
3.15 PULSAR Acoustic Toolbox interface 72
3.16 The instruments layout 76
3.17 Accelerometer on the seat 76
3.18 The position of microphone
3.19 Microphone position with respect to a seat (ISO, 1980)
3.20 The display of PULSAR LABSHOP software
4.1 RR - 6 raised rumbler
4.2 RR - 14 raised rumbler with ‘worn off’ condition
4.3 Surrounding of Parit Kudus 1
4.4 Surrounding of Parit Kudus 2
4.5 Map of Parit Kudus (courtesy to Google map)
4.6 TRS profile of raised rumbler in Parit Kudus
4.7 Surrounding of Seri Kenangan 1
4.8 Surrounding of Seri Kenangan 2
4.9 Seri Kenangan area (courtesy of Google Map)
4.10 TRS profile of raised rumbler in Seri Kenangan
4.11 Surrounding of Bukit Indah 1
4.12 Surrounding of Bukit Indah 2
4.13 Map of Bukit Indah (Google Map)
4.14 TRS profile of multi-layer overlapped in Bukit Indah
4.15 Annoyance score distribution
4.16 LAeq vs. traffic volume
4.17 LAeq vs. traffic volume (log transformed)
4.18 LAeq vs. traffic volume
4.19 LAeq vs. traffic speed
4.20 Histogram of frequency vs. regression standardized residual of LAeqACTw model
4.21 Normal P-P Plot of regression standardized to test random normally distributed errors of LAeqACTw model
4.22 Regression standardized residuals vs. regression standardized predicted value to test homoscedasticity of LAeqACTw model
4.23 LAeq vs. speed
4.24 LAeq vs. speed (h<5mm)
4.25 LAeq vs. speed (h≥5mm)
4.26 LAeq vs. thickness
4.27 LAeq vs. width
4.28 LAeq vs. spacing 115
4.29 LAeq vs. width 116
4.30 Spectral frequency analysis of each vehicle’s speed on roads with and without RR 120
4.31 Spectral frequency analysis of each vehicle’s speed on roads with and without MLO 120
4.32 RMS vs speed 123
4.33 Sound level vs. speed 124
4.34 RMS vs. Speed, h≥4mm 125
4.35 RMS vs. speed, h<4mm 125
4.36 LAeq vs. Speed, h≥4mm 126
4.37 LAeq vs. Speed, h<4mm 126
4.38 RMS vs. thickness 128
4.39 LAeq vs. thickness 129
4.40 RMS vs. width 130
4.41 LAeq vs. width 131
4.42 RMS vs spacing 132
4.43 LAeq vs. spacing 133
4.44 RMS vs. profile 134
4.45 LAeq vs. profile 135
5.1 ‘Air pumping’ mechanism when tyre passing over RR profile 155
5.2 Structural resonance – tyre belt/carcase vibration 156
5.3 Sidewall vibration 157
5.4 TRS layout in most case study locations 158
LIST OF ABBREVIATIONS

v - Vehicle speed
V - Traffic volume
h - TRS thickness
w - TRS width
sp - TRS spacing
ROR - Run- of-road
LIST OF SYMBOLS

Exterior Noise from traffic

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAeqACTw</td>
<td>Absolute roadside sound level from actual traffic passing through ‘with TRS’ track</td>
</tr>
<tr>
<td>LAeqACTwo</td>
<td>Absolute roadside sound level from actual traffic passing through baseline or ‘without TRS’ track</td>
</tr>
<tr>
<td>LAeqACTΔ</td>
<td>Relative roadside sound level (‘with TRS’ – ‘without TRS’) from a single vehicle test car</td>
</tr>
</tbody>
</table>

Exterior Impulse Noise from traffic

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIeqACTw</td>
<td>Absolute roadside impulse sound level from actual traffic passing through ‘with TRS’ track</td>
</tr>
<tr>
<td>LAIeqACTwo</td>
<td>Absolute roadside impulse sound level from actual traffic passing through baseline or ‘without TRS’ track.</td>
</tr>
<tr>
<td>LAIeqACTΔ</td>
<td>Relative roadside impulse sound level (‘with TRS’ – ‘without TRS’) from single vehicle test car</td>
</tr>
</tbody>
</table>
Exterior Noise from single vehicle test

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAeqCPBw</td>
<td>Absolute roadside sound level from single vehicle test car passing through ‘with TRS’ track</td>
</tr>
<tr>
<td>LAeqCPBwo</td>
<td>Absolute roadside sound level from single vehicle test car passing through baseline or ‘without TRS’ track</td>
</tr>
<tr>
<td>LAeqCPB∆</td>
<td>Relative roadside sound level (‘with TRS’ – ‘without TRS’) from a single vehicle test car</td>
</tr>
</tbody>
</table>

In-cabin vibration

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSw</td>
<td>Absolute in-cabin vibration level in test car when passing through ‘with TRS’ track</td>
</tr>
<tr>
<td>RMSwo</td>
<td>Absolute in-cabin vibration level in test car when passing through ‘without TRS’ track</td>
</tr>
<tr>
<td>RMS∆</td>
<td>Relative in-cabin vibration (‘with TRS’ – ‘without TRS’) in test car.</td>
</tr>
</tbody>
</table>

In-cabin noise

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAeqIVw</td>
<td>Absolute in-cabin sound level in test car when passing through ‘with TRS’ track.</td>
</tr>
<tr>
<td>LAeqIVwo</td>
<td>Absolute in-cabin equivalent sound level in test car when passing through baseline or ‘without TRS’ track</td>
</tr>
<tr>
<td>LAeqIV∆</td>
<td>Relative in-cabin sound level (‘with TRS’ – ‘without TRS’) in test car.</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Complaint letter 1</td>
<td>178</td>
</tr>
<tr>
<td>B</td>
<td>Complaint letter 2</td>
<td>179</td>
</tr>
<tr>
<td>C</td>
<td>Complaint letter 3</td>
<td>180</td>
</tr>
<tr>
<td>D</td>
<td>Questionnaire</td>
<td>181</td>
</tr>
<tr>
<td>E</td>
<td>Statistical test for regression model</td>
<td>188</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The World Health Organization (WHO) has claimed that accidents caused by motor vehicle accidents are the second most frequent death for the entire world involving people aged 5-29 years old. WHO summarised that around 1.2 million people are killed each year on roads and 50 million are injured (Shinar, 2007). In Malaysia, a 10-year road traffic statistics had shown that the total number of accidents had risen from 215,632 cases in 1997 to 363,314 cases in 2007. This is equivalent to 3.73 deaths for every 10 000 registered vehicles in the same year (Kee et al., 2010). Based on the evidence, speeding and carelessness are two main causes of accidents, contributing 32.8 and 28.2 percent respectively to the total number of accidents (Ng and Selva, 2003).

Martindale and Ulrich (2010) state that the easiest and cheapest measure in order to control road accidents caused by excessive speed and carelessness is by using road signs and markings. However, when situations, where drivers confront with too many signs take place, drivers tend to ignore the excessive information thus limit the warning effect. This situation is named as ‘clutter effect’ (Edquist, 2008). It has been suggested that one of the reasons of their limited effectiveness may be due to their
overuse, particularly in situations of having less risk (Charlton, 2007; Jørgensen and Wentzel-Larsen, 1999). For example, Jørgensen and Wentzel-Larsen (1999) state that the effect of curve warning signs on drivers’ perceptions of risk is quite low, with only 6% overall safety impacts.

Therefore, an alternative measure consisting of road layout and its associated features, which is able to subconsciously inform drivers regarding upcoming road condition is introduced. One of them is transverse rumble strips (TRS). TRS is intended to give audible, visual and vibration cue effects when an operational decision point is approaching (Thompson et al., 2006). Moreover, TRS is widely used in Malaysia and all the road authorities in this country are believed to be using it. TRS is classified as passive speed control measure, which serves to alter drivers' perceptions of the correct speed for a particular road so that drivers may assume that a lower speed is more appropriate (Rothenberg et al., 2004). Based on road safety factors, the TRS has the potential for reducing crashes, alerting drivers, improving signs effectiveness, and increasing the rate of deceleration of vehicles along side having to reduce right-angle accidents, which are commonly associated with running through a stop sign or signal, by alerting drivers to an upcoming condition (Carlson and Miles, 2003; Freeman et al., 2008). As compared to other speed control devices, TRS has generally been relatively inexpensive and easy to install and maintain (Corkle et al., 2001). In addition, the impacts on driving comfort are considered minor as compared to speed humps and speed bumps (Liu et al., 2011).

Generally, there are three types of rumble strips that are based on the location of its installation i.e. 1) TRS 2) centrel ine rumble strips and (CRS) and 3) shoulder rumble strips (SRS) (Torbic et al., 2009). For instance, TRS are placed across the travel lanes of the roadway and perpendicular to the flow of vehicles as shown in Figure 1.1. Other than that, a TRS is placed in the lane and generally traverse more than two-thirds of the travel path perpendicular to the direction of travel (Carlson and Miles, 2003). This is why it is called an in-lane rumble strip in the United States. In Malaysia, TRS is called by various names such as transverse bar, yellow bar and speed breaker. A SRS is usually placed on roadway shoulders, outside of the travel lane as can be seen in Figure 1.2. The purpose of having shoulder rumbles strips is to mitigate single
vehicle run-off-road type crashes. A CRS is installed on or near the centreline of the roadway as in Figure 1.3, as the purpose is to mitigate head-on crashes and opposite-direction sideswipe crashes (Torbic, et al., 2009).

Figure 1.1 Typical TRS in Malaysia

![Figure 1.1 Typical TRS in Malaysia](image)

Figure 1.2 Shoulder rumble strips (Morena, 2002)

Figure 1.3 Centerline rumble strips (Torbic, et al., 2009)

1.2 Problem Statement

Generally, TRS around the world are diverse in terms of configurations, dimensions, colours, and profiles. In Malaysia whereas the national guidelines are too basic, resulting in district application. Moreover, TRS design heavily relies on the
judgment of district engineers and each TRS differs in terms of thickness, spacing, width, and profiles. All of these characteristics may play an important role in determining the level of TRS sound and vibration stimuli. Besides that, the agents of stimuli, which are visual, sound, and vibration are methodologically different in their functions (Bahar, et al., 2005). The 'eye-catching' colour and sound are only able to increase drivers' alertness but the vibration can also force drivers to slow down (Bahar, et al., 2005). In some areas where vehicles need to slow down, TRS design has been suggested to have the potential to maximise the vibration level so it can force drivers to slow down to the levels of comfortable driving. In other cases, a speed decrease may not be much necessary such as on high-speed highway, but road designer intends to increase driver's alertness, TRS may be used with a design of minimum vibration but is relatively higher in sound.

The lack of proper guidelines has made local engineers come up with their own design of TRS that intends to suit the TRS application in-situ. The design mostly comes from supplier proposal and it occasionally comes up with a poorly design of TRS. The main problem in the development of effective designs, apart from the consideration of the psychological parameters such as perception, is the complex physical processes when the tyres-road interaction is transferred to the driver (Lank and Steinauer, 2011). With poorly designed TRS, it may generate excessive vibration. Moreover, excessive vibration caused by TRS had increased the number of complaints in Dengkil, Selangor (Appendix A). Just as similar in road roughness cases, TRS dimension causes vehicle's tyres to move in a vertical variation on the pavement from an ideal plane. Therefore, it could be a bad choice of using TRS dimension as it can bring negative impact on “ride quality”. Excessive vibration also makes road users become fatigue easier, as it may also increase the dynamic loads applied to the pavement by the vehicle wheels, thus accelerate fatigue damage of the road structure (Cantisani and Loprencipe, 2010). Other than that, having short-term exposure to vibration causes small physiological effects such as an increase in heart rate and muscle tension while long-term exposure to vibration causes effects such as disk spine pain, digestive system, peripheral veins and the female reproductive organ problems (Katu et al., 2003). In exposure to TRS vibration, most drivers may not be subjected
to long-term exposure but some drivers who are frequent users of the particular TRS road may be exposed to considerable health risk.

The inappropriate design creates another problem, which is the noise annoyance to adjacent residents. The sound produced by the TRS, which aims to alert the driver, may also be annoying to the local residences. Complaints were made by the local residences to the authority in Batu 30, Jalan Johor Bahru-Pontian, Pengkalan Raja, Pekan Nanas, Johor (Appendix B) and Taman Bukit Indah, Tampoi (Appendix C) regarding the issue of noise annoyance generated by TRS. For instance, this is not just a local issue but also it occurs in other countries as reported in Clarkin (2010, August 8). The TRS involving approaching of a roundabout had to be removed from following complaints as they were all on its noise from adjacent residents. TRS noise is classified as impulse noise that can cause more annoyance to the receiver (Bahar, et al., 2005; Bendtsen et al., 2004).

Better designs of TRS are required to keep drivers alert and reduce vehicle speed and at the same time minimise noise annoyance and vibration that can affect drivers and passengers’ comfort and vehicle conditions. Based on a personal interview with several road authorities (Public Work Departments and municipal council), it is common among them that thicker TRS discourages over speed drivers and force them to slow down by generating relatively higher vibration. Although previous study found otherwise, it was unable to draw a strong conclusion (Meyer, 2006). Besides that, in some cases from observations, driving at 50km/h may cause someone to experience excessive vibration that affects his comfort level. This pattern does raise questions about the effectiveness of TRS used for the purpose of speed reduction. Therefore, this study takes a bigger role to justify and may support the previous finding.
1.3 Aims and Objectives of Studies

This study aims to contribute to the knowledge in improving the optimisation of TRS cross-section design for road user’s comfort and sustainable living of the neighbourhood.

To achieve the aim of the study, the following objectives have been identified:

i. To classify TRS profiles and assess the noise annoyance response towards TRS noise.

ii. To measure and model TRS roadside noise level and analyse the possible tyre-TRS interaction mechanisms that involved in the TRS roadside noise generation.

iii. To evaluate and estimate vehicle in-cabin sound and vibration due to TRS.

iv. To develop the optimum TRS cross-section design for road users’ comfort.

1.4 Scopes of Study

The scopes of study were as follow:

i. The CPB tests were carried out by using a passenger car (2005 Perodua Myvi 1.3) as a test car, which is among the most common types of passenger cars in Malaysia. The result may not be consistent and accurate if other types and classes of vehicles are used in the test as previous studies indicated that each type and class of vehicle has its own unique sound and vibration stimuli.
ii. The social survey study was carried out in three case study locations namely Kampung Parit Kudus at Pontian, Kampung Seri Kenangan at Pekan Nanas and Taman Bukit Indah at Tampoi Johor.

iii. Traffic noise assessment studies at the case study locations were measured at three-daytime hours at the location with TRS and without TRS. The longer period of assessment may be required in the future to represent noise characteristic at every hour in a day.

iv. The focus of this thesis is to determine the TRS noise characteristics that may trigger annoyance to the community. Therefore, the noise propagation aspects like the wind and temperature effect, ground characteristics, natural barrier and others were not discussed.

v. This study intends to propose the appropriate design that would able to alert drivers but would not compromise their comfort. It used the typical car on Malaysia road, such as Perodua Myvi. Therefore, the in-cabin vibration and sound performance of that model largely influenced the end result of the proposed design.

1.5 Contribution of Study

There were complaints from the community that the TRS could be annoying to residents who live adjacent to the roads. Although they had lodged complaints to the
authorities, the latter took a long time to remove the TRS and this signals that they did not take this problem seriously. Therefore, this study had been able to assess and highlight this problem.

The study also has identified the key parameters to be the cause of the TRS noise increment, hence this helps road planners to design a quieter TRS for the residential areas. At the same time, TRS can be designed 'noisy' to maximise its warning effect on the road that is far from residential areas. This study is also expected to assists road planners and engineers in determining the thickness that provides appropriate vibration that they would like to apply to the typical car on the road.

1.6 Structure of Thesis

This thesis is divided into six chapters. Chapter 1 explains the introduction of study. This includes the background of the study, problem statement, objectives and scope of the study. Chapter 2 reports the literature review. Background of TRS application, its effectiveness, physical properties, background knowledge on traffic noise, sound and vibration stimuli and previous studies on factors affecting TRS sound and vibration are discussed. Next, Chapter 3 focuses on methodology of study, where it discusses the method behind each objective. The chapter ends with a discussion of data analysis method. Chapter 4 further reports the results of the study and Chapter 5 presents the discussion. This thesis ends with Chapter 6 that highlights the conclusion and recommendations for future study.
1.7 Chapter Summary

This chapter begins with a discussion of the background knowledge of TRS. TRS is widely used because it has generally been relatively inexpensive, easy to install and maintain and its impacts on driving comfort are considered to be minor as compared to speed humps and speed bumps. Poorly designed TRS may generate excessive vibration, which can bring negative impact on “ride quality”. The inappropriate design also creates another problem, which is noise annoyance to adjacent residents. Four objectives have been organised in relation to problems that were stated above. However, this study is still bound to the scopes that have been described above.
REFERENCES

Bolton JS, Kwon HS (1998) Nearfield acoustical holography applied to sound radiation from tires. West Lafayette, Indiana, USA: School of Mechanical Engineering, Purdue University

Clarkin, M. (2010, August 2). Rumble strips near roundabout to be removed *hutchnews.com*.

Keulen WV, Duškov M (2005) Inventory study of basic knowledge on tyre/road noise. Delft: Road and Hydraulic Engineering Division of Rijkswaterstaat.

