CEMENTATION FACTOR AND CARBONATE FORMATION PROPERTIES
CORRELATION FROM WELL LOGS DATA FOR NASIRIYA FIELD

FADHIL SARHAN KADHIM

UNIVERSITI TEKNOLOGI MALAYSIA
CEMENTATION FACTOR AND CARBONATE FORMATION PROPERTIES
CORRELATION FROM WELL LOGS DATA FOR NASIRIYA FIELD

FADHIL SARHAN KADHIM

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctorate of Philosophy (Petroleum Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

APRIL 2016
DEDICATION

To almighty Allah (SWT), for the favours granted me throughout the course of my studies

And to my parents, for their blessing, and my dearest wife, for her patience and endurance for supporting me from the beginning to the end of my studies
ACKNOWLEDGEMENT

First of all, I wish to express my sincere gratitude to my supervisor Prof. Dr. Ariffin Samsuri and co-supervisor Prof. Dr. Ahmad Kamal Idris for their guidance and assistance without that this research would have been impossible, and all their intellectual support and constructive advices during of my Ph.D. research, and all the staff of Department of Petroleum Engineering.

I would like to thank the Ministry of Higher Education and Scientific Research, Iraq for providing a scholarship to carry out this study. Also I would like to thank Iraqi south oil company to provide data, and express my deepest appreciation to my friends Mr. Yousif Kalaf, Mr. Haider Alwan, Mr. Raad Hameed, Dr. Adel Mustafa, Mr. Esam Abdul Ameer and all friends who helped and supported me to complete this study.

Special thanks to my parents for their prayers, selfless, undemanding love and constant motivations support. I have to admit, I couldn't do this work without the patience, endurance and assistance of my dearest wife and my heartiest thanks to my lovely children. My appreciation goes to my brother Haider for his co-operation during my study.
ABSTRACT

The cementation factor has specific effects on petrophysical and elastic properties of porous media. A comprehensive investigation of carbonate rock properties which have an interlock with the cementation factor was done through core analysis and well log data. Five wells in Nasiriya oilfield, which is one of the giant fields consists of the carbonate reservoirs in the Middle East were used in this study. The study was made across the Mishrif and Yamamma carbonate formations in the Nasiriya oilfield. Neurolog software (V5, 2008) was used to digitize the scanned copies of available logs while Interactive Petrophysics software (IP V3.5, 2008) was used to determine the properties of studied formations. The average cementation factor values were calculated from the F-ϕ plot and Gomez methods and compared with Pickett method. Petrophysical and dynamic elastic properties were determined from well logs. In this study, a new approach was introduced to obtain correlations of cementation factor to petrophysical and dynamic elastic properties of Mishrif and Yamamma formations. An artificial neural network platform was used to determine these correlations depending on the determined properties of studied formations. The neural network model used two different training algorithms; Gradient Descent with Momentum and Levenberg–Marquardt. Results show that the plot of average core data and calculated data from IP software of porosity and permeability gave a good correlations coefficient of $R^2 = 0.86034$ to 0.94303. Generally, cementation factor values obtained from all methods are found to be less than two. In addition, cementation factor values also increased with increasing depth of the studied formations. An efficient performance and excellent prediction of cementation factor have been obtained with less than 10^{-4} and 10^{-8} mean square error from both artificial neural network models. Three saturation models were used to estimate water saturation of carbonate formations, which are simple Archie equation, dual water model and Indonesian model. The Indonesian water saturation model recorded the lowest percentage error in comparison with water saturation of core samples, and the water saturation in Yamamma formation was higher than in the Mishrif formation. The accurate determination of a cementation factor gives reliable saturation results.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
<td></td>
</tr>
<tr>
<td>APPENDICES</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1 Problem Statement</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.2 Objectives of Study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.3 Scope of Study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.4 Significance and Contributions of the Study</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.5 Area of Case Study</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.6 Thesis Outlines</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
LITERATURE REVIEW AND PREVIOUS STUDIES

12

2.1 Cementation Factor

2.1.1 Definition of Cementation Factor

14

2.1.2 Factors Effecting Cementation Factor

15

2.1.3 Cementation Factor Magnitudes

16

2.1.4 Cementation Factor Calculation

17
 - 2.1.4.1 F-PHI Plot Method
 17
 - 2.1.4.2 Pickett Method
 18
 - 2.1.4.3 PHIE$_{EPT}$ Method
 19
 - 2.1.4.4 Level by Level Method
 22

2.2 Archie Equation Parameters

24

2.2.1 Porosity Exponent

24

2.2.2 Saturation Exponent

26

2.2.3 Tortuosity Exponent

27

2.3 Petrophysical Properties of Carbonate Reservoirs

27

2.3.1 Carbonate Reservoir Porosity

28

2.3.2 Lithology

31

2.3.3 Resistivity

35

2.3.4 Clay Volume

37
 - 2.3.4.1 Single Clay Indicator
 38
 - 2.3.4.2 Double Clay Indicator
 40

2.3.5 Water Saturation

42
 - 2.3.5.1 Resistivity Models
 43
 - 2.3.5.2 Conductivity Models
 44

2.3.6 Permeability

46

2.4 Dynamic Elastic Rock Properties

51

2.4.1 Poisson’s Ratio

53

2.4.2 Bulk Modulus

54
2.4.3 Young’s Modulus 55
2.4.4 Biot’s Constant 56

2.5 Artificial Neural Network 57
2.5.1 Neuron Models 59
2.5.2 Neural Network Architectures 61
 2.5.2.1 Single-Layer Feed Forward Networks 62
 2.5.2.2 Multilayer Feed Forward Neural Networks 63
2.5.3 Learning Processes 65
2.5.4 Back Propagation Error 66
2.5.5 Back Propagation Algorithm 64
2.5.6 Strengths and Limitations of Backpropagation 68

2.6 Previous Studies 69
 2.6.1 Cementation Factor Relations With Resistivity Formation Factor and Porosity 69
 2.6.2 Cementation Factor Relations With Permeability 76
 2.6.3 Cementation Factor Relations With Dynamic Elastic Properties 81

2.7 Summary 82

3 METHODOLOGY 84
3.1 Introduction 84
3.2 Field and Wells Selection 86
3.3 Digitization Logging Data 87
3.4 Depth Matching 88
3.5 Environmental Corrections 90
3.6 Determination of Petrophysical Carbonate Rock Properties 91
3.7 Calculation of Cementation Factor 94
3.8 Determination of Elastic Carbonate Rock Properties 96
3.9 ANN Modelling for Correlation Determination 97
3.10 Calculation of Water Saturation 102
3.11 Summary 103

4 RESULTS AND DISCUSSION 105
4.1 Validation of Digitalized Well Logs Data 105
4.2 Environmental Correction 110
4.3 Petrophysical Properties 113
 4.3.1 Lithology 113
 4.3.1.1 Sonic and Neutron Logs Cross-plot 113
 4.3.1.2 Density and Neutron Cross-plot 115
 4.3.1.3 Ternary Porosity Mode 117
 4.3.2 Porosity 118
 4.3.3 Resistivity 123
 4.3.4 Clay Volume 125
 4.3.5 Permeability 128
4.4 Cementation Factor 131
 4.4.1 Pickett Method 131
 4.4.2 Gomes and F-PHI Plot Methods 133
4.5 Dynamic Elastic Properties 136
4.6 Artificial Neural Network Model 139
 4.6.1 Architecture of Neural Model 140
4.6.2 Training the ANN Model 141
4.6.3 Post Training Analysis 144
4.6.4 Cementation Factor Correlation 146
4.6.4.1 Cementation Factor Correlation Based on Petrophysical Properties 146
4.6.4.2 Cementation Factor Correlation Based on Dynamic Elastic Properties 150
4.7 Water Saturation 154

5 CONCLUSIONS AND RECOMMENDATIONS 157
5.1 Conclusions 157
5.2 Recommendations 158

REFERENCES 162
Appendices: A-S 179-240
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Lithological column from Kifil to Sulaiy formations in the NS-3</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>The cementation factor effects on water saturation</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Relative dielectric constant and propagation time for common minerals and fluid</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Values of Archie’s cementation parameter</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Common values for Poisson’s ratio</td>
<td>54</td>
</tr>
<tr>
<td>2.5</td>
<td>Common correlations between cementation factor and porosity</td>
<td>75</td>
</tr>
<tr>
<td>2.6</td>
<td>Major correlations between cementation factor and permeability</td>
<td>80</td>
</tr>
<tr>
<td>3.1</td>
<td>Top, bottom and thickness of Mishrif and Yamamma carbonates formation</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>Correlation coefficient and standard errors of correlations between digitalized and log reading data</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>Core-log average porosity comparison results</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>R_w and R_{mf} results from R_{wul} and R_{mfu} respectively</td>
<td>125</td>
</tr>
<tr>
<td>4.4</td>
<td>Clay volume results from different methods</td>
<td>127</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of average permeability results from Timur model, and Schlumberger model</td>
<td>130</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison between cementation factor results from different methods</td>
<td>135</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamic elastic properties results</td>
<td>138</td>
</tr>
</tbody>
</table>
4.8 Weights and bias between input layer and first hidden layer for petrophysical model

4.9 Weights and bias between the first and the second hidden layer for petrophysical model

4.10 Weights and bias between the second hidden layer and output layer for petrophysical model

4.11 Cementation factor results from core analysis, Pickett, and Gomes method

4.12 Weights and bias between input layer and first hidden layer for dynamic elastic model

4.13 Weights and bias between the first and the second hidden layer for dynamic elastic model

4.14 Weights and bias between the second hidden layer and output layer for dynamic elastic model

4.15 Comparison of cementation factor values from calculated Pickett method and the ANN model for dynamic elastic properties

4.16 Comparison of cementation factor results from all calculated methods and ANN models.

4.17 Comparison of average water saturation results from core samples, Dual water, Archie, and Indonesian models

4.18 Comparison of coefficient and standard error for average water saturation results from core samples, Dual water, Archie, and Indonesian models

A-1 Samples of Digitalized Data from Well Logs - Mishrif Formation (NS-1)

A-2 Samples of Digitalized Data from Well Logs - Yamamma Formation (NS-1)

A-3 Samples of Digitalized Data from Well Logs - Mishrif Formation (NS-2)

A-4 Samples of Digitalized Data from Well Logs - Yamamma Formation (NS-2)
A-5	Samples of Digitalized Data from Well Logs - Mishrif Formation (NS-3)	183
A-6	Samples of Digitalized Data from Well Logs - Yamamma Formation (NS-3)	184
A-7	Samples of Digitalized Data from Well Logs - Mishrif Formation (NS-4)	185
A-8	Samples of Digitalized Data of Well Logs - Yamamma Formation (NS-4)	186
A-9	Samples of Digitalized Data of Well Log-Mishrif Formation(NS-5)	187
A-10	Samples of Digitalized Data from Well Logs - Yamamma Formation (NS-5)	188
B-1	Validation of digitalized input data of sonic and gamma ray logs	189
B-2	Validation of digitalized input data of resistivity logs	190
B-3	Validation of digitalized input data of bulk density and neutron logs	190
E-1	Sample of calculations results of PHI_{CPI}	201
G-1	Sample of formation water resistivity from SP log	205
G-2	Sample of R_{wa} and R_{nfa} results	206
I-1	Sample of V_{CL-SP}, V_{CL-GR}, and V_{CL-R} calculations	212
I-2	Sample of V_{CL-N}, V_{CL-SD}, and V_{CL-ND} calculations	212
K-1	Sample of calculation results of K_{CPI}	215
N-1	Sample of cementation factor calculation using Gomez method	226
N-2	Sample of cementation factor calculation using PHI-F method	226
P-1	Sample of calculation results of dynamic elastic properties	232
R-1	Sample of water saturation results using Archie’s equation	237
R-2	Sample of water saturation results using Indonesian Model	238
R-3	Sample of water saturation results using Dual Water Model	239
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Satellite images of NS oil field location</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Location map of the studied wells</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Stratigraphy of NS oil field formations</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Fundamental composition of sedimentary rocks</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of carbonates by texture</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Sonic-Neutron lithology determinations</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Density-Neutron Lithology determination</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>M-N plot for several minerals</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Tornado chart used to correct deep induction resistivity to true resistivity</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Neutron–density cross-plot</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>Typical Horner pressure build-up plot</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Nonlinear model of a neuron</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Activation functions</td>
<td>61</td>
</tr>
<tr>
<td>2.11</td>
<td>Single-layer feed forward networks</td>
<td>63</td>
</tr>
<tr>
<td>2.12</td>
<td>Multilayer feed forward networks</td>
<td>64</td>
</tr>
<tr>
<td>2.13</td>
<td>Effect of overburden pressure on formation factor</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>The study methodology flow diagram</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>3-D image of the selected wells</td>
<td>86</td>
</tr>
<tr>
<td>3.3</td>
<td>The main page of NL software</td>
<td>88</td>
</tr>
<tr>
<td>3.4</td>
<td>Depth matching steps in the IP software</td>
<td>89</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of environmental correction in the IP software</td>
<td>87</td>
</tr>
<tr>
<td>3.6</td>
<td>Example for the petrophysical properties output results in the IP</td>
<td>91</td>
</tr>
<tr>
<td>3.7</td>
<td>R_w and R_{mf} calculation flow chart from SP.</td>
<td>93</td>
</tr>
<tr>
<td>3.8</td>
<td>Gomez iteration flow chart</td>
<td>95</td>
</tr>
<tr>
<td>3.9</td>
<td>Example for the dynamic elastic properties output in the IP software</td>
<td>96</td>
</tr>
<tr>
<td>3.10</td>
<td>The best structure selection strategy</td>
<td>98</td>
</tr>
<tr>
<td>3.11</td>
<td>Steps of neural network model building</td>
<td>100</td>
</tr>
<tr>
<td>3.12</td>
<td>GUI to predict cementation factor from input petrophysical properties</td>
<td>101</td>
</tr>
<tr>
<td>3.13</td>
<td>GUI to predict cementation factor from input dynamic elastic properties</td>
<td>101</td>
</tr>
<tr>
<td>3.14</td>
<td>The Page of porosity and water saturation models analysis</td>
<td>102</td>
</tr>
<tr>
<td>3.15</td>
<td>Example for water saturation output results in the IP</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>Correlation between digitalized and log reading data of DT log</td>
<td>106</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation between digitalized and log reading data of GR log</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation between digitalized and log reading data of ILD log</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation between digitalized and log reading data of MSFL log</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation between digitalized and log reading data of RHOB log</td>
<td>108</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlation between digitalized and log reading data of NPHI log</td>
<td>109</td>
</tr>
<tr>
<td>4.7</td>
<td>NS-3 well schematic</td>
<td>111</td>
</tr>
<tr>
<td>4.8</td>
<td>Environmental corrections results of gamma ray, porosity and resistivity logs for Mishrif formation (NS-3)</td>
<td>112</td>
</tr>
</tbody>
</table>
4.9 Environmental correction results of gamma ray, porosity and resistivity logs for Yamamma formation (NS-3) 112
4.10 DT vs. NPHI lithology cross plot for Mishrif formation 114
4.11 DT vs. NPHI lithology cross plot for Yamamma formation 115
4.12 RHOB vs. NPHI lithology cross-plot for Mishrif formation 116
4.13 RHOB vs. NPHI lithology cross-plot for Yammama formation 116
4.14 M vs. N lithology cross plot for Mishrif formation 117
4.15 M vs. N lithology cross plot for Yammama formation 118
4.16 Results of porosity for Mishrif formation (NS-3) 119
4.17 Results of porosity for Yamamma formation (NS-3) 119
4.18 Average PHIE$_{CPI}$ and PHI$_{Core}$ relationship for Mishrif formation 122
4.19 Average PHIE$_{CPI}$ and PHI$_{Core}$ relationship for Yamamma formation 122
4.20 R_t, R_{xo}, R_{wa}, and R_{mfa} results for Mishrif formation (NS-3) 123
4.21 R_t, R_{xo}, R_{wa}, and R_{mfa} results for Yamamma formation (NS-3) 124
4.22 Results of clay volume for Mishrif formation (NS-3) 126
4.23 Results of clay volume for Yamamma formation (NS-3) 126
4.24 Permeability results of Schlumberger and Timur models for Mishrif and Yamamma formations (NS-3) 129
4.25 An average calculated (K$_{CPI}$) and average observed (K$_{Core}$) relationship for Mishrif formation 130
4.26 An average calculated (K$_{CPI}$) and average observed (K$_{Core}$) relationship for Yamamma formation 131
4.27 a, m values by Pickett method for Mishrif formation (NS-3) 132
4.28 a, m values by Pickett method for Yamamma formation (NS-3) 133
4.29 Cementation factor and resistivity formation factor results for Mishrif formation (NS-3) 134
4.30 Cementation factor and resistivity formation factor results for Yamamma formation (NS-3) 134
4.31 Dynamic elastic properties results of Mishrif Formation (NS-3) 137
4.32 Dynamic elastic properties results of Yamamma Formation (NS-3) 137
4.33 Relationship between average V_p and average V_s, for Mishrif formation 138
4.34 Relationship between average V_p and average V_s, for Yamamma formation 139
4.35 The ANN structure for petrophysical model 140
4.36 The ANN structure for dynamic elastic model 141
4.37 Training session for petrophysics model 142
4.38 Training session for dynamic elastic model 143
4.39 Best linear fit of tensile strength in training set for petrophysical model 143
4.40 Best linear fit of tensile strength in training set for dynamic elastic properties model 144
4.41 The actual and predicted cementation factor from petrophysical properties 145
4.42 The actual and predicted cementation factor from dynamic elastic properties 145
4.43 The structure of the first hidden layer 147
4.44 The structure of the second hidden layer 148
4.45 The structure of the output layer 149
4.46 Water saturation results from Dual water, Archie and Indonesian models for Mishrif formation (NS-3) 155
4.47 Water saturation results from Dual water, Archie and Indonesian models for Yamamma formation (NS-3) 156
| 4.48 | Correlation coefficient and standard error between core saturation and Archie model saturation | 157 |
| 4.49 | Correlation coefficient and standard error between core saturation and Dual water model saturation | 157 |
| 4.50 | Correlation coefficient and standard error between core saturation and Indonesian model saturation | 158 |
| C-1 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Mishrif formation (NS-1) | 191 |
| C-2 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Yamamma formation (NS-1) | 192 |
| C-3 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Mishrif formation (NS-2) | 192 |
| C-4 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Yamamma formation (NS-2) | 193 |
| C-5 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Mishrif formation (NS-4) | 193 |
| C-6 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Yamamma formation (NS-4) | 194 |
| C-7 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Mishrif formation (NS-5) | 194 |
| C-8 | Environmental corrections of gamma ray, resistivity and neutron porosity logs for Yamamma formation (NS-5) | 195 |
| D-1 | Porosity results for Mishrif formation (NS-1) | 196 |
| D-2 | Porosity results for Yamamma formation (NS-1) | 197 |
| D-3 | Porosity results for Mishrif formation (NS-2) | 197 |
| D-4 | Porosity results for Yamamma formation (NS-2) | 198 |
| D-5 | Porosity results for Mishrif formation (NS-4) | 198 |
| D-6 | Porosity results for Yamamma formation (NS-4) | 199 |
| D-7 | Porosity results for Mishrif formation (NS-5) | 199 |
| D-8 | Porosity results for Yamamma formation (NS-5) | 200 |
| F-1 | R_t, R_{so}, R_{wa}, and R_{nda} results for Mishrif formation (NS-1) | 202 |
F-2 R_t, R_{so}, R_{wa}, and R_{nfa} results for Yamamma formation (NS-1) 202
F-3 R_t, R_{so}, R_{wa}, and R_{nfa} results for Mishrif formation (NS-2) 203
F-4 R_t, R_{so}, R_{wa}, and R_{nfa} results for Yamamma formation (NS-2) 203
F-5 R_t, R_{so}, R_{wa}, and R_{nfa} results for Mishrif formation (NS-4) 204
F-6 R_t, R_{so}, R_{wa}, and R_{nfa} results for Yamamma formation (NS-4) 204
F-7 R_t, R_{so}, R_{wa}, and R_{nfa} results for Mishrif formation (NS-5) 205
F-8 R_t, R_{so}, R_{wa}, and R_{nfa} results for Yamamma formation (NS-5) 205
G-1 Results of clay volume for Mishrif formation (NS-1) 206
G-2 Results of clay volume for Yamamma formation (NS-1) 206
G-3 Results of clay volume for Mishrif formation (NS-2) 207
G-4 Results of clay volume for Yamamma formation (NS-2) 207
G-5 Results of clay volume for Mishrif formation (NS-4) 208
G-6 Results of clay volume for Yamamma formation (NS-4) 208
G-7 Results of clay volume for Mishrif formation (NS-5) 209
G-8 Results of clay volume for Yamamma formation (NS-5) 209
H-1 Permeability results of Schlumberger and Timur models for Mishrif and Yamamma formations (NS-1) 210
H-2 Permeability results of Schlumberger and Timur models for Mishrif and Yamamma formations (NS-2) 210
H-3 Permeability results of Schlumberger and Timur models for Mishrif and Yamamma formations (NS-4) 211
H-4 Permeability results of Schlumberger and Timur models for Mishrif and Yamamma formations (NS-5) 211
J-1 Mishrif Formation (NS-1): a, m values by Pickett method 213
J-2 Yamamma Formation (NS-1): a, m values by Pickett method 214
J-3 Mishrif Formation (NS-2): a, m values by Pickett method 214
J-4 Yamamma Formation (NS-2): a, m values by Pickett method 215
J-5 Mishrif Formation (NS-4): a, m values by Pickett method 215
J-6 Yamamma Formation (NS-4): a, m values by Pickett method 216
J-7 Mishrif Formation (NS-5): a, m values by Pickett method 216
J-8 Yamamma Formation (NS-5): a, m values by Pickett method 217
K-1 Cementation factor and resistivity formation factor results for Mishrif formation (NS-1) 218
K-2 Cementation factor and resistivity formation factor results for Yamamma formation (NS-1) 219
Cementation factor and resistivity formation factor results for Mishrif formation (NS-2) 219
K-4 Cementation factor and resistivity formation factor results for Yamamma formation (NS-2) 220
K-5 Cementation factor and resistivity formation factor results for Mishrif formation (NS-4) 220
K-6 Cementation factor and resistivity formation factor results for Yamamma formation (NS-4) 221
K-7 Cementation factor and resistivity formation factor results for Mishrif formation (NS-5) 221
K-8 Cementation factor and resistivity formation factor results for Yamamma formation (NS-5) 222
M-1 Dynamic elastic properties results for Mishrif formation (NS-1) 226
M-2 Dynamic elastic properties results for Yamamma formation (NS-1) 227
M-3 Dynamic elastic properties results for Mishrif formation (NS-2) 227
| M-4 | Dynamic elastic properties results for Yamamma formation (NS-2) | 228 |
| M-5 | Dynamic elastic properties results for Mishrif formation (NS-4) | 228 |
| M-6 | Dynamic elastic properties results for Yamamma formation (NS-4) | 229 |
| M-7 | Dynamic elastic properties results for Mishrif formation (NS-5) | 229 |
| M-8 | Dynamic elastic properties results for Yamamma formation (NS-5) | 230 |
| O-1 | Water saturation results from Dual water, Archie and Indonesian models for Mishrif formation (NS-1) | 233 |
| O-2 | Water saturation results from Dual water, Archie and Indonesian models for Yamamma formation (NS-1) | 234 |
| O-3 | Water saturation results from Dual water, Archie and Indonesian models for Mishrif formation (NS-2) | 234 |
| O-4 | Water saturation results from Dual water, Archie and Indonesian models for Yamamma formation (NS-2) | 235 |
| O-5 | Water saturation results from Dual water, Archie and Indonesian models for Mishrif formation (NS-4) | 235 |
| O-6 | Water saturation results from Dual water, Archie and Indonesian models for Yamamma formation (NS-4) | 236 |
| O-7 | Water saturation results from Dual water, Archie and Indonesian models for Mishrif formation (NS-5) | 236 |
| O-8 | Water saturation results from Dual water, Archie and Indonesian models for Yamamma formation (NS-5) | 237 |
LIST OF SYMBOLS

\(a \) - Tortuosity factor
\(A_c \) - Total cross sectional area
\(B \) - Bias value
\(B.C \) - Biot’s constant
\(c \) - Fitting parameter
\(C_b \) - Bulk compressibility
\(C_e \) - Clay conductivity
\(C_o \) - Conductivity of the fully brines saturated rock
\(C_r \) - Rock matrix compressibility
\(C_i \) - Conductivity of non – invaded zone
\(C_w \) - Conductivity of formation water
\(C_{wb} \) - Conductivity of bound water
\(C_{we} \) - Equivalent conductivity of the waters in pore space
\(C_{LLD} \) - Conductivity of the deep logs
\(C_{LLS} \) - Conductivity of the shallow logs
\(di \) - Diameter invasion
\(DT \) - Interval transit time
\(E \) - Young modulus
\(F \) - Formation resistivity factor
\(F_S \) - Apparent formation resistivity factor from sonic log
\(F_{so} \) - Apparent formation resistivity factor in flushed zone
\[f \] - Activation function

\[g \] - Gradient of error surface

\[GR_{\text{min}} \] - Minimum gamma ray response (API unit)

\[GR_{\text{max}} \] - Maximum gamma ray response (API unit)

\[H_1 \] - Hydrogen index, mineral 1

\[H_2 \] - Hydrogen index, mineral 2

\[H_{\text{mf}} \] - Hydrogen index, mud filtrate

\[I_{\text{sh}} \] - Shale index

\[I \] - Number of neuron of input layer

\[J \] - Number of neuron of first hidden layer

\[K \] - Permeability

\[K_n \] - Number of neuron of second hidden layer

\[K_B \] - Bulk Modulus

\[L \] - Actual length of the core

\[L_e \] - Length of the conducting channel

\[m \] - Cementation factor

\[n \] - Saturation exponent in Archie equation

\[N \] - Time step

\[n^* \] - Archie saturation exponent for shaly sands

\[P \] - Neural Network input vector

\[P_c \] - capillary pressure

\[P_d \] - Displacement pressure

\[PR \] - Poisson’s ratio

\[q \] - Flow rate

\[Q_v \] - Cation exchange capacity in meq/ml pore volume

\[R_{\text{deep}} \] - Formation resistivity from deep resistivity log device

\[R_{\text{irr}} \] - Formation resistivity at irreducible water saturation

\[R_{\text{LLD}} \] - Resistivity deep Laterolog tool
\(R_{LLS} \) - Resistivity shallow Laterolog tool

\(R_{mfe} \) - Equivalent resistivity of mud filtrate

\(R_{msfl} \) - Formation resistivity from micro-spherical log device

\(R_{MSFL} \) - Resistivity from micro-spherical tool

\(R_O \) - Resistivity of the fully brine saturated rock

\(RP \) - Effective pore radius

\(R_{SFL} \) - Resistivity from spherical focus log

\(R_{sh} \) - Shale resistivity

\(R_t \) - True formation resistivity with water saturation \(S_w \)

\(R_w \) - Formation water resistivity

\(R_{wa} \) - Apparent formation water resistivity

\(R_{we} \) - Equivalent resistivity of formation water

\(R_{xo} \) - Flushed zone resistivity

\(R_Z \) - Resistivity water in invaded zone

\(S_w \) - Water saturation (fraction of pore volume)

\(S_{WE} \) - Effective water saturation

\(S_{wb} \) - Bound water saturation

\(S_{wi} \) - Irreducible water saturation

\(S_{WT} \) - Total water saturation

\(S_{xo} \) - Water saturation in flushed zone

\(T_{f}, T_2 \) - Temperatures (°F)

\(T_f \) - Formation temperature (°F)

\(T_O \) - Surface temperature

\(T_{pl} \) - Measured values of propagation time (dB/m)

\(T_{pm} \) - Matrix propagation time (dB/m)

\(T_{pw} \) - Water propagation time (dB/m)

\(ts \) - Pore shape factor

\(V_{cl} \) - Clay volume
V_{dcl} - Dry clay volume
V_p - Compressional velocity
V_s - Shear wave velocity
V_{sh} - Shale volume
V_w - Bulk volume of formation water.
V_{wb} - Bulk volume of bound water.
w - Weight value
z - Number of neuron of output layer

GREEK SYMBOLS

ρ_b - Bulk density log reading
ρ_D - Bulk density
ρ_g - Grain density gm/cc
ρ_m - Mud density (lb/gal)
ρ_{ma} - Apparent matrix density
ρ_{mf} - Mud filtrate density
γ - Gamma ray index bulk density (ρ_D)
Δt - Interval Transit Time
Δt_f - Fluid transit time μsec/ft
Δt_{ma} - Apparent matrix transit time μsec/ft
Δt_p - Compressional transit time μsec/ft
Δt_S - Shear wave transit time μsec/ft
σ - Interfacial Tension
δ - Backpropagation error
η - Learning rate
LIST OF ABBREVIATIONS

API - American Petroleum Institute
ANN - Artificial Neural Network
BHT - Bottom Hole Temperature
Bp - Back propagation
BVW - Bulk Volume Water
CEC - Cation Exchange Capacity
CMR - Compensating Magnetic Resonance
CNL - Compensated Neutron Log
GrC - Corrected Gamma Ray
CPI - Computer Processed Interpretation
DST - Drill Stem Test
FCL-CL - Ferro Chrome Lignite - Chrome Lignite
F-Foc - Resistivity formation factor from Focke method
FFNN - Feed Forward Neural Network
F-Gom - Resistivity formation factor from Gomez method
EPT - Electromagnetic Propagation Tool
FDC - Formation Density Compensated
GR - Gamma Ray
GUI - Graphical User Interfaces
ILD - Deep Induction Laterolog
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILDC</td>
<td>Corrected Induction Laterolog</td>
</tr>
<tr>
<td>INOC</td>
<td>Iraqi National Oil Company</td>
</tr>
<tr>
<td>IP</td>
<td>Interactive Petrophysics</td>
</tr>
<tr>
<td>K_{CORE}</td>
<td>Permeability from Core Samples</td>
</tr>
<tr>
<td>K_{CPI}</td>
<td>Permeability from Computer Processed Interpretation</td>
</tr>
<tr>
<td>K-SLB</td>
<td>Permeability from Schlumberger model</td>
</tr>
<tr>
<td>K-Timur</td>
<td>Permeability from Timur model</td>
</tr>
<tr>
<td>LDT</td>
<td>Litho- Density Log</td>
</tr>
<tr>
<td>m-DE</td>
<td>Cementation factor from ANN model for dynamic elastic</td>
</tr>
<tr>
<td>m-Pet</td>
<td>Cementation factor from ANN model for Petrophysics</td>
</tr>
<tr>
<td>m-Foc</td>
<td>Cementation factor from Focke method</td>
</tr>
<tr>
<td>m-Gom</td>
<td>Cementation factor from Gomes Iteration</td>
</tr>
<tr>
<td>MD</td>
<td>Measured Depth</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean square error</td>
</tr>
<tr>
<td>MSFL</td>
<td>Micro Spherical Focused Log</td>
</tr>
<tr>
<td>MSFLC</td>
<td>Corrected Micro Spherical Focused Log</td>
</tr>
<tr>
<td>NGR</td>
<td>Natural Gamma Ray</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PHI</td>
<td>Total porosity</td>
</tr>
<tr>
<td>NPHI</td>
<td>Neutron Porosity log</td>
</tr>
<tr>
<td>NPHIC</td>
<td>Corrected Neutron Porosity log</td>
</tr>
<tr>
<td>NPHI_{clay}</td>
<td>Neutron log reading in 100% shale</td>
</tr>
<tr>
<td>OWC</td>
<td>Oil Water Contact</td>
</tr>
<tr>
<td>PHI_{CPI}</td>
<td>Porosity from computer processed interpretation</td>
</tr>
<tr>
<td>PHI_{CORE}</td>
<td>Porosity from core samples</td>
</tr>
<tr>
<td>PHID</td>
<td>Porosity from density log</td>
</tr>
<tr>
<td>PHI_{DN}</td>
<td>Porosity from density – neutron cross plot</td>
</tr>
<tr>
<td>PHID_{sh}</td>
<td>Apparent density porosity in 100% shale</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PHIE</td>
<td>-</td>
</tr>
<tr>
<td>PHI\textsubscript{EPT}</td>
<td></td>
</tr>
<tr>
<td>PHIS</td>
<td>-</td>
</tr>
<tr>
<td>PHIX</td>
<td>-</td>
</tr>
<tr>
<td>PSP</td>
<td>-</td>
</tr>
<tr>
<td>RFT</td>
<td>-</td>
</tr>
<tr>
<td>RHOB</td>
<td>-</td>
</tr>
<tr>
<td>RHOB\textsubscript{C}</td>
<td>-</td>
</tr>
<tr>
<td>RTKB</td>
<td>-</td>
</tr>
<tr>
<td>SFL</td>
<td>-</td>
</tr>
<tr>
<td>SNP</td>
<td>-</td>
</tr>
<tr>
<td>SP</td>
<td>-</td>
</tr>
<tr>
<td>SSP</td>
<td>-</td>
</tr>
<tr>
<td>Sw\textsubscript{-Arch}</td>
<td>-</td>
</tr>
<tr>
<td>Sw\textsubscript{-Dual}</td>
<td>-</td>
</tr>
<tr>
<td>Sw\textsubscript{-Ind}</td>
<td>-</td>
</tr>
<tr>
<td>Sw\textsubscript{-Sim}</td>
<td>-</td>
</tr>
<tr>
<td>TVD</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-GR}</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-N}</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-ND}</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-R}</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-SD}</td>
<td>-</td>
</tr>
<tr>
<td>VCL\textsubscript{-SP}</td>
<td>-</td>
</tr>
<tr>
<td>V.R</td>
<td>-</td>
</tr>
<tr>
<td>V\textsubscript{p}/V\textsubscript{s}</td>
<td>-</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Samples of Digitalized Data from Well Logs</td>
<td>179</td>
</tr>
<tr>
<td>B</td>
<td>Validation of Digitalized Well Logs Data</td>
<td>189</td>
</tr>
<tr>
<td>C</td>
<td>Environmental Corrections</td>
<td>191</td>
</tr>
<tr>
<td>D</td>
<td>Porosity Results</td>
<td>196</td>
</tr>
<tr>
<td>E</td>
<td>Sample of Calculations Results of PHI_{CPI}</td>
<td>201</td>
</tr>
<tr>
<td>F</td>
<td>Resistivity Results</td>
<td>202</td>
</tr>
<tr>
<td>G</td>
<td>Sample of Water Resistivity Calculations</td>
<td>204</td>
</tr>
<tr>
<td>H</td>
<td>Clay Volume Results</td>
<td>207</td>
</tr>
<tr>
<td>I</td>
<td>Sample of Clay Volume Calculations</td>
<td>211</td>
</tr>
<tr>
<td>J</td>
<td>Permeability Results</td>
<td>213</td>
</tr>
<tr>
<td>K</td>
<td>Sample of Calculation Results of K_{CPI}</td>
<td>215</td>
</tr>
<tr>
<td>L</td>
<td>Cementation factor results of Pickett method</td>
<td>216</td>
</tr>
<tr>
<td>M</td>
<td>Cementation factor results of Gomez method</td>
<td>220</td>
</tr>
<tr>
<td>N</td>
<td>Sample of Calculation Results of Gomez and PHI-F plot method</td>
<td>224</td>
</tr>
<tr>
<td>O</td>
<td>Dynamic Elastic properties Results</td>
<td>227</td>
</tr>
<tr>
<td>P</td>
<td>Sample of Calculation Results of Dynamic Elastic Properties</td>
<td>231</td>
</tr>
<tr>
<td>Q</td>
<td>Water Saturation Results</td>
<td>233</td>
</tr>
<tr>
<td>R</td>
<td>Sample of Water Saturation Calculations</td>
<td>237</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>S</td>
<td>ANN Program Statements</td>
<td>240</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Carbonate rocks reservoirs usually consist of various kinds of grains, lime mud, and carbonate cement. A petroleum carbonate reservoir is a porous medium that is sufficiently permeable to permit fluid flow through it. In the presence of interconnected fluid phases of different density and viscosity, such as water and hydrocarbons, the movement of the fluids is influenced by gravity, viscosity and capillary forces. The fluids separate, therefore, in order of density when flowing through a permeable stratum is arrested by a zone of low permeability, and, in time, a petroleum reservoir is formed in such a trap (Peters, 2011).

In petroleum carbonate reservoirs; there are many forms of heterogeneity in rock properties. Petrophysical parameters such as; porosity, permeability, cementation factor, resistivity formation factor and fluid saturation are the most important parameters for evaluating oil reservoirs in order to estimate the original oil in place and flow patterns to optimise production of a reservoir. The evaluation of logging data in most carbonate reservoirs still a challenging task in the present days which need to specify of efforts and capitals to avoid incorrect interpretation (Kadhim et al., 2015). The incorrect interpretation leads to lost hydrocarbon zones or incorrect selection for the perforated intervals, as a result, lost time and money.

Middle East carbonate reservoirs contain giant oil and gas reservoirs, since their reserve are more than 500MMbbl (Bia and Xu, 2014), such as Mishriff, Yamamma, Shu’aiba, Asmari, Ilam and Sarvak, which cover around 50% percent of hydrocarbon reserves in the world (Naomi and Standen, 1997). This ratio will increase when reservoirs in other regions are depleted, and then the Middle East
carbonate formations will become the main resource of oil and gas reserve (Kadhim et al., 2013). After World War I, carbonate reservoirs became important to the petroleum industry, when exploration drilling resulted in the discovery of major oil reserve in carbonate rocks in the Middle East (Chilingarian et al., 1992).

Fluid flow through heterogeneous carbonate reservoirs is a substantially different process from the flow through the less heterogeneity sandstone reservoir. This variation is largely cause to the fact that carbonate rocks tend to have a more complex pore system (i.e the interrelationships among depositional lithologies, the geometries of depositional facies, and diagenesis) than sandstone (Chilingar et al., 1979; Mazullo, 1986; Xu et al., 2012). Carbonate reservoirs have highly heterogeneous layers in nature. Therefore, on the basis of the dominant rock type carbonate reservoirs are divided into layers in order to define average values and trends of petrophysical parameters in these reservoirs (Kadhim et al., 2013).

Archie in 1942 is the first researcher, who had discernment for the porosity exponent (m). Archie introduced an empirical relationship between porosity, and formation resistivity factor (F), the porosity exponent used in the description of this correlation that could has a valuable application to quantitative studies of electrical well logs. Physically, the m factor is a measure of the degree of cementation and consolidation of the rock. Therefore, it is called cementation factor (Guyod, 1944). The m factor is the most important parameter for applying the petrophysical characterization, because its effect on the calculation of water saturation (S_w), F factor, tortuosity (a) of the pore geometry to current flow, surface area of composite particles, and porosity (Ransom, 1974; Ransom, 1984; Polido et al., 2007).

Water saturation interpretation from conventional logs are encountered many difficulties that lead to misleading of information such as; the impact of diagnosis and rock wettability variations in Archie’s parameters (m, n, and a) is difficult to quantify throughout the reservoir, and errors in reading of logging tools due to high environmental impact while drilling and run logging tools in open whole sections (Cassou et al., 2007; Liu and Ford, 2008).
The accurate calculations of petrophysical and dynamic elastic properties in carbonate formations are the most challenging aspects of well log analysis. Many empirical correlations and equations have been derived and developed over the years based on known physical principles, which are used to find carbonate rock properties (Archie, 1942; Coates and Dumanoir, 1973; Hagiwara, 1984; Watfa and Youssef, 1987; Salazar et al., 2008; Kadhim et al., 2015). Practically, the formation water resistivity (R_w) estimates from spontaneous potential (SP) log. Deep induction log (ILD) or deep lateral log (LLD) usually measured the true resistivity of the formation (R_t). Density, neutron, and sonic logs are used to calculate the porosity. Well logs and core data analysis can be used to estimate the saturation exponent (n) and cementation exponent. There are many correlations were developed to calculate permeability (K) from porosity logs (Lucia, 2007; Peters, 2011).

Depositional carbonate rocks consist mainly of loose irregular calcite grains, during deposition of carbonate rocks, there are many physical and chemical processes will take place over time that will change these rocks. One of the most important processes that take place during deposition is called cementation. Cementation will significantly influenced the compressional and shear wave velocities and other dynamic elastic properties of carbonate rocks. In addition cementation also impacts the grain surface and the grain contacts will become stiffer sediment. The compressional and shear wave velocities can be determined by interval transit time (DT) from the sonic logs. The dynamic elastic properties; Bulk modulus, Young modulus, and Biot's Constant can be determined when the compression wave velocity (V_p) and corrected bulk density values are available (Entyre, 1989; Lucia, 2007; Jackson, et al., 2008; Kadhim et al. 2013).

Due to complexity and highly nonlinearity of carbonate reservoirs properties as well as there are many input variables related cementation factor with petrophysical and dynamic elastic properties, no close mathematical model that can describe the behaviour of this relationship. Artificial neural networks (ANN) technique has been implemented, because of their cost - effective, easy to understand and ability to learn from examples, which found in many applications to estimate variable that usually cannot be measured in linear modelling (Amnah, 2009). The ANN has become increasingly popular in the petroleum industry. Many
practical applications of the ANN have been used for quantitative analysis of reservoir properties from well logs (Huang et al., 1996; Huang and Williamson, 1997; Zhang et al., 2000), where the ANN approach is shown to be a simple and accurate alternative for converting well logs to common reservoir properties such as porosity and permeability.

Overall, due to the large variation of petrophysical and dynamic elastic properties of carbonate reservoirs, petrophysical evaluation of these reservoirs is important in predicting their behaviour. Well logs are considered one of the main sources of data for the geological and petrophysical parameters of reservoir formations. Cementation factor is one of the most important parameters because the accurate determination of it should be improved the saturation value and consequently oil in place calculation.

1.1 Problem Statements

The value of m factor has been assumed constant for each type of rocks in numerous studies of formation evaluation (Kadhim et al., 2013). Previous studies of the Nasiriya (NS) oil field too, assumed the m factor is constant with depth, that increases the uncertainty in calculating water saturation value, and as a result there was a mistake of hydrocarbon reserve calculation, as well as inaccurate detection of perforation zones.

Since carbonate reservoirs are heterogeneous in nature, therefore the behaviour of petrophysical and elastic properties of these reservoirs is a high non-linear. The correlation between cementation factor and petrophysical properties of carbonate reservoirs such as; K, PHI, and F factor is provided in this study based on the conventional well logs, analysis of core samples data, and NS oilfield reports. Moreover, a new interpretation approach for the relation between dynamic elastic properties for instance; compressional-shear velocity ratio (V_P/V_S), Poisson’s Ratio (PR), Bulk modulus (K_B), Young’s modules (E), and Biot’s Constant (BC) is introduced using ANN platform.
The artificial network model is used as an efficient technique as predictor, especially in carbonate formations when the nature is complex and highly non-linearity, that cause no close conventional mathematical model can describe the behaviour of this process without assumptions. Furthermore, the model can be considered faster by integrating graphical user interfaces (GUI) and more accurate by added mean square errors calculations in comparison with traditional ones such as Gomes and Pickett methods.

1.2 Objectives of Study

1. To determine petrophysical properties of carbonate formations from well logs data and compare with available core data results.
2. To determine the dynamic elastic properties of carbonates formation from sonic log data.
3. To calculate cementation factor for various depth of formation by using Pickett, Gomez and F-PHI plot methods.
4. To determine new correlations between the cementation factor and petrophysical and dynamic elastic properties for carbonates formation by using a new approach of ANN model.
5. To determine the water saturation for various depth of carbonate formation from Archie, dual water and Indonesian models.

1.3 The Scope of Study

1. Mishrif and Yamamma carbonate formation of the NS oilfield are used as a case study. Available well logs and core data are provided from five studied wells in this field.
2. Convert the available copies of logs to digitals using Neura-log software (NL, V5, 2008) and validated using Origin Pro8 software based on correlation coefficient (R^2) and standard error (SE).

3. Interactive Petrophysics software (IP V3.5, 2008) was used to determine the petrophysical and dynamic elastic properties of the carbonate rocks in the studied area, and validated with properties from core data.

4. Gomez and F-PHI plot methods were used to determine the cementation factor for the studied carbonate formation, and compared and validated with Pickett method.

5. An Artificial neural network model was trained using Gradient Descent with Momentum and Levenberg – Marquardt algorithms.

6. An artificial neural network model was used to develop a new correlation between cementation factor and petrophysical properties (K, PHI, and F) and with dynamic elastic properties (V_p/V_s, PR, K_B, E and BC) of the studied carbonate formation and compared with Pickett method.

7. Mean square error (MSE) and correlation coefficient (R^2) were used to determine the cementation factor prediction performance by ANN model, and compared with previous studies, such as (Aifa et al., 2014; saljooghi and hezarkhani, 2014)

8. Three water saturation models (Archie, dual water and Indonesian) were used to determine water saturation in various depths of the studied carbonate formation, and validated with saturation data from core samples.

1.4 Significance of Research and Contributions of the Present Study

Cementation factor is one of the most important parameters, which has the specific effect to rock properties. Therefore, the accurate determination of this factor should be improved the accuracy of water saturation values, and consequently oil in place calculation. Moreover, accurate determination of water saturation profile with depth leads to avoiding mistakes in the detecting of perforation zones, that means save money and time. The contribution to be made in this study involves:
1. With a new developed correlations between cementation factor and carbonate rock properties, more accurate formation cementation factor can be determined by knowing the carbonate reservoirs petrophysical and dynamic elastic properties.
2. More accurate water saturation for various depths of carbonate formation can be determined.
3. Establishment of a new and more accurate petrophysical and dynamic elastic properties data for studied formation.
4. Developed an artificial neural network model can be used to establish the cementation factor from properties of carbonate formation by using graphical user interfaces (GUI).

1.5 Area of Case Study

NS oil field is located on the Arabian platform, in a gently folded zone, west of the Zagros fold belt as shown in Figure 1.1. A thick platform (Yammama formation) develops in the north of Arabian Gulf, passing to north-east to Balambo formation. During Barremian, the erosion of the Arabian shield introduced a lot of clastic sediments (Zubair formation) into the basin, invading part of the former shelf area. After the widespread deposition of anhydrite facies (Hartha formation.), carbonate depositional conditions re-establish in response to generalized transgressed events.

The last sedimentary cycle is represented by shallow shelf limestone (Shuaiba formation) gradually passing eastward to basin deposits where shale and marl accumulate (Sarmond formation). NS-1, NS-2, NS-3, NS-4, and NS-5 are studied wells in the NS oil field which is considered as a giant oil field in the southern of Iraq as shown in Figure 1.2. Also, it is characterized by carbonate reservoirs. NS oil field has reserves in Late Cretaceous Mishrif limestone reservoir, and Early Cretaceous Yammama limestone reservoir as shown in Figure 1.3, (Repsol Company, 2008). Mishrif reservoir contains water oil contact (WOC) at depth 2064m, while in Yamamma formation, the WOC at depth 3390m (INOC,
The lithological column of the NS oil field is provided by Iraqi National Oil Company (INOC) in 1985, in the final drilling report of the NS-3 oil well as shown in Table 1.1.

Figure 1.1: Satellite images for NS oil field location

Figure 1.2: Location maps of the studied wells
Table 1.1: Lithological column from the Sulaiy to Upper Faris formations in the NS-3, (INOC, 1985)

<table>
<thead>
<tr>
<th>No</th>
<th>Formation</th>
<th>Top (m)</th>
<th>Bottom (m)</th>
<th>Main Lithology</th>
<th>Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Upper Fars</td>
<td>surface</td>
<td>296</td>
<td>Mudstone and sandstone</td>
<td>296</td>
</tr>
<tr>
<td>2</td>
<td>Lower Fars</td>
<td>296</td>
<td>376</td>
<td>Shale and anhydrite</td>
<td>80.0</td>
</tr>
<tr>
<td>3</td>
<td>Gereibi</td>
<td>376</td>
<td>426</td>
<td>Dolomite and anhydrite</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>Dammam</td>
<td>426</td>
<td>667</td>
<td>Limestone, dolomite and anhydrite</td>
<td>241</td>
</tr>
<tr>
<td>5</td>
<td>Russ</td>
<td>667</td>
<td>732</td>
<td>Anhydrite and dolomite</td>
<td>65.0</td>
</tr>
<tr>
<td>6</td>
<td>Umm Rradhuma</td>
<td>732</td>
<td>1174</td>
<td>Anhydrite and dolomite</td>
<td>441</td>
</tr>
<tr>
<td>7</td>
<td>Tayarat</td>
<td>1174</td>
<td>1244</td>
<td>Dolomite</td>
<td>70.0</td>
</tr>
<tr>
<td>8</td>
<td>Shiranish</td>
<td>1244</td>
<td>1443</td>
<td>Shale and limestone-clayey</td>
<td>199</td>
</tr>
<tr>
<td>9</td>
<td>Hartha</td>
<td>1443</td>
<td>1625</td>
<td>Limestone and dolomite</td>
<td>182</td>
</tr>
<tr>
<td>10</td>
<td>Sa’di</td>
<td>1625</td>
<td>1790</td>
<td>Cretaceous-limestone</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>Tannuma</td>
<td>1790</td>
<td>1862</td>
<td>Shale</td>
<td>72.0</td>
</tr>
<tr>
<td>12</td>
<td>Khasib</td>
<td>1862</td>
<td>1910</td>
<td>Shale-clayey</td>
<td>48.0</td>
</tr>
<tr>
<td>13</td>
<td>Kifl</td>
<td>1910</td>
<td>1929.5</td>
<td>Shale-clayey</td>
<td>19.5</td>
</tr>
<tr>
<td>14</td>
<td>Mishrif</td>
<td>1929.5</td>
<td>2101</td>
<td>limestone</td>
<td>171.5</td>
</tr>
<tr>
<td>15</td>
<td>Rumaila</td>
<td>2101</td>
<td>2148</td>
<td>Limestone-clayey</td>
<td>47.0</td>
</tr>
<tr>
<td>16</td>
<td>Ahmadi</td>
<td>2148</td>
<td>2251.5</td>
<td>Shale and clay</td>
<td>103.5</td>
</tr>
<tr>
<td>17</td>
<td>Maudud</td>
<td>2251.5</td>
<td>2412</td>
<td>Cretaceous-limestone</td>
<td>160.5</td>
</tr>
<tr>
<td>18</td>
<td>Nahr Umr</td>
<td>2412</td>
<td>2529.5</td>
<td>Shale, limestone and sand</td>
<td>117.5</td>
</tr>
<tr>
<td>19</td>
<td>Shu’aiba</td>
<td>2529.5</td>
<td>2592</td>
<td>Dolomite</td>
<td>62.5</td>
</tr>
<tr>
<td>20</td>
<td>Zubair</td>
<td>2592</td>
<td>3097</td>
<td>Sandstone and some shale</td>
<td>505</td>
</tr>
<tr>
<td>21</td>
<td>Ratawi</td>
<td>3097</td>
<td>3197</td>
<td>Limestone-clayey and some shale</td>
<td>80.0</td>
</tr>
<tr>
<td>22</td>
<td>Yammama</td>
<td>3177</td>
<td>3403.5</td>
<td>Limestone</td>
<td>226.5</td>
</tr>
<tr>
<td>23</td>
<td>Sulaiy</td>
<td>3403.5</td>
<td>3440.5</td>
<td>Limestone</td>
<td>17.5</td>
</tr>
</tbody>
</table>
Figure 1.3: Stratigraphy of NS oil field formations (Repsol Company, 2008)
1.6 Thesis Outlines

The present thesis is divided into five chapters. Chapter 1 describes a background of the study and motivation of the research is being explained to give a basic overview of the problem statement, research objectives, significant, contribution and scope of the study. This chapter also explains the area of the case study. Chapter 2 reviews the cementation factor, petrophysical and dynamic properties and their calculations. The theory and application of artificial neural are also proposed in this phase. Previous studies of correlations between cementation factor and porosity, resistivity formation factor, permeability, and acoustic velocities are introduced in this chapter.

Chapter 3 shows the research methodology diagrams and the steps of parameters calculation as well as structure of artificial neural network model. Chapter 4 illustrates the results and discussion of petrophysical properties, cementation factor, dynamic elastic properties, and water saturation. The cementation factor calculation from petrophysical and dynamic elastic models are introduced by ANN technique, and the verification of results has been done in each step of the calculation. This is followed by the conclusion and recommendations of future works in Chapter 5.
REFERENCES

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional textures.

Gomez, R. O. (1977). Some Considerations about the Possible Use of the Parameters (a) and (m) As A Formation Evaluation Tool through Well Logs, *SPWLA 18th Annual Logging Symposium*, 5-8 June, Houston, Texas, SPWLA-1977-J.

Peters, E., J. (2011). *Petrophysics*, the University of Texas, Austin, Published by Hadi Al-Sinan.

Serra, O. (1986), Advanced Interpretation of Wire-line Logs, (pp.125-130), Texas, Schlumberger.

