BROYDEN’S AND THOMAS’ METHODS FOR IDENTIFYING
SINGULAR ROOTS IN NONLINER SYSTEMS

IKKA AFIQAH BINTI AMIR

A thesis submitted in partial fulfilment of the requirement for the award of the degree of Master of Science (Mathematic)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2013
For my beloved mother and father,

Zaleha Maïkon & Amir Hajib

My little sister and brothers,

My friends,

Raja Nadiah Raja Mohd Nazir
Nurfarhana Osman
Wan Khadijah Wan Sulaiman
and
Muhammad Nurhazrin Mohammad Nawi
ACKNOWLEDGEMENTS

First and foremost, thanks to Allah S.W.T, the Lord Almighty for the health and strength to complete this dissertation.

I would also like to express my most high gratitude to my supervisor, Tuan Haji Ismail Bin Kamis for his comment and valuable advices. Thanks also to my examiner, P.M Dr Rohanin Bin Ahmad for her patience in guiding me to complete this dissertation.

Special thanks to my beloved parents for their relentless blessing and support for me in my journey to continue my studies. Appreciation has to be reserved to my siblings and all my friends for their understanding and encouragement that has propelled me to make this dissertation possible and worthwhile. Last but not least, I would like to say thank you for all the people that involved in making this dissertation successful either directly or indirectly.
ABSTRACT

Nonlinear systems is one of the mathematical models that is commonly used in the engineering and science fields and it is quite complicated to determine the root especially when the problem is singular. This study is conducted in order to study the performance of Broyden’s and Thomas’ method, which are parts of Quasi-Newton method in solving singular nonlinear systems. By applying the algorithm of each methods, we conduct the calculation to achieve the approximate solutions. MATLAB software is used to compute and present the solutions. Some of useful test problems would describe the properties and usage of the methods. Hence, both methods that have been considered in this study give well approximate solution but Thomas’ method gives better results than Broyden’s method.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2 Background of the Study</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.3 Statement of the Problem</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.4 Objective of the Study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.5 Scope of the Study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.6 Significance of the Study</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW 6

2.1 Introduction 6
2.2 Nonlinear Systems 6
2.3 Newton Method 8
2.4 Quasi Newton Method 11
 2.4.1 Broyden’s Method 12
 2.4.2 Thomas’ Method 15

3 RESEARCH METHODOLOGY 16

3.1 Introduction 16
3.2 Research Framework 17
3.3 The Initial Point 18
3.4 Stopping Criterion 19
 3.4.1 Properties of Broyden’s Method for
 Singular Problems 20
3.5 Broyden’s Method 20
 3.5.1 Flow Chart of Broyden’s Algorithm 22
3.6 Thomas’ Method 23
 3.6.1 Flow Chart of Thomas’ Algorithm 25
4 RESULTS AND DISCUSSIONS

4.1 Introduction 26

4.2 Results 26

4.2.1 Example 4.1 27

4.2.2 Example 4.2 41

4.2.3 Example 4.3 44

4.2.4 Example 4.4 53

4.2.5 Example 4.5 57

4.3 Discussions 60

4.3.1 Number of Iteration 60

4.3.2 Descent Direction 61

4.3.2.1 Broyden’s Method 62

4.3.2.2 Thomas’ Method 63

5 SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Introduction 65

5.2 Summary 65

5.3 Conclusion 66
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Results of solving Example 4.1 by using Broyden’s method.</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of solving Example 4.1 by using Thomas’ method.</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of solving Example 4.2 by using Broyden’s method.</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Results of solving Example 4.2 by using Thomas’ method.</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of solving Example 4.3 by using Broyden’s method for initial value, $x^0 = (0.5, 0.5)$.</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of solving Example 4.3 by using Thomas’ method for initial value, $x^0 = (0.5, 0.5)$.</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Results of solving Example 4.3 by using Broyden’s method for initial value, $x^0 = (−0.5, 0.5)$.</td>
<td>47</td>
</tr>
</tbody>
</table>
4.8 Results of solving Example 4.3 by using Thomas’ method for initial value, \(x^0 = (-0.5, 0.5) \).

4.9 Results of solving Example 4.3 by using Broyden’s method for initial value, \(x^0 = (-0.5, -0.5) \).

4.10 Results of solving Example 4.3 by using Thomas’ method for initial value, \(x^0 = (-0.5, -0.5) \).

4.11 Results of solving Example 4.4 by using Broyden’s method for initial value, \(x_0 = (-1, -2, 0.6) \).

4.12 Results of solving Example 4.4 by using Thomas’ method for initial value, \(x_0 = (-1, -2, 0.6) \).

4.13 Results of solving Example 4.4 by using Broyden’s method for initial value, \(x_0 = (0.1, 0.5, 0.2) \).

4.14 Results of solving Example 4.4 by using Thomas’ method for initial value, \(x_0 = (0.1, 0.5, 0.2) \).

4.15 Results of solving Example 4.5 by using Broyden’s method.

4.16 Results of solving Example 4.5 by using Thomas’ method.

4.17 The results of Broyden’s and Thomas’ method on Example 4.1-4.5

4.18 The values of \(d_0 \), for Example 4.3 by using Thomas’ method
Number of iteration in solving Example 4.3 by using Thomas' method
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Broyden’s Algorithm’s Flowchart</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Thomas’ Algorithm’s Flowchart</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Graph of solving Example 4.1 by using Broyden’s method</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Graph of solving Example 4.1 by using Thomas’ method</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph of solving Example 4.2 by using Broyden’s method</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Graph of solving Example 4.2 by using Thomas’ method</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Graph of solving Example 4.3 by using Broyden’s method with initial $x_0 = (0.5, 0.5)$</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Graph of solving Example 4.3 by using Broyden’s method with initial $x_0 = (0.5, 0.5)$</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Graph of solving Example 4.3 by using Broyden’s method with initial $x_0 = (-0.5, 0.5)$</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>Graph of solving Example 4.3 by using Thomas’ method with initial $x_0 = (-0.5, 0.5)$</td>
<td>49</td>
</tr>
</tbody>
</table>
4.9 Graph of solving Example 4.3 by using Broyden’s method with initial $x_0 = (-0.5, -0.5)$ 52

4.10 Graph of solving Example 4.3 by using Thomas’ method with initial $x_0 = (-0.5, -0.5)$ 52

4.11 Graph of solving Example 4.5 by using Broyden’s method 59

4.12 Graph of solving Example 4.5 by using Thomas’ method 59
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDICE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coding MATLAB of Broyden’s and Thomas’ methods for solving singular nonlinear system</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(f \) - function of equation
\(x \) - variable
\(f(x) \) - function of \(x \)
\(x_0 \) - initial point
\(x^* \) - local solution
\(d_k \) - search direction in the \(k^{th} \) iteration
\(< \) - less than
\(> \) - greater than
\(= \) - equality
\(\leq \) - less than or equal to
\(\geq \) - greater than or equal to
\(\approx \) - approximation
\(\delta \) - limit value of norm
\(\varepsilon \) - epsilon, represents a very small number, near zero
\(\infty \) - infinity symbol
\(\gamma \) - Euler-Mascheroni constant.
\(\gamma = 0.527721566... \)
\([\] \) - matrix of numbers
\(|x| \) - absolute value
\(\|x\| \) - norm
\(A^T \) - matrix transpose
\(A^{-1} \) - inverse matrix
\textit{rank (A)} - rank of matrix A
\textit{dim (U)} - dimension of matrix A
\mathbb{R} - real numbers set
\lim_{x \to \infty} f(x) - limit value of a function
\sum - the summation of
CHAPTER 1

INTRODUCTION

1.1 Introduction

Generally, linear systems can be described as the system that the output is proportional to its input which is definitely contradic with a nonlinear systems. A system is said to be nonlinear if it does not contain a linear system where it does not satisfy the superposition principle and its output is not directly proportional to its input. Nonlinear problem also arise in engineering, biology, physic and finance field. In real world problem, most physical systems are inherently nonlinear, such as Navier-Stokes equations in fluid dynamics, Lotka-Volterra in biology and Black-Scholes Partial Differential Equation (PDE) in finance area. A nonlinear system includes any problem that the variables need to be solved but cannot be presented as a linear combination of independent components. Nonlinear equation is quite complicated to solve. Infeasibility to combine the solutions to create new solutions is one of the difficulties in solving nonlinear problems.
Nonlinear equations can be written as $F(x) = 0$ where $F : R^n \rightarrow R^n$ is nonlinear mapping. Consider there exists a solution $x^* \in R^n$. If $F'(x^*)$ is a singular matrix then the nonlinear equations is singular and x^* is a singular root at singular point. Singular root or singular point is said to be the solution, though it is not unique since there are many solution in the range that fulfill the condition of the equations. To understand about singularity, Sánchez (1979) has shown the solution of second-order equation that generally can be written as follows,

$$\omega(z) = (z - z_0)^r \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Based on the solution given, we can say it has singular point if $z = z_0$ and the singular point $z = z_0$ can be classified as regular singular point if function $p(z)$ and $q(z)$ in the equation have at most a pole of order 1 and 2 respectively at $z = z_0$. Since $z = z_0$, therefore z_0 is a regular singular point of this equation, then the solution is presented as

$$\omega(z) = (z - z_0)^r \left[1 + \sum_{n=0}^{\infty} a_n (z - z_0)^n \right].$$

This is valid when $0 < |z - z_0| < a$, where a represents any maximum value that fulfill the condition of the solution. The expression showed that the solution cannot be at single point as long as the singular points $z - z_0$ have no single value. The points have any other value in the range between 0 and a.

From previous discussion, the singular point obtained by the first derivative of nonlinear equations, $F'(x^*)$ is a singular matrix where x^* is a singular root. The singularity of $F'(x^*)$ has potential to determine the convergence behavior of an iterative sequence. Therefore, we consider that $F'(x)$ to be singular on the $S = \{ x \in R^n | \det F'(x) = 0 \}$ and $x^* \in S$ if it satisfied the singular assumptions follows (Buhmiler, 2010) :
i. F is twice Lipschitz continuously differentiable.

ii. $\text{Rank } (F'(x^*)) = n - 1$.

iii. Let N be the null space of $F'(x^*)$ spanned by $\varphi \in \mathbb{R}^n$ and X the range space such that $\mathbb{R}^n = N \oplus X$. For any projection P_N onto N parallel to X we assume

$$P_N F''(x^*)(\varphi, \varphi) \neq 0.$$

From this information, it is clear that when the problems have singularities, we have difficulties to solve it. There are a lot of methods have been discussed that possible to handle this problems.

1.2 Background of the Study

Dennis and Jorge (1977) have mentioned that nonlinear problems in finite dimensions are generally solved by iteration and the known method for attacking this problem is Newton’s method. Newton’s method for nonlinear equations can be derived by assuming that we have an approximation x_k to x^* and that in a neighbourhood of x_k the linear mapping

$$L_k(x) = F(x_k) + F'(x_k)(x - x_k)$$

is a good approximation to F. In this case, better approximation x_k to x^* can be obtained by solving the linear system $L_k(x) = 0$. Thus Newton’s method takes an initial approximation x_0 to x^*, and attempts to improve x_0 by the iteration,

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}, \quad k = 0, 1, \ldots$$

(1.1)
If \(F'(x^*) \) is invertible the Newton sequence (1.1) will converge quadratically to \(x^* \) if the initial guess, \(x_0 \) is sufficiently near \(x^* \). However, when \(F'(x^*) \) fails to be invertible we will say the point \(x^* \) is singular. In this case, the Newton iterates will not converge quadratically to \(x^* \). The convergence is to be linear if \(x_0 \) is chosen not only near \(x^* \) but in a special type of region that does not contain any ball about \(x^* \). (Kelley and Suresh, 1983).

In addition, Dennis and Jorge (1977) have concluded that when Newton’s methods is used to find a root and the derivative is singular at the root, convergence of the Newton sequences is in general linear. They are also mentioned that the disadvantages of Newton’s method are that a particular problem may require a very good initial approximation to \(x^* \) and \(F'(x^*) \) need to determine for each \(k \).

Hence, the Quasi-Newton method have been proposed as useful modifications of Newton’s method for general nonlinear systems of equations. Quasi-Newton methods have potential benefit in solving these algebraic system. Because of the good potential of Quasi-Newton in solving nonlinear function, in this study we will use Broyden’s and Thomas’ methods to get the solution for the singular problems.

1.3 Statement of the Problem

This research will embark on a study of Broyden’s and Thomas’ methods, ability in solving singular nonlinear systems.
1.4 **Objectives of the Study**

This study will be conducted to achieve the objectives as follows:

1.4.1 To code Broyden’s and Thomas’ algorithms using MATLAB.
1.4.2 To apply the Broyden’s and Thomas’ methods in solving singular nonlinear systems.
1.4.3 To compare the performance of Broyden’s and Thomas’ algorithms.
1.4.4 To analyze the results of simulation and determine the efficiency of both methods.

1.5 **Scope of the Study**

This study focuses on solving singular nonlinear systems. Broyden’s and Thomas’ methods are used to handle this problem by approximation the Jacobian according to the formula considered and then injected into the algorithm. The algorithm for both methods is coded using MATLAB.

1.6 **Significance of the Study**

In solving singular nonlinear systems, it is hard to solve using the classical method. Therefore, the Quasi-Newton methods are presented to solve the singular nonlinear systems. This study will give us better understanding on the ability of using the Quasi-Newton methods to solve singular problems. The Broyden’s and Thomas’ methods are used due to their good behavior to approximate the Jacobian.
REFERENCES

