MODELLING OF ROAD SURFACE POLLUTION BUILDUP AND WASHOFF USING RAINFALL SIMULATOR

MAHADI LAWAN YAKUBU

UNIVERSITI TEKNOLOGI MALAYSIA
MODELLING OF ROAD SURFACE POLLUTION BUILDUP AND WASHOFF USING RAINFALL SIMULATOR

MAHADI LAWAN YAKUBU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JULY 2015
Specially dedicated to my father, mother, wife, children, brothers and sisters I don’t have enough words to thank you, for your immense support, care, and love.
ACKNOWLEDGEMENT

All praise and thanks be to the Almighty, the most Gracious the Merciful, beside which there is no other deity worthy of worship. The blessings of the Almighty be upon the prophets from first to the last and all those noble men and women after them. I would like to thank my supervisor, Prof. Dr. Zulkifli Bin Yusop for his timely guidance and cooperation throughout the duration of this research work. I would also like to pay a special acknowledgement to my family members, my wife, Rumaisau Rabiu Inuwa; my daughters, Halima, and Shamau; and also my son, Mahadi for been a source of joy, and a comfort throughout my study. To my father, and mother, I have no enough words to thank you for the prayer and support. May Allah reward you all. This study would not have been possible without the financial commitment of the Tertiary Education Trust fund (TETFund) Nigeria, Nineteen consult Ltd, and Apostle associates Ltd. I am highly grateful.
ABSTRACT

Water quality management of nonpoint source (NPS) pollution is still being confronted with identification and assessment. The extent of pollution due to NPS in tropics is not yet affirmed, and the relative influences of its associated sources were not yet totally understood. This study explored the significance of road as a NPS unit in tropical region of persistent rainfall, and investigated the possible sources of heavy metals in urban areas. To achieve the objectives of this study, the natural rainfall dynamic of the study area was appraised using the flour pellet method. The information was used as a basis for developing a highly efficient Rainfall Simulator (RS) that was used to investigate pollutant washoff process under different rainfall depth and intensities. A total of 30 buildup samples were collected from five chosen roads of varying characteristics, and fractionated into 10 classes of particle sizes each. For quantitative analysis, 60 samples were analysed for dissolved Zn, Fe, Cd, Pb, Cu, Ni, Mn, Al, and Cr concentrations. A multivariate principal component and factor analyses were used to investigate the likely sources of these heavy metals. Three sources were identified, the indigenous, geogenic and scavenge. The natural raindrop sizes were found to vary from less than 1.2 mm to as big as 7.0 mm with median raindrop diameters (D_{50}) of 2.51 mm and a mean of 2.56 mm. These raindrops have an average rain kinetic energy content of 30 J m$^{-2}$ mm$^{-1}$. The developed RS can satisfactorily simulate rain intensity similar to natural rainfall, with an average kinetic energy content of 42 J m$^{-2}$ mm$^{-1}$ and a D_{50} between 2.41 and 2.64 mm. An advanced principal component and cluster analysis identified TDS as a surrogate for measuring dissolved metals pollution among eight physicochemical parameters considered, and was therefore used in the modelling of the washoff process. The developed models suggested that the rain intensity plays a more prominent role in the occurrence of first flush, while the rain depth plays a central role in the total washoff event. This research demonstrated that the influence of sediment to retain mass loading did not necessarily translate to higher pollution loading of heavy metals, and the residency of heavy metals in different particle classes cannot be generalised.
ABSTRAK

Pengurusan kualiti air yang melibatkan pencemaran punca bukan titik (NPS) masih dihambat dengan isu pengenalpastian dan penilaian. Tahap pengurusan NPS di rantau tropika masih belum mantap dan faktor-faktor relatif yang mempengaruhi punca pencemaran ini masih belum difahami keseluruhannya. Kajian ini meneroka kepentingan jalan raya sebagai unit NPS di rantau tropika yang menerima hujan sepanjang tahun, dan menyiasat punca sumber logam berat dalam kawasan bandar. Bagi mencapai objektif kajian ini, kedinamikan hujan semula jadi di kawasan kajian telah diteliti menggunakan kaedah pelet tepung. Maklumat ini dijadikan asas untuk membangunkan simulator hujan (RS) yang effisien untuk menyiasat proses basuhan pencemaran bagi tapuran hujan yang berbeza kedalaman dan keamatan. Sebanyak 30 sampel penumpukan telah diambil dari lima permukaan jalan raya yang mempunyai ciri-ciri berlainan. Dan diasingkan secara berperingkat kepada 10 kelas saiz partikel. Untuk penentuan kualiti, sebanyak 60 sampel telah dianalisis untuk kandungan Zn, Fe, Cd, Pb, Cu, Ni, Mn, Al, dan Cr. Kaedah komponen utama multivariat dan analisis faktor telah digunakan untuk menentukan punca logam berat. Tiga punca utama telah dikenalpasti, iaitu punca setempat, punca geogenik dan punca luar kawasan. Saiz titisan hujan semula jadi didapati berbeza-beza dengan garispusat kurang dari 1.2 mm hingga sebesar 7.0 mm dengan nilai median (D₅₀) 2.51 mm dan purata 2.56 mm. Titisan hujan ini mengandungi purata tenaga kinetik sebanyak 30 J m⁻² mm⁻¹. RS yang dibangunkan telah dapat mensimulasi keamatan hujan semulajadi dengan memuaskan dengan purata kandungan tenaga kinetik 42 J m⁻² mm⁻¹ dan D₅₀ di antara 2.41 dan 2.64 mm. Hasil analisis lanjutan komponen utama dan kluster bagi lapan parameter fisikokimia mendapati bahawa TDS sesuai dijadikan parameter wakil untuk mengukur tahap pencemaran logam dan boleh digunakan dalam pemodelan proses basuhan. Model yang dibangunkan mencadangkan bahawa keamatan hujan memainkan peranan penting dalam penyahdan pertama, manakala kedalaman hujan mempunyai peranan penting dalam menentukan keseluruhan kejadian basuhan. Kajian ini menunjukkan bahawa pengaru sedimen dalam menjerap beban jisim tidak semestinya menghasilkan beban logam berat yang lebih tinggi dan hayat logam berat yang dijerap oleh sedimen dengan saiz berbeza tidak boleh ditentukan secara umum.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 General 1
1.2 Research Background 1
1.3 Statement of the Problem 2
1.4 Research Objectives 5
1.5 Scope of the Study 5
1.6 Significance of the Study 6
1.7 Identification of Research Methodology 6
 1.7.1 Literature Review 8
 1.7.2 Development of a rainfall simulator 8
 1.7.3 Selection of study site and sampling 8
1.8 Organisation of Thesis 9

2 LITERATURE REVIEW 11

2.1 Introduction 11
2.2 Hydrologic Impact of Urbanisation 12
 2.2.1 Types and quantification of imperviousness 15
2.2.1.1 Directly connected impervious area 16
2.2.1.2 Gross imperious area 16
2.3 Urban Nonpoint Source Pollution 17
 2.3.0.3 Types of pollutants associated with NPS. 17
 2.3.0.4 Quantification of NPS in urban catchment 18
2.4 Natural Rainfall Kinetics and parameterisation 18
 2.4.1 Raindrop diameter 19
 2.4.2 Raindrop size distribution 19
 2.4.3 Raindrop measurement 22
 2.4.4 Fall velocity 23
 2.4.5 Raindrop kinetics 24
2.5 Rainfall simulator 25
 2.5.1 Evolvement of RS 25
 2.5.2 The use of RS in the study of NPS in sealed surfaces 26
 2.5.3 Design considerations for RSs 30
 2.5.4 RS Classifications 33
2.6 The importance of road in watershed pollution 34
 2.6.1 Influence of grain size in urban pollution 35
 2.6.2 Road sediment collectors 37
 2.6.3 Considerations and factors affecting particles evacuation on roads 38
2.7 Heavy metal partition and measurement 38
2.8 Importance of physicochemical parameters in runoff 42
2.9 Multivariate analytical techniques 43
 2.9.1 The principal component analysis (PCA) 44
 2.9.2 Factor Analysis 46
 2.9.3 Application of multivariate analysis in pollutants source identification 47
2.10 Modelling of NPS buildup and washoff 53
 2.10.1 Buildup process 53
 2.10.2 Washoff process 55
 2.10.3 Event Mean Concentration (EMC) 59
2.11 Heavy metal Washoff 60
 2.11.1 First flush 65

| 2.12 Summary | 71 |

3 METHODOLOGY	72
3.1 Introduction	72
3.2 The study area	72
3.2.1 Nature of dry days in the study area	73
3.3 Appraisal of natural rainfall parameters	75
3.3.1 Mathematical derivation of the natural rainfall parameters	78
3.3.2 Parameterization of drop size distributions	79
3.4 Rainfall simulator design	80
3.4.1 The hydraulic system	81
3.4.2 The structural frame	84
3.4.3 Electromechanical components	86
3.5 Site selection	87
3.5.1 The characteristics of the chosen roads	93
3.5.2 Vacuums description	95
3.6 Field Sampling protocol	96
3.6.1 Dry sampling protocol	97
3.6.2 Wet sampling protocol	98
3.6.3 Selection of rain intensity for simulation	101
3.7 Sediment processing	103
3.8 Physicochemical analysis	104
3.8.1 Electrical Conductivity (EC), pH, Dissolved Oxygen (DO), Total Dissolved Solids (TDS), and Carbon matrices	105
3.8.2 Organic matrices	106
3.8.3 Total Suspended Solids (TSS) in washoff samples	107
3.9 Chemical (Metal) analysis	107
3.10 Factor analysis steps	110
3.11 Summary	111

<p>| 4 NATURAL AND SIMULATED RAIN KINETICS AND CHARACTERIZATION OF ROAD RUNOFF | 112 |
| 4.1 Introduction | 112 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>The Influence of Rain Intensity on Raindrop Diameter and the Kinetics of Natural Rainfall</td>
<td>112</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameterisation of the rainfall parameters</td>
<td>120</td>
</tr>
<tr>
<td>4.4</td>
<td>Development of rainfall simulator for wet weather process</td>
<td>127</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Nozzle selection</td>
<td>127</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Calibration of rainfall intensity and rain uniformity</td>
<td>131</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Evaluation of simulated raindrop diameter</td>
<td>136</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Estimation of Terminal Velocity</td>
<td>138</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Evaluation of kinetic energy</td>
<td>144</td>
</tr>
<tr>
<td>4.5</td>
<td>Sampling comparison of vacuums</td>
<td>145</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Recovery efficiencies</td>
<td>146</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Selection factors</td>
<td>151</td>
</tr>
<tr>
<td>4.6</td>
<td>Buildup and washoff sample weights</td>
<td>151</td>
</tr>
<tr>
<td>4.7</td>
<td>Particle size distributions</td>
<td>152</td>
</tr>
<tr>
<td>4.8</td>
<td>Variability of the measured physicochemical parameters</td>
<td>158</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Buildup physicochemical parameters</td>
<td>158</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Rainwater and the washoff physicochemical parameters</td>
<td>159</td>
</tr>
<tr>
<td>4.8.3</td>
<td>The organic matrices</td>
<td>160</td>
</tr>
<tr>
<td>4.8.3.1</td>
<td>Carbon matrices in the Buildup samples</td>
<td>160</td>
</tr>
<tr>
<td>4.8.3.2</td>
<td>Carbon matrices in the washoff samples</td>
<td>162</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary</td>
<td>163</td>
</tr>
<tr>
<td>5</td>
<td>HEAVY METAL SOURCES IDENTIFICATION AND WASHOFF MODELLING</td>
<td>165</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>5.2</td>
<td>Heavy metal sources identification</td>
<td>165</td>
</tr>
<tr>
<td>5.3</td>
<td>General characteristics of data</td>
<td>166</td>
</tr>
<tr>
<td>5.4</td>
<td>Principal Component analysis</td>
<td>167</td>
</tr>
<tr>
<td>5.5</td>
<td>Factor Analysis of the data</td>
<td>170</td>
</tr>
<tr>
<td>5.6</td>
<td>Particle mass analysis, land uses, and the longevity factor in urban NPS</td>
<td>173</td>
</tr>
<tr>
<td>5.6.1</td>
<td>The concentrations enrichment ratio</td>
<td>180</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.7</td>
<td>Washoff of heavy metals</td>
<td>182</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Heavy metal pollution surrogate</td>
<td>182</td>
</tr>
<tr>
<td>5.8</td>
<td>Selection of Surrogate measure for washoff process</td>
<td>187</td>
</tr>
<tr>
<td>5.9</td>
<td>Estimation of Models parameters</td>
<td>190</td>
</tr>
<tr>
<td>5.10</td>
<td>Washoff modelling</td>
<td>195</td>
</tr>
<tr>
<td>5.11</td>
<td>First flush and the influence of rain intensity, rain depth, and the surface texture in washoff process</td>
<td>198</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary</td>
<td>203</td>
</tr>
</tbody>
</table>

6 CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>204</td>
</tr>
<tr>
<td>6.2</td>
<td>Recommendation</td>
<td>207</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendices A – I</td>
<td>240 – 260</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics and performance of different RS systems</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Guidelines for chosen container type, holding time, volume required and filling technique</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Heavy metal sources related to vehicular and road surfaces</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of the pollution sources for heavy metals</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Dissolved to particulate metal element mass ratios (\frac{D}{P})</td>
<td>63</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of first flush methodologies</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Considered residential land use characteristics</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Considered industrial land use characteristics</td>
<td>90</td>
</tr>
<tr>
<td>3.3</td>
<td>Considered institutional land use characteristics</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>Average daily traffic of the chosen locations</td>
<td>95</td>
</tr>
<tr>
<td>3.5</td>
<td>Basic features of water and generic filter systems</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>The efficiency of the RS for different simulation event</td>
<td>101</td>
</tr>
<tr>
<td>3.7</td>
<td>Matched ARIs of the study area with the simulated rainfall</td>
<td>103</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary of the equipment, and the measuring method used</td>
<td>105</td>
</tr>
<tr>
<td>4.1</td>
<td>Rainfall intensity and corresponding (D_{50})</td>
<td>113</td>
</tr>
<tr>
<td>4.2</td>
<td>Rainfall intensity, frequency and contribution to annual rainfall of Skudai, Peninsular Malaysia</td>
<td>117</td>
</tr>
<tr>
<td>4.3</td>
<td>Average nozzle discharge (Lpm)</td>
<td>128</td>
</tr>
<tr>
<td>4.4</td>
<td>Descriptive discharge characteristics (Lpm) of the nozzle</td>
<td>128</td>
</tr>
<tr>
<td>4.6</td>
<td>Intensity and uniformity at different frequency operated at 93kPa</td>
<td>132</td>
</tr>
<tr>
<td>4.5</td>
<td>Rainfall intensity and uniformity of the RS</td>
<td>133</td>
</tr>
<tr>
<td>4.7</td>
<td>Descriptive rain uniformity (C' u) of the rainfall simulator</td>
<td>134</td>
</tr>
<tr>
<td>4.8</td>
<td>Median drop diameter at different operating pressures</td>
<td>137</td>
</tr>
<tr>
<td>4.9</td>
<td>Terminal velocities of the RS using the derived formulation, and the terminal velocity of natural raindrop</td>
<td>142</td>
</tr>
<tr>
<td>4.10</td>
<td>Common height for downward pressurised nozzles RSs</td>
<td>144</td>
</tr>
<tr>
<td>4.11</td>
<td>Simulated (KE_{mm}) of the RS and the (KE_{mm}) of natural rainfall of the study area</td>
<td>145</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Measured mean texture depth</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>The Calculated road dust sediment properties</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Average concentrations of physical (water quality) parameters in the buildup samples</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Average initial concentrations of rainwater physical parameters</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>EMC of physical parameters (water quality) in the washoff samples</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Concentrations of TC, IC, and TOC in the buildup samples (mg/kg)</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>TC, IC, and TOC EMC concentrations in washoff</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>The TSS variability with time of simulation for each location (TSS values in mg/L)</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Descriptive Statistics of buildup metal concentrations</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Heavy metal concentration in road buildup/runoff (mg/kg) from different studies</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Correlation matrix of the Pearson’s coefficient for the trace metal concentrations.</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Factor loading, unrotated analysis</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Factor loading, rotated analysis</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Disparity ratio ($\leq 500 : > 500 \mu m$) between fine and coarse particles and their metal contents for different study locations</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>The mean and standard deviation of the washoff data</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>The commonality of the heavy metals’ variances</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Modelled washoff parameters as a function of rain duration</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Modelled washoff parameters as a function of rain depth</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Predicted washoff modelled parameters after previous washoff event</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Summary of the washoff at location S2</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Summary of the washoff at location S4</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Summary of the washoff at location S5</td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>ICP-MS operating parameters</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The schematic flow chart of the methodology</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Relationship between imperviousness and surface runoff</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>The impact of urbanisation on stream flow hydrograph</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Pb and Zn prevalence from different sources</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>The dynamics of buildup and washoff processes with time</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>Washoff of dissolved and particulate-bound metal fractions</td>
<td>61</td>
</tr>
<tr>
<td>2.6</td>
<td>Example of dominant total dissolved solids (TDS) in road washoff</td>
<td>64</td>
</tr>
<tr>
<td>2.7</td>
<td>Example of first flush for low intensity, low flow volume storm for dissolve and particulate metals</td>
<td>66</td>
</tr>
<tr>
<td>2.8</td>
<td>Example of first flush for high intensity, high flow volume storm for dissolve and particulate metals</td>
<td>67</td>
</tr>
<tr>
<td>2.9</td>
<td>The plot between normalized cumulative pollutant load/volume vs normalized cumulative runoff time</td>
<td>70</td>
</tr>
<tr>
<td>2.10</td>
<td>The plot between normalized cumulative pollutant load vs normalized cumulative runoff volume</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of Skudai in Peninsular Malaysia</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of Peninsular Malaysia showing the study location (Skudai), and raingauge locations</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>The antecedent probability plot of Sedenak, Johor, Malaysia based on sixty year rainfall record</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Typical fractionated flour pellets using sieves</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Recalibration of the experimental setup showing needle gauges, lining and water drop fall height.</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>The Rainfall simulator showing the electromechanical component, structural frame, and hydraulic system</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>The two-dimensional view of the RS systems</td>
<td>83</td>
</tr>
<tr>
<td>3.8</td>
<td>Veejet 80100 nozzles and their water spray</td>
<td>84</td>
</tr>
<tr>
<td>3.9</td>
<td>The three-dimensional view of the RS systems</td>
<td>85</td>
</tr>
<tr>
<td>3.10</td>
<td>Microcontroller and the rainfall simulator rotating arm</td>
<td>87</td>
</tr>
</tbody>
</table>
3.11 Jalan Penyiarian (S1) 92
3.12 Jalan Perdagangan 16 (S2) 92
3.13 Jalan Perdagangan 12 (S3) 92
3.14 Kolej 16 parking (S4) 93
3.15 University’s sport complex parking (S5) 93
3.16 Road Mean texture depth measurement 94
3.17 The pictorial macrotexture of the chosen roads 94
3.18 The two types of vacuums during sampling trial [The DeLonghi® Aqualand model WFF 1800PET (V1), and SYSTEMA® model BF 585-3 (V2)] 96
3.19 Dry sampling protocol 98
3.20 Washoff experimental setup 100
3.21 ICP–MS (Model Elan 6100, Perkin Elmer) 109
4.1 Storm (A) a typical very high intensity storm in Skudai, Peninsular Malaysia 114
4.2 Storm (B) a typical medium intensity storm in Skudai, Peninsular Malaysia 114
4.3 Raindrop distribution based on percent equivalent volume diameter of all samples 115
4.4 D_{50} - Intensity relationship 116
4.5 Comparison of D_{50} relationship with subtropical climates 118
4.6 Variation of rain intensity with Kinetic energy 119
4.7 Exponential DSD parameter λ – intensity relationship 121
4.8 Exponential and lognormal DSD of Skudai 122
4.9 Modelled drop size distribution using exponential distribution density function 123
4.10 Drop count - Intensity relationship 124
4.11 Logarithmised Standard deviation of the drop diameter – intensity relationship 125
4.12 Logarithmised mean of the drop diameters – intensity relationship 126
4.13 The predictive relationship of the nozzle pressure, pumping pressure, and water flow 129
4.14 Relationship between suction pressure, pumping pressure, water flow, and the nozzle pressure in the RS system 130
4.15 Arrangement of containers for the calibration of RS intensity and uniformity 131
4.16 The contour (mm) for the chosen combination of nozzles 135
4.17 Cross section of the vertical and horizontal profiles of rain depth
4.18 Apparatus used in the measurement of drop diameter (a) the Memmert® special universal oven, (b) complete set of Alpha® sieves, and (c) the digital weighing scale accurate to 0.001 g.
4.19 The velocity of fall at a given fall height for different simulated raindrop
4.20 Particle size distribution of the original road sediments
4.21 The original weight and recovered weight for V1 and V2
4.22 The collection efficiency for V1 and V2
4.23 Comparison of percentile recovery of this study and other studies
4.24 Particle size distribution for S1
4.25 Particle size distribution for S2
4.26 Particle size distribution for S3
4.27 Particle size distribution for S4
4.28 Particle size distribution for S5
5.1 The biplot of the principal component analysis
5.2 Mass percentile of each particle class (S1)
5.3 Mass percentile of each particle class (S2)
5.4 Mass percentile of each particle class (S3)
5.5 Mass percentile of each particle class (S4)
5.6 Mass percentile of each particle class (S5)
5.7 Road mass buildup for S1
5.8 Road mass buildup for S2
5.9 Road mass buildup for S3
5.10 Road mass buildup for S4
5.11 Road mass buildup for S5
5.12 Scree plot of the S2 washoff data
5.13 Scree plot of the S4 washoff data
5.14 Scree plot of the S5 washoff data
5.15 Association of physicochemical parameters with heavy metal pollution in S2
5.16 Association of physicochemical parameters with heavy metal pollution in S4
5.17 Association of physicochemical parameters with heavy metal pollution in S5
5.18 TDS washoff regression as a function of storm duration (S2)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19</td>
<td>TDS washoff regression as a function of storm duration (S4)</td>
<td>191</td>
</tr>
<tr>
<td>5.20</td>
<td>TDS washoff regression as a function of storm duration at S5</td>
<td>191</td>
</tr>
<tr>
<td>5.21</td>
<td>TDS washoff regression as a function of rain depth (S2)</td>
<td>193</td>
</tr>
<tr>
<td>5.22</td>
<td>TDS washoff regression as a function of rain depth (S4)</td>
<td>194</td>
</tr>
<tr>
<td>5.23</td>
<td>TDS washoff regression as a function of rain depth (S5)</td>
<td>194</td>
</tr>
<tr>
<td>5.24</td>
<td>Predicted heavy metal washoff residue after the preceding washoff event at location S2</td>
<td>196</td>
</tr>
<tr>
<td>5.25</td>
<td>Predicted heavy metal washoff residue after previous washoff event at location S4</td>
<td>196</td>
</tr>
<tr>
<td>5.26</td>
<td>Predicted heavy metal washoff residue after the previous washoff event at location S5</td>
<td>197</td>
</tr>
<tr>
<td>5.27</td>
<td>Normalized cumulative TDS load vs. normalized cumulative runoff volume for S2</td>
<td>202</td>
</tr>
<tr>
<td>5.28</td>
<td>Normalized cumulative TDS load vs. normalized cumulative runoff volume for S4</td>
<td>202</td>
</tr>
<tr>
<td>5.29</td>
<td>Normalized cumulative TDS load vs. normalized cumulative runoff volume for S5</td>
<td>203</td>
</tr>
<tr>
<td>A.1</td>
<td>Validation of Hudson (1963) Calibration Curve with data points</td>
<td>240</td>
</tr>
<tr>
<td>B.1</td>
<td>The chosen pump (The Grundfos model type CM3-3) performance curve at different pressures and discharges</td>
<td>241</td>
</tr>
<tr>
<td>D.1</td>
<td>Cumulative volume of D_{50} against individual D_{50}</td>
<td>244</td>
</tr>
<tr>
<td>D.2</td>
<td>Volumetric drop diameters at 18 kPa</td>
<td>245</td>
</tr>
<tr>
<td>D.3</td>
<td>Volumetric drop diameters at 41 kPa</td>
<td>245</td>
</tr>
<tr>
<td>D.4</td>
<td>Volumetric drop diameters at 60 kPa</td>
<td>246</td>
</tr>
<tr>
<td>D.5</td>
<td>Volumetric drop diameters at 93 kPa</td>
<td>246</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Antecedent dry day(s)</td>
</tr>
<tr>
<td>ADT</td>
<td>Average daily traffic</td>
</tr>
<tr>
<td>ARI</td>
<td>Average return interval</td>
</tr>
<tr>
<td>Bi</td>
<td>Bismuth (chemical element, with atomic number 83)</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt (chemical element, with atomic number 27)</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium (chemical element, with atomic number 24)</td>
</tr>
<tr>
<td>D</td>
<td>Drop diameter</td>
</tr>
<tr>
<td>D50</td>
<td>Mean drop diameter</td>
</tr>
<tr>
<td>DCIA</td>
<td>Directly connected impervious area</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved organic carbon</td>
</tr>
<tr>
<td>DSD</td>
<td>Drop size distribution</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>EMC</td>
<td>Event mean concentration</td>
</tr>
<tr>
<td>FA</td>
<td>Factor analysis</td>
</tr>
<tr>
<td>F:C</td>
<td>Fine to coarse ratio</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic information system</td>
</tr>
<tr>
<td>HEPA</td>
<td>High-Efficiency Particulate Air</td>
</tr>
<tr>
<td>I</td>
<td>Rain intensity</td>
</tr>
<tr>
<td>IC</td>
<td>Inorganic carbon</td>
</tr>
<tr>
<td>IDF</td>
<td>Intensity-Duration-Frequency</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>KEmm</td>
<td>Kinetic energy (raindepth)</td>
</tr>
<tr>
<td>KEtime</td>
<td>Kinetic energy (time)</td>
</tr>
<tr>
<td>MHCM</td>
<td>Malaysian Highway manual</td>
</tr>
<tr>
<td>MTD</td>
<td>Mean texture depth</td>
</tr>
<tr>
<td>NPS</td>
<td>Nonpoint source</td>
</tr>
<tr>
<td>PAR</td>
<td>Predicted to actual ration</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal components analysis</td>
</tr>
<tr>
<td>PCCA</td>
<td>Principal components and classification analysis</td>
</tr>
<tr>
<td>PSD</td>
<td>particle size distribution</td>
</tr>
<tr>
<td>PS</td>
<td>Point source</td>
</tr>
<tr>
<td>R</td>
<td>Rain depth</td>
</tr>
<tr>
<td>RDS</td>
<td>Road dust sediment</td>
</tr>
<tr>
<td>RS</td>
<td>Rainfall simulator</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>TC</td>
<td>Total carbon</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>TS</td>
<td>Total solids</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Drop diameter validation curve</td>
<td>240</td>
</tr>
<tr>
<td>B</td>
<td>CH3-3 Performance curve</td>
<td>241</td>
</tr>
<tr>
<td>C</td>
<td>ICP-MS Operating parameters and unit conversion</td>
<td>242</td>
</tr>
<tr>
<td>D</td>
<td>Median drop diameter curves</td>
<td>244</td>
</tr>
<tr>
<td>E</td>
<td>Principal components analysis code</td>
<td>247</td>
</tr>
<tr>
<td>F</td>
<td>Unrotated factor analysis code</td>
<td>250</td>
</tr>
<tr>
<td>G</td>
<td>Rotated factor analysis code</td>
<td>252</td>
</tr>
<tr>
<td>H</td>
<td>Advanced principal components analysis code</td>
<td>254</td>
</tr>
<tr>
<td>I</td>
<td>List of Publications</td>
<td>260</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

Nonpoint source (NPS) pollution is generally considered to be a diffuse source of pollution not associated with a specific temporal point of entry into the water body (Wyoming, 1999). NPS can further be defined as anything other than pollutants that enter the runoff transport routes at discrete identifiable locations that can usually be measured (Loague and Corwin, 2006). Point source (PS) pollutants are generally more toxic, and can readily be identified, quantified, and controlled. NPS pollution, on the other hand, is typically difficult or impossible to trace to a source (Loague and Corwin, 2005; Novotny, 2003; Stein et al., 2006), quantify (Candela et al., 2009; Ferrier et al., 2005) and control (Albiac et al., 2009; Ferrier et al., 2005) making implementation of effluent limitations almost impossible because they vary with the seasons and the weather (Carpenter et al., 1998). The NPS clean-up is costly and nearly impossible to accomplish (Loague et al., 1998), it also poses a more technical problem because of the extent of their contamination, which increases the amount of data required far beyond that of PS pollutants (Wagenet and Corwin, 1996). Therefore, the understanding of different surfaces’ sources and responses to the generation, transportation and transformation of NPS pollutants to receiving stream is crucial to any successful implementation of mitigating measures.

1.2 Research Background

Water quality management in developing countries, including Malaysia, is still being confronted with identification, assessment and control of nonpoint source pollution. Since, the majority of the pollutants are of diffuse origin, an in-depth
understanding of the possible pollutant’s pathways, and their contribution is of essence for drawing strategy to reduce their impacts on receiving waters (Ferrier et al., 2005).

Tropical regions, like Malaysia, have higher susceptibility to NPS pollution for both rural and urban areas (Al-Mamun, 2005) and data on pollutant buildup and washoff on distinct impervious surfaces in the tropics is extremely lacking and necessary for improved water quality (Rahmat, 2005; Chow, 2011). Generally, researchers have different understanding on the contribution from various sources of pollution to the overall loading of NPS, from severe (Quek, 1993; Simmons, 2001; Chang et al., 2004) to moderate (Lee, 1982; Pazwash, 1997). This Perhaps is largely because NPS is associated to certain uncontrollable climatic events, specific to geographic and geologic conditions, and may vary significantly in time and space (Zakaria et al., 2002; Novotny, 2003).

Surface runoff accounts for over 50% runoff volume in metropolitan area (Forster, 1996; Jain and Ali, 2001). Roads play a central role in urban hydrology, and their runoff is the most important of all runoffs from municipal area (Murakami et al., 2004); therefore, road runoff is one of the areas where knowledge of science and engineering is inevitably necessary when strategies for optimum solution of an environmental problem have to be developed. So, the contribution of roads’ runoff to the pollution of lakes and streams in Malaysia cannot be over emphasised.

1.3 Statement of the Problem

NPS inputs are the major source of water pollution today, and their impacts are profound with urban runoff ranked third most important causative agent of lake deterioration in the U. S. (Carpenter et al., 1998) and second in Agricultural watershed in Malaysia (Eisakhani et al., 2009). Although the threat of NPS pollutants differs throughout the world, they are generally of global importance because NPS pollution problems do not recognise the boundaries between nations, nor are they necessarily isolated by the physical barriers between continents (Corwin and Wagenet, 1996).

Globally, there were many studies on NPS pollution over the years and commensurate government and private sector participation but NPS is still a major source of water quality impairment in rivers, lakes and estuaries, and remain the number one threat to water quality in the US (Gannon, 1996; Griffith, 1999). Over a
century, this problem has been recognised and systematically studied in the developed countries with enactment of laws and mitigating measures, and some gains have been made. However, very little has been done to study and curtail the emergence of NPS in the developing countries like Malaysia.

Malaysia has enjoyed remarkable growth over the last few decades, with industrialization, agriculture, and tourism playing leading roles in its success story. However, today, despite its relatively positive environmental record, it faces problems of pollution from diffuse sources due to rapid increase in its population and urbanization (Yusop et al., 2005; Yusop et al., 2007; Zainudin et al., 2009; Chow et al., 2012; Chow et al., 2013). The cutting down of trees to accommodate large industrial factories and human shelters, the clearance of more agricultural land to meets food demand and boost national income were also a leading cause of water pollution in Malaysia (Malakahmad et al., 2008; Eisakhani et al., 2009). Migration of people to industrial and commercial centres further accelerates the transformation of its small towns to municipalities, and existing urban landscape into more densely populated areas. Moreover, not only did the industries depleting oxygen supply and spewing out poisonous gases during their production, the increase of cars for transporting goods and services in and around urban centres were also lending a hand in the pollution (Abdullah, 1995). This trend becomes accelerated with the shift of Malaysia’s development strategy, from agro based to manufacturing in the last four decades, in addition to the adoption of effective management systems for the handling of agricultural waste. This development ensures declined concern of agro-based pollution from 67% in 1980 to a steady state of 15% in the 90s (DOE, 1991).

The states in the western peninsular Malaysia were more prone to alarming level of anthropogenic contamination due to intensified urbanisation (Abdullah, 1995). Recently, Nazahiyah et al. (2007) studied the suspended solids (SS), biochemical oxygen demand (BOD$_5$), chemical oxygen demand (COD), nutrients (NO$_3$-N, NO$_2$-N, NH$_3$-N and P) and metal Pb in runoff from a residential catchment of 85% imperviousness in Skudai, Johor. They observed variations of BOD$_5$, COD, SS, and nutrients, in both the washoff and in the first flush amongst different storms. Similarly, Chow and Yusop (2009) carried out similar study in a different residential catchments. The result showed an elevated levels of BOD$_5$, COD, TSS, and O&G in the storm runoff samples. They also observed that natural rainfall intensity has influence on the washoff of TSS, and O&G, while the concentrations of BOD$_5$, and COD were influenced by ADD. Chow et al. (2011) found that the site mean concentrations in runoff from commercial catchment in Johor exceeded that reported in the Texas, and
Florida in the US; Saskatoon in Canada; and Shanghai, China; but lower than reported value in ChongJu, Korea. They attributed this to non-effective NPS management implementation. Chow et al. (2012) modelled the quantity and quality of runoff from residential, commercial, and industrial areas in Johor using SWMM to establish and compare the nature of pollutants buildup and washoff using local data. They concluded that buildup in Malaysia was small compared with the temperate zones, and its progression was limited due to its frequent rainfall.

There were few conducted studies on NPS pollution in Malaysia (e.g. Abdullah, 1995; Al-Mamun, 2005; Nazahiyah, 2005; Malakahmad et al., 2008; Eisakhani et al., 2009; Zainudin et al., 2009; Chow, 2011). These studies were localised to only urban and agricultural catchment scales. Among them, Al-Mamun (2005), Nazahiyah, (2005) and Chow (2011) seems to be pioneers in conducting a detailed study on urban catchment nonpoint source pollution. Presently, there is need to investigate the role played by various urban surfaces like road in the urban NPS pollution. Road surfaces can significantly contribute to the retention of heavy metals and sediments during dry weather periods as a result of atmospheric deposition, and other local sources. These accumulated pollutants are the major threats to the urban environment due to their conveyance to the surrounding catchments during wet weather washoff process (Yusop et al., 2005). The study of the Malaysian river and estuaries by Zakaria et al. (2002) concluded that the receiving water bodies were heavily polluted. They reported concentrations of organic and inorganic compounds from different land uses.

This research hopes to deepen or open a new discovery on the role of roads as a source of NPS pollution in urban setup. It will also investigate the possible primary sources where these pollutants originates. The implication of different rain events on the transportation of these pollutants during the wet-weather washoff process will also be appraised. The outcome from this study would ultimately deepen the understanding of NPS and their likely primary sources in an urban landscape. The result can be of utmost help to managers for a holistic control, by targeting the sources where pollutants originate.
1.4 Research Objectives

This research is aimed to close up the existing data gap on the role of road as an impervious unit in urban landscape and its relative contributions to the overall NPS pollution load in Malaysia. Specifically, this study objectives are to:

1. Determine the influence of natural rain intensity on the raindrop diameter and its kinetics.
2. Develop an artificial rainfall simulator that will replicate the natural rainfall of the study area as closely as possible.
3. Identify the possible primary sources where heavy metals originate using a multivariate analytical technique.
4. Determine a heavy metal pollution surrogate, and investigate the transportation of pollutants during a wet weather washoff process on different road surfaces under different rain event.

1.5 Scope of the Study

Since the extent of diffuse pollution is related to certain uncontrollable climatic events, as well as geographic and geologic conditions, and may differ greatly from place to place and from year to year (Novotny, 2003, Forster, 1998, Egodawatta et al., 2009) this research will undertake the following to achieve the objectives of the study.

1. Appraisal of natural rainfall characteristics of the study area.
2. Development of an artificial rainfall simulator to generate rainfall parameters similar to the natural rainfall of the study area.
3. Laboratory analyses to determine the concentration of heavy metals (Zn, Fe, Cd, Pb, Cu, Ni, Mn, Al and Cr), the carbon matrices [Inorganic carbon(IC), total carbon (TC), and total organic carbon (TOC)] and the associated physicochemical parameters [dissolve oxygen (DO), Electrical conductivity (EC), total dissolve solids (TDS), total suspended solids (TSS), salinity, and pH].
4. Investigate possible sources of heavy metals on roads using a principal component analysis (PCA), and factor analysis.
Empirical analysis to establish the washoff relationship of pollutants with different roads type, under different rain intensity and duration.

1.6 Significance of the Study

Pollution profile and their sources differed between nations, and the mitigation approaches used in industrialized countries cannot often be applied directly in the developing countries, and each country is saddled with the responsibility of developing its own based on its prevailing conditions. Therefore, this work will be of great importance to government, individuals and private organisations to better understand the pattern of buildup and washoff on road surfaces under tropical condition. This study would also present a clear understanding of pollutant’s origins, and the washoff dependants influencing factors.

1.7 Identification of Research Methodology

Due to unpredictability of runoff quality which is reported to be sensitive to metrological conditions (Novotny, 2003; Vialle et al., 2011) and its complexity as a function of different environmental parameters (He et al., 2000). This work used laboratory simulation to answer questions of the research. The laboratory simulation on one hand, allowed the adjustment of certain influencing parameters which will otherwise be impossible in the field within reasonable time frame and on the other hand its necessity as a pathway for an in depth understanding of patterns and variability that may exist between buildup and washoff processes. So, the methodology are grouped in the following hierarchal order:

1. Literature review.
2. Design and fabrication of rainfall simulator based on literature.
3. Selection of study site and rainfall characteristics for simulation.
4. Collection, testing and characterisation of buildup and washoff samples.

The schematic flow chart of the methodology is presented in Figure 1.1.
Figure 1.1: The schematic flow chart of the methodology
1.7.1 Literature Review

Extensive literature was carried out to gain a comprehensive knowledge of wet weather urban pollution, characteristics, influential parameters, response on different surfaces and impact. Specifically the aims are to:

1. understand urban hydrological changes and responses due to increase population and imperviousness.
2. understand sources, types, composition and characteristics of pollutants from different urban surfaces.
3. present contemporary knowledge in pollutant buildup and washoff process under different rainfall characteristics (intensity and duration).

1.7.2 Development of a rainfall simulator

The rainfall simulator was designed to ensure it can reproduce rainfall parameters as closely as possible, and was such that it can model the spatial variation of different rainfall intensities and rainfall depth. The component and setup of the simulator were such that the RS was easy to transport, assemble and dismantled. Plots were setup such that it was easy for instant measurement of runoff at any given time. The RS minimised generation of excessive volume of rain within short period of time by incorporating an oscillating boom. This arrangement has ensured spatial and temporal variation of the rainfall.

1.7.3 Selection of study site and sampling

Five potential road surfaces were selected based on their land uses and their exposure to local sources. To differentiate the pollutants originating from atmospheric deposition and that originating from the localised sources, the roads’ location were strategically chosen to receive similar atmospheric fall outs. Samples were collected during the dry weather period, and analysed for nine metals (Zn, Fe, Cd, Pb, Cu, Ni, Cr, Mn, and Al). These chosen metals were of particular interest to water runoff pollution researchers (Papiri et al., 2008; Poleto et al., 2009a; Zhao et al., 2011).
The washoff samples were collected using the simulated rain. The simulation took place on three chosen locations. A total of 22 events were simulated for washoff study. Because of the nature of washoff, the flow weighted measure was employed to each subsamples in proportion to the inflow volume and effluent. For quality control, duplicate samples were provided to ensure the repeatability and precision of the obtained result. Care was exercised to ensure there was no foreign substrate introduced into the sampling and throughout the experimental procedures.

Heavy metals can be quantified as total or soluble analytes, the latter is generally of environmental concern due to its bio-availability (Duncan et al., 2007). Buildup samples were filtered through 0.45 µm filter, and petitioned for physicochemical, and heavy metal analyses.

1.8 Organisation of Thesis

Chapter 1 presents, the intents and the motivation to undertake this study. The problem statement was conceptualised and presented. In addition, it gives the framework on how these research objectives will be achieved, and the lead benefits of undertaking the research.

Chapter 2 recapitulates the past and current knowledge in the area of the urban NPS pollution. It gives an overview of the relationship between urban hydrology, and the influence of increasing urban sealed surfaces on the pollution level. It described in detail the importance of particle in vectoring heavy metals in the environment and the importance of their source identification.

Chapter 3 this chapter gives an overview of the peculiarity of the study region in terms of its rainfall dynamics, and how it shaped the sampling protocol implemented in obtaining the data. It described in details the procedure followed in carrying out the experimental work of the study. It specifically described the sample collection, storage, preparation, processing and analyses. It also justified the choice of the sampling equipment, and the calibration of the RS. An overview of principal component and factor analysis was also undertaken in detail.

Chapter 4 discussed the result of the study area’s rainfall governing parameters, the modelled rainfall drop diameter, and its distribution. The knowledge
of the natural rainfall characteristics of the study area was used as a baseline in the development of a RS. The chapter reported in details, the choice of the RS components that ensured replication of the natural rainfall’s characteristics. It also reported extensively on the evaluation and calibration of the RS. The chapter also reported the screening of the data, and further gives an additional information on the suitability of the identified method for further analysis.

Chapter 5 deals with investigating the possible sources of the heavy metals in roads, and the modelling of heavy metals in washoff process. The heavy metal sources investigation was undertaken using the principal component, and the Factor multivariate analyses to identify the possible sources of the heavy metals in a typical tropical urban environment. The particle mass analysis was also undertaken to further investigate the influence of different land uses, and the impact of a longevity factors in urban NPS. This chapter also presented the descriptive modelling of the washoff process under different rainfall depth and duration using a defined surrogate measure of dissolved heavy metals’ concentration. The washoff models were established using selected typical rainfall duration of the study area.

Chapter 6 presented the summary of the findings from this study, and highlighted areas that needs to be researched further.
REFERENCES

33 U.S.Code § 1314(a)(4), (sec. 304(a)(4)).

Technology, Department of Civil Engineering, Hydrodynamics Laboratory o. Document Number)

Marzuki, M., Kozu, T., Shimomai, T., Randeu, W., Hashiguchi, H., and Shibagaki, Y. (2009). Diurnal variation of rain attenuation obtained from measurement of

New York.

Source Water Pollution: A Generic Assessment Tool. Retrieved 7th February,

raindrop size distribution time series from disdrometer data. *Geoscience and

& Sons.

Munn, J., and Huntington, G. (1976). A portable rainfall simulator for erodibility and
infiltration measurements on rugged terrain. *Soil Science Society of America

road and roof dust based on PAH contents and profiles. *Journal of Japan
Society on Water Environment, 26*(12), 837-842.

of particle-bound polycyclic aromatic hydrocarbons (PAHs) from roads and

rainfall simulator for field studies of runoff and soil erosion. *Soil Technology,

and Commercial Catchements in Skudai, Johor*. Unpublished Master of
Engineering (Hydrology and Water Resources), Universiti Technologi
Malaysia, Skudai, Johor Bahru.

loading from an urban residential catchment in Johor, Malaysia. *Water Science
& Technology, 56* (No 7), pp 1–9.

Neibling, W. H., Foster, G. R., Nattermann, R. A., Nowlin, J. D., Holbert, P. V.,
Walling, D. E., et al. (1981). Laboratory and field testing of a programmable

Othman, H. R. B. (2010). *Wind environment evaluation on major town of malaysia University Malaysia Pahang*

Implications for anthropogenic flux estimates from autocatalysts. *Environmental Pollution, 151*(3), 503-515.

