TRAFFIC MATRIX ESTIMATION WITH ENHANCED ORIGIN DESTINATION GENERATOR ALGORITHM USING SIMULATION OF REAL NETWORK

SAMi ABBAS NAGAR ADAM

A thesis submitted in fulfilment of the Requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2015
To my My parents, great mother and father (late), to my beloved wife for all the patience and sacrifices she made and always with me, her advices and support all these years to ensure that I obtained the best education possible, and our children Mohamed, Aya, Basmala, Ryan and Alaa for their prayers. To my supportive brother Sadig. The love and encouraging words from all of you have really inspired me to achieve my goals and dream. Also, to the spirits of my son and brother.
ACKNOWLEDGMENT

First and foremost I would like to give thanks to the Almighty Allah for He made my dream comes true, by giving me strength and good health to successfully complete this study. Special thanks and greeting to my respectable supervisor Assoc. Prof. Dr. Sulaiman Mohd Nor, for allowing me to carry out this research under his supervision and for his inspiration, encouragement, knowledge, support, wisdom and constructive comments throughout this research. Thank you very much for the help and priceless advice. Also, special thank to my previous supervisor Dr Izzeldin Ibrahim for his valuable advice. I would like to thank my family: my wife, children, mother and siblings for their prayers, love and encouragement to pursue my interest. Special thanks to my brother Dr. Haitham Jameel who encouraged me to pursue my PhD in UTM Malaysia when I was invited to UTM by him in January 2011. Special thanks go to my brother Dr. Hamza Awad for his personality, kindness, caring, managing all my belongings during my study in UTM. My special thanks goes to Dr. Mohammed Saad (LIBYA), Dr. Intisar Ibrahim for continued support when I was in either in lovely or hard moments during my study. My special thanks to Dr. Isa A. Hamid-Mosaku (NIGERIA) for his advice. I would like to take this opportunity to express my appreciation and gratitude to my research colleagues: Dr. Aliyu (NIGERIA), Dr. Ibrahim Sanhoury, Dr. Mohammed Ali, Dr. Bushra, Dr. Abuelnuor, Dr. Ahmed, Dr. Ban (IRAQ) and to all of those who supported me in any aspect during the completion of the project.

Sami Abbas Nagar, Johor Bahru, Malaysia
ABSTRACT

The rapid growth of the Internet has made the issue of ensuring reliability and redundancy a big challenge. Studies of these issues using Traffic Engineering and simulation have been extensively done. In Traffic Matrix Estimation (TME), the Origin–Destination Generator algorithm (ODGen) is limited to the number of hops, where the Expectation Maximization (EM) accuracy is 92%. Most studies have not taken into account real traffic parameters and integration of TME models with routing protocols in their simulation models. Also, there is no a comprehensive model consisting of TME, Border Gateway Protocol (BGP) and Hot Potato (HP) routing in the NS-2 network simulator based on real networks. In this research, Integrated Simulated Model (ISM) is introduced consisting of ODGen-HP algorithm and BGP integrated into the NS-2 network simulator. ISM is then used to simulate the infrastructure of a real production network using actual captured traffic data parameters. Validation is then done against the changes in network topology based on packet loss, delay and throughput. Results gave the average error for packet sent by simulated and production networks of 0% and the average error for packet received by simulation and production networks of 3.61%. The network is modelled with a baseline topology where 5 main nodes were connected together, with redundant links for some nodes. The simulations were repeated for link failures, node addition, and node removal. TME used in ISM is based on ODGen, that is optimized with unlimited number of hops, the accuracy of EM increases to 97% and Central Processing Unit complexity is reduced. HP helps in improving the node which experiences a link failure to select shorter distance route to egress router. In the case of a link failure, HP switching time between the links is 0.05 seconds. ISM performance was evaluated by comparing trace file before and after link failure or by adding nodes (up to 32) or removing nodes. The parameters used for comparison are the packets loss, delay and throughput. The ISM error percentage obtained for packets loss is 0.025%, delay 0.013% and throughput 0.003%.
ABSTRAK

Pertumbuhan pesat Internet telah menjadikan isu kebolehpercayaan dan lewahan satu cabaran besar. Kajian isu-isu di atas menggunakan Kejuruteraan Trafik dan penyelakuan telah dibuat dengan meluas. Algoritma Penjana Asal-Destinasi (ODGen) pada Anggaran Matriks Trafik (TME) mempunyai had pada bilangan lompatan, di mana ketepatan Pemaksimuman Jangkaan (EM) hanya 92%. Kebanyakan kajian tidak mengambil kira parameter trafik sebenar serta integrasi Matriks Trafik TME dengan protokol penghantaran dalam model penyelakuan mereka. Selain itu, tidak wujud model menyeluruh mengandungi TME, Protokol Gerbang Sempadan (BGP) serta Penghalaan Kentang Panas (HP) pada penyelaku rangkaian NS-2 berasaskan rangkaian sebenar. Di dalam penyelidikan ini, Model Penyelakuan Bersepadu (ISM) diperkenalkan merangkumi ODGen, algoritma HP dan BGP diintegrasikan dengan penyelaku NS-2. ISM kemudian digunakan untuk menyelakukan infrastruktur Pembekal Perkhidmatan Rangkaian menggunakan parameter hakiki mewakili data trafik sebenar yang diambil. Pengesahan kemudian dibuat terhadap perubahan pada topologi rangkaian berasaskan kehilangan paket, lengah dan kadar celus. Dapatan menunjukkan purata ralat untuk paket dihantar rangkaian diselaku dibandingkan rangkaian pengeluaran adalah 0% dan purata ralat untuk paket diterima rangkaian diselaku dibandingkan rangkaian pengeluaran adalah 3.61%. Rangkaian dimodel dengan topologi asas dengan 5 nod utama dirangkai dengan sambungan lewah untuk beberapa nod. Penyelakuan diulang bagi kegagalan sambungan, tambahan nod dan penyingkiran nod. TME yang diguna pada ISM adalah berdasarkan kepada algoritma ODGen, dioptimumkan dengan bilangan lompatan tanpa had, ketepatan EM bertambah menjadi 97% dan kerumitan unit pemprosesan utama (CPU) berkurangan. HP membantu memperbaiki nod yang mempunyai kegagalan sambungan sambil memilih jarak lebih kecil kepada penghala egres. Bagi kes kegagalan sambungan, masa pensuisan HP antara pautan adalah 0.05 saat. Prestasi ISM dinilai dengan membandingkan fail jejak sebelum dan selepas kegagalan sambungan atau apabila menambah nod (sehingga 32 nod) atau menghapus nod. Parameter yang digunakan untuk perbandingan adalah kehilangan paket, lengah dan kadar celus. Peratusan ralat ISM yang diperolehi untuk kehilangan paket ialah 0.025%, lengah 0.013% dan kadar celus 0.003%.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF MATHEMATICAL SYMBOLS</td>
<td>xxvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxviii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Motivation</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Questions</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Problem Statements</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Research Objectives</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope of Work and Assumptions</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Contributions of research</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>Organization of Thesis</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Use the real data captured in simulation</td>
<td>13</td>
</tr>
</tbody>
</table>
Environment Overview

2.2.1 Type of Simulators

2.2.2 State of Art in Using the Real Data in Network in Simulators

2.2.3 Validation and Verification
 2.2.3.1 Comparison between the Simulation Result with Real network
 2.2.3.2 Reducing the Processing Overhead

2.2.4 Issues not addressed in simulation network for real production network

2.3 Traffic Matrix Estimation
 2.3.1 An Overview of Traffic Matrix Estimation
 2.3.2 What is Traffic Matrix?
 2.3.3 Construction of Traffic Matrix
 2.3.4 Determining the Traffic Matrix
 2.3.4.1 Direct Measurement
 2.3.4.2 Traffic Matrix Estimations
 2.3.4.3 Why Traffic Matrix Estimation
 2.3.5 The State of the Art in TME
 2.3.5.1 Comparison between TM Estimators
 2.3.6 Traffic Matrix Estimation Routing Weights
 2.3.7 Heuristic Use in the OD Matrix
 2.3.8 Expectation Maximization (EM) Method
 2.3.8.1 EM Algorithm used in Generating the O-D TM
 2.3.8.2 EM algorithm Gaussian Mixture used in OD TM
 2.3.9 TM uses by ISP’s
2.3.10 Validation and Verification TME methods
 2.3.10.1 Comparison of Methodology
 2.3.10.2 Numerical Validation
2.3.11 Discussion and Extended Work in TM Generation

2.4 Dynamic Routing Protocol (BGP and HP)
 2.4.1 Static Routing
 2.4.2 Dynamic Routing
 2.4.2.1 Interior Gateway Protocol (IGP)
 2.4.2.1.1 Distance Vector Algorithm
 2.4.2.1.2 Link State
 2.4.2.1.3 Selecting IGP Routing Protocols
 2.4.2.1.4 Determining the traffic routes
 2.4.2.2 Exterior Gateway Protocol (EGP)
 2.4.2.2.1 Border Gateway Protocol (BGP)
 2.4.2.2.2 Why select the HP to Use with BGP?
 2.4.2.2.3 The State of Art in BGP and Hot Potato
 2.4.2.2.4 The State of Art in ISP’s with BGP
 2.4.3 Discussion and Extended Work on BGP and HP

2.5 The State of Art in Integrated Simulation Model
 2.5.1 TME and NS-2
 2.5.2 Traffic Matrix Estimation and Hot Potato
 2.5.3 The State of Art in Conceptual Integration between BGP, HP and TME
3 DESIGN AND MODELING OF AN INTEGRATED SIMULATION MODEL BASED ON REAL NETWORK
3.1 Introduction 73
3.2 Overall Research Methodology Framework 74
3.3 Methodology Based on Research Objectives 77
3.4 Modeling of the Production Network in NS-2 79
 3.4.1 Network Production 81
 3.4.2 Data Reprocessing 82
 3.4.3 NS-2 Modeling 82
 3.4.4 Validation and Verification 83
3.5 Traffic Matrix Estimation Model 83
 3.5.1 Why TME approach and its application 84
 3.5.2 Traffic Matrix Algorithm 85
 3.5.3 Validation 87
 3.5.4 Simulation of TME Traffic Text File in NS-2 87
 3.5.4.1 TME NS-2 Simulation Feature 87
 3.5.4.2 Validation 88
 3.5.5 Integration of TME With HP 89
 3.5.5.1 TME NS-2 Simulation Feature 89
 3.5.5.2 Validation 90
3.6 Integrated Simulation Model (ISM) 90
 3.6.1 Corporation Dual-Homed Network Topology 90
 3.6.2 Hot Potato (HP) 91
 3.6.2.1 Hot Potato Validation 93
 3.6.3 Modification to existing Border Gateway Protocol (BGP) 94
 3.6.3.1 ns-BGP Validation Tests 95
3.7 Integrated Simulation Model (ISM) Evaluation 96
 3.7.1 ISM Evaluation without Link or Node Failure Scenarios 97
 3.7.2 Global Control 97
 3.7.2.1 HP Scenarios 98
 3.7.2.2 TME Scenarios 99
4 TRAFFIC MATRIX ESTIMATION MODEL BASED ON PRODUCTION NETWORK

4.1 Introduction 103

4.2 Generative NS-2 Traffic Model Based on Real Network Parameter

4.2.1 Model Description 104

4.2.2 Network Data 105

4.2.3 Network Production 105

4.2.4 Data Collection 107

4.2.5 Assumptions made in the simulation model 108

4.2.6 Simulation Parameters 109

4.2.7 Model Description 109

4.2.8 The Model Code 110

4.2.9 Numerical example 112

4.2.9.1 Results 113

4.2.9.2 Model Validation and Verification 115

4.3 O-D Traffic Matrix Estimation Model 117

4.3.1 ODGen Method 117

4.3.1.1 Algorithm Assumption 118

4.3.1.2 O-D Matrix Generation Numerical Example for validation 119

4.3.2 Generating O-D TME 127

4.3.2.1 Data and Assumption 129

4.3.2.2 Maximum number of hops 129

4.3.2.3 Computing the shortest path 129

4.3.2.4 End-to-End node probabilities 131

4.3.2.5 Originating traffic matrix for each node 131
4.3.3 Generation of Traffic text file for NS-2
4.3.3.1 Validation O-D TME text file in NS-2
4.3.4 Generation of the routing tables for each node to be used by Hot-Potato routing protocol

4.4 Summary

5 INTEGRATED SIMULATION MODEL

5.1 Introduction

5.2 Building the Integrated Simulation Model (ISM)
5.2.1 Hot Potato Algorithm
 5.2.1.1 HP Conceptual Validation
 5.2.1.2 HP Algorithm
 5.2.1.3 Implementation of HP Algorithm
5.2.2 BGP Integrated with NS-2 Simulators (ns-BGP2.0)
 5.2.2.1 Unicast Routing Structure in NS-2
 5.2.2.2 BGP Conceptual Validation
 5.2.2.3 ns-BGP Validation
 5.2.2.3.1 Result in Different Scenarios Applied to reflection2.tcl
 5.2.2.3.2 Step 2 Validation Procedure
5.2.3 Validation
 5.2.3.1 Comparing the Results of ns-BGP with and without HP
5.3 Applying the complete ISM to the Proposed Corporation Network Topology
 5.3.1 Dual-homed Network Design Consisting of 5 Sites
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sudan internet usage and population growth</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The scope of involvement: current versus future states</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Types of network simulators</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison result between LP, Bayesian and EM</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>The error percentage between LP, Bayesian and EM</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>EIGRP metrics</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>EIGRP K-value defaults</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of protocols, ports, reliability, and default timers</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>The reference bandwidth default value of OSPF, IGRP and EIGRP</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>The transmission cost for IGRP, EIGRP, OSPF, and RIP</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Different traffic routing</td>
<td>43</td>
</tr>
<tr>
<td>2.10</td>
<td>Adaptive routing algorithm</td>
<td>47</td>
</tr>
<tr>
<td>2.11</td>
<td>Non-adaptive routing algorithm</td>
<td>48</td>
</tr>
<tr>
<td>2.12</td>
<td>Some of Network Monitoring Products (RMON2)</td>
<td>56</td>
</tr>
<tr>
<td>2.13</td>
<td>Comparison between network simulators based on modeling capability</td>
<td>57</td>
</tr>
<tr>
<td>2.14</td>
<td>Pre-connection core memory demands</td>
<td>58</td>
</tr>
<tr>
<td>2.15</td>
<td>Design and implementation of ns-BGP</td>
<td>66</td>
</tr>
<tr>
<td>2.16</td>
<td>Validation methodology</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Steps according to the numbers in the colored arrows</td>
<td>79</td>
</tr>
<tr>
<td>3.2</td>
<td>List of tools used in the research</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Links probabilities</td>
<td>106</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between network captured file and simulator</td>
<td>113</td>
</tr>
</tbody>
</table>
4.3 Error percentage between real and simulation network parameters 115
4.4 t-test: of real and simulation transmission time calculation 115
4.5 t-test: of real and simulation received time calculation 115
4.6 AWK verification (One input) 116
4.7 Java script verification (Two inputs) 116
4.8 Load and end-to-end probabilities based on Fischer network for node 1 122
4.9 Load and end-to-end probabilities based on Fischer network for all nodes 122
4.10 Hits along O-D paths and nodal originating traffic (shown for Iteration 1) in Fischer network 123
4.11(a) Node 1 O-D Traffic Matrix 124
4.11(b) Node 2 O-D Traffic Matrix 124
4.11(c) Node 3 O-D Traffic Matrix 124
4.11(d) Node 4 O-D Traffic Matrix 124
4.11(e) Node 5 O-D Traffic Matrix 124
4.11(f) Node 6 O-D Traffic Matrix 124
4.11(g) Node 7 O-D Traffic Matrix 124
4.11(h) Node 8 O-D Traffic Matrix 124
4.12 Estimated link loads (Iteration 1) in Fischer network 125
4.13 Estimated link loads (Iteration 2) in Fischer network 126
4.14 Routing matrix of Fischer network 127
4.15 O-D pair packet traffic in links in production network 130
4.16(a) Node 0 O-D Traffic Shortest Path 130
4.16(b) Node 1 O-D Traffic Shortest Path 130
4.16(c) Node 2 O-D Traffic Shortest Path 130
4.16(d) Node 3 O-D Traffic Shortest Path 130
4.17 Loads and end-to-end Probabilities for example network for all nodes 131
4.18 Comparison the calculation accuracy for R and Excel in production network 132
4.19 The EM iteration outcomes estimated parameters in the production network 133
4.20 The execution estimated parameters output in the production network 134
4.21 The epsilon test for execution estimated parameters output in the production network 135
4.22 Nodes from and to multipliers good values in the production network 137
4.23 Hits along O-D paths in production network 137
4.24 Nodal originating traffic in production network 137
4.25(a) Node 0 O-D Traffic Matrix 138
4.25(b) Node 1 O-D Traffic Matrix 138
4.25(c) Node 2 O-D Traffic Matrix 138
4.25(d) Node 3 O-D Traffic Matrix 138
4.26 Estimated link loads in production network 139
4.27 Routing matrix in production network 139
4.28 The nodes bidirectional SD error percentage in real network 141
4.29(a) Node 0 O-D Traffic Shortest Path 143
4.29(b) Node 1 O-D Traffic Shortest Path 143
4.29(c) Node 2 O-D Traffic Shortest Path 143
4.29(d) Node 3 O-D Traffic Shortest Path 143
5.1 The program input parameters assigned by the user 150
5.2 The program input parameters assigned by the user 153
5.3 Result comparison 154
5.4 EBGP comparison between ns-BGP and CPT based on show routes result 157
5.5 IBGP comparison between ns-BGP and GNS3 based on show routes result 158
5.6 Default values of parameters used in routereflection2.tcl 159
5.7 The Throughput, Packet loss and average Delay values for reflection2.tcl trace file 160
5.8 The Throughput, Packet loss and average Delay values for 161
reflection2.tcl after link failure trace file

5.9 The Throughput, Packet loss and average Delay values for reflection2.tcl trace file running HP

5.10 The Links information’s for the proposed network

5.11 O-D pair packet traffic in links in the production network

5.12(a) Site 0 O-D Traffic Shortest Path

5.12(b) Site 1 O-D Traffic Shortest Path

5.12(c) Site 2 O-D Traffic Shortest Path

5.12(d) Site 3 O-D Traffic Shortest Path

5.12(e) Site 4 O-D Traffic Shortest Path

5.13 Load and end-to-end probabilities based for site 0

5.14 Load and end-to-end probabilities based on production network for all sites

5.15 EM iteration outcome for the estimated parameters in the production network

5.16 The execution estimated parameters output in the production network for traffic out site 0

5.17 The execution estimated parameters output in the production network for traffic in site 0

5.18 The epsilon test for execution estimated parameters output in the production network

5.19 Sites from and to multipliers good values in the production network

5.20 Hits along O-D paths in production network

5.21 Nodal originating traffic in production network

5.22(a) Site 0 O-D Traffic Matrix

5.22(b) Site 1 O-D Traffic Matrix

5.22(c) Site 2 O-D Traffic Matrix

5.22(d) Site 3 O-D Traffic Matrix

5.22(e) Site 4 O-D Traffic Matrix

5.23 Estimated link loads in production network

5.24 Routing matrix in production network

5.25 The sites bidirectional SD error percentage in Real Network
5.26 The TME text file SD and Mean error percentage and real production network text file
5.27 Site 0 the information of next hop to next AS
5.28 The Throughput, Packet loss and average Delay values based on reflection2.tcl trace file
5.29 The Throughput, Packet loss and average Delay values for reflection2.tcl trace file running HP
5.30 The Throughput, Packet loss and average Delay values based on reflection2.tcl trace file running HP
5.31 The links information’s
5.32 The weights of links endpoints and the total packets
5.33(a) Site 0 O-D Traffic Shortest Path
5.33(b) Site 1 O-D Traffic Shortest Path
5.33(c) Site 2 O-D Traffic Shortest Path
5.33(d) Site 3 O-D Traffic Shortest Path
5.33(e) Site 4 O-D Traffic Shortest Path
5.34 Estimated link loads in production network
5.35 The routing matrix for the scenario network topology
5.36 Site 0 the information of next hop to next AS
5.37 Link information’s
5.38(a) Site 0 O-D Traffic Matrix
5.38(b) Site 1 O-D Traffic Matrix
5.38(c) Site 2 O-D Traffic Matrix
5.38(d) Site 3 O-D Traffic Matrix
5.38(e) Site 4 O-D Traffic Matrix
5.38(f) Site 5 O-D Traffic Matrix
5.39 Information of next hop to next AS for Site 0
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Internet users in the world distribution by world regions</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>– 2013- fourth quarter</td>
<td></td>
</tr>
<tr>
<td>1.2(a)</td>
<td>Company uses the Cloud Computing for their activities</td>
<td>2</td>
</tr>
<tr>
<td>1.2(b)</td>
<td>Company uses the Dual-homed network for redundancy</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>IPv4 allocation by prefix in Sudan (SD)</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>The steps to develop the ISM</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Components terminology of network</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Four-node-topology with links loads</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>AVG and MAX error percentage</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>The cost of link</td>
<td>38</td>
</tr>
<tr>
<td>2.5(a)</td>
<td>Router updates comparison of various protocols</td>
<td>39</td>
</tr>
<tr>
<td>2.5(b)</td>
<td>Route addition comparison of various protocols</td>
<td>40</td>
</tr>
<tr>
<td>2.5(c)</td>
<td>Number of next hop updates of various protocols</td>
<td>40</td>
</tr>
<tr>
<td>2.5(d)</td>
<td>Link utilization of various protocols</td>
<td>41</td>
</tr>
<tr>
<td>2.5(e)</td>
<td>Throughput of various protocols</td>
<td>41</td>
</tr>
<tr>
<td>2.5(f)</td>
<td>Delay encountered by various protocols</td>
<td>42</td>
</tr>
<tr>
<td>2.6</td>
<td>eBGP and iBGP</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>BGP Route Reflection setup</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>BGP Confederation setup</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>The node details and links between nodes</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Process of node creation</td>
<td>62</td>
</tr>
<tr>
<td>2.11</td>
<td>Details of the link creation</td>
<td>63</td>
</tr>
<tr>
<td>2.12</td>
<td>Process of attaching the traffic agent to node</td>
<td>64</td>
</tr>
<tr>
<td>2.13</td>
<td>The simulation is ready for running</td>
<td>65</td>
</tr>
<tr>
<td>2.14</td>
<td>ns-BGP progress and timeline</td>
<td>68</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology in relation to the research objectives</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of production network to the simulation model</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Network production topology and links information</td>
<td>82</td>
</tr>
<tr>
<td>3.4</td>
<td>Traffic Matrix Estimation (TME) model block diagram</td>
<td>84</td>
</tr>
<tr>
<td>3.5</td>
<td>The original ODGen algorithm setup (Left side) and enhance ODGen algorithm (right side)</td>
<td>86</td>
</tr>
<tr>
<td>3.6</td>
<td>Steps to generate TME traffic text file</td>
<td>89</td>
</tr>
<tr>
<td>3.7</td>
<td>Enhance the corporation WAN topology</td>
<td>91</td>
</tr>
<tr>
<td>3.8</td>
<td>Steps for HP routing table updates based on output of TME</td>
<td>92</td>
</tr>
<tr>
<td>3.9</td>
<td>The HP validation procedure</td>
<td>93</td>
</tr>
<tr>
<td>3.10</td>
<td>The HP new function added to ns-BGP</td>
<td>94</td>
</tr>
<tr>
<td>3.11</td>
<td>The ns-BGP functionality validation test</td>
<td>95</td>
</tr>
<tr>
<td>3.12</td>
<td>The network topology in reflection2.tcl validation test file</td>
<td>96</td>
</tr>
<tr>
<td>3.13</td>
<td>The ISM internal sequence process</td>
<td>97</td>
</tr>
<tr>
<td>3.14</td>
<td>The Global Controller (GC) used to switching between HP or and TME scenarios</td>
<td>98</td>
</tr>
<tr>
<td>3.15</td>
<td>The HP scenarios</td>
<td>99</td>
</tr>
<tr>
<td>3.16</td>
<td>The TME scenarios</td>
<td>100</td>
</tr>
<tr>
<td>4.1</td>
<td>Framework for developing NS-2 near real model based on actual network parameters</td>
<td>105</td>
</tr>
<tr>
<td>4.2</td>
<td>Production network topology</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Router to router data collection</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Example of captured text file</td>
<td>108</td>
</tr>
<tr>
<td>4.5(a)</td>
<td>NS-2 Model emulating real world network-data captured online</td>
<td>111</td>
</tr>
<tr>
<td>4.5(b)</td>
<td>NS-2 Model emulating real world network-network information</td>
<td>111</td>
</tr>
<tr>
<td>4.5(c)</td>
<td>Model Emulating real world network-simulation running</td>
<td>112</td>
</tr>
<tr>
<td>4.6</td>
<td>Time comparison between real world packets sent and simulation packet sent</td>
<td>114</td>
</tr>
</tbody>
</table>
4.7 Time comparison between real world packet received and simulation packet received

4.8 Traffic Matrix algorithm pseudo-code phases

4.9 Fischer network, with directional link loads (packets per second)

4.10 The ISM- TME phase implementation flow chart

4.11 Real topology in production network

4.12 The good value of mean estimated in production network

4.13 The good value of standard deviation estimated in production network

4.14 O-D TME implementation steps to generate the traffic text file

4.15 The implementation for shortest path and O-D TME for all possible link failure in the example network

5.1 Router running BGP and IGP

5.2 HP validation steps

5.3 The dual-homed network topology

5.4 BGP without HP function

5.5 HP learned from EIGRP

5.6 HP learning from TME

5.7 Unicast structure in NS-2

5.8 BGP unicast structure in NS-2

5.9 EBGP scenario topology (In the left side ns-BGP, right side Cisco Packet Tracer)

5.10 iBGP scenario topology (In the left side ns-BGP, right side GNS3)

5.11 The reflection2.tcl topology

5.12 Comparisons between the trace file without link failure and with link failure

5.13 The topology and trace file when site 0 failures

5.14 Hot Potato routing function to BGP in NS-2 with IBGP
5.15 HP function added to rtProtoBGP
5.16 How HP function deals with site classifier
5.17(a) Normal execution of reflection2.tcl
5.17(b) Execution with link failure of reflection2.tcl
5.18 The modification of trace by using HP function
5.19 The alternative link 4 between site 4 to site 2 via site 1
starts to be used
5.20 HP selects the alternative path
5.21 Comparisons between the trace files for both without
link failure and with link failure
5.22 Production network topology
5.23 Aggregation router data collection
5.24 Example of reprocessing captured text file
5.25 The new network design
5.26 The captured text file and TME text file
5.27 The dual-homed network for corporation
5.28 The link down and up scenario between site 0 and site 3
5.29 Site down/ up between site 0 and all other sites scenario
5.30 Comparison between ISM and link failure scenarios
based on Throughput, Delay and Packets loss
5.31 Comparison between the ISM and node failure scenarios
Based on Throughput, Delay and Packets loss
5.32 New links are added between site3 and site4 in the
existing network
5.33 TME traffic text file
5.34 Adds two new sites (multi-homed network topology)
5.35 The ISM model runs 32 sites topology
6.1 Flow for HP selection of egress point based on distances
and end-to-end link endpoint probabilities
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol version 6</td>
</tr>
<tr>
<td>DC</td>
<td>Data Center</td>
</tr>
<tr>
<td>DRC</td>
<td>Data Recovery Center</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>STP</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>TE</td>
<td>Traffic Engineering</td>
</tr>
<tr>
<td>TME</td>
<td>Traffic Matrix Estimation</td>
</tr>
<tr>
<td>O-D</td>
<td>Origin –Destination</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>IBGP</td>
<td>Interior Border Gateway Protocol</td>
</tr>
<tr>
<td>RR</td>
<td>Route Reflection</td>
</tr>
<tr>
<td>HP</td>
<td>Hot Potato</td>
</tr>
<tr>
<td>ISM</td>
<td>Integrated Simulation Model</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximization</td>
</tr>
</tbody>
</table>
EIGRP - Enhanced Interior Gateway Routing Protocol
NS-2 - Network Simulator v2
NS3 - Network Simulator v3
OPNET - Optimized Network Engineering Tools
OMnetT++ - Operation and Maintenance New Equipment Training
SSFNet - Scalable Simulation Framework Network Models
POP - Point of Presence
DV - Distance Vector
MIS - Management Information System
LAN - Local Area Network
WAN - Wide Area Network
NSP - Network Service Provider
VoIP - Voice over Internet Protocol
SLA - Service Level Agreement
AS - Autonomous System
RRC - Route Reflector Client
CPU - Central Processing Unit
ER - Edge Router
MED - Multiexit-Discriminator
TM - Traffic Matrix
SD - Standard Deviation
ICMP - Internet Control Message Protocol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>C</td>
<td>C language</td>
</tr>
<tr>
<td>C++</td>
<td>C ++ Language</td>
</tr>
<tr>
<td>NAM</td>
<td>Tcl/Tk Based Animation Tool</td>
</tr>
<tr>
<td>FIFO</td>
<td>First in First out</td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledgement</td>
</tr>
<tr>
<td>Pkt</td>
<td>Packet</td>
</tr>
<tr>
<td>ELLFD</td>
<td>Estimated Link Load from Direction</td>
</tr>
<tr>
<td>ELLTD</td>
<td>Estimated Link Load to Direction</td>
</tr>
<tr>
<td>Mu</td>
<td>Mean</td>
</tr>
<tr>
<td>Sigma</td>
<td>Standard Deviation</td>
</tr>
</tbody>
</table>
LIST OF MATHEMATICAL SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_a</td>
<td>Packet Received time in the Production Network</td>
</tr>
<tr>
<td>R_b</td>
<td>Packet Received time in the Simulation Network</td>
</tr>
<tr>
<td>ES</td>
<td>Cell Transmission Time</td>
</tr>
<tr>
<td>ρ</td>
<td>Link Utilization</td>
</tr>
<tr>
<td>P_{init}_{ij}</td>
<td>The End-to-End Probabilities for All Nodes</td>
</tr>
<tr>
<td>pps_{in}_{j}</td>
<td>Total Packets Coming in to Node j</td>
</tr>
<tr>
<td>p_{ij}</td>
<td>The End-to-End Probability from Node i to Node j</td>
</tr>
<tr>
<td>$\lambda_{\text{orig}}_{i}$</td>
<td>Traffic Originating at Node i</td>
</tr>
<tr>
<td>pps_{out}_{i}</td>
<td>Total Packets out from Node i</td>
</tr>
<tr>
<td>TM_{ij}</td>
<td>Traffic matrix Between Node i and Node j</td>
</tr>
<tr>
<td>$ELLFD_{ij}$</td>
<td>Estimated Link Load from Direction between node i and node j</td>
</tr>
<tr>
<td>$ELLTD_{ij}$</td>
<td>Estimated Link Load to Direction between node i and node j</td>
</tr>
<tr>
<td>e</td>
<td>Epsilon</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Network Topology Design (Partial)</td>
<td>226</td>
</tr>
<tr>
<td>B</td>
<td>Code for reflection2,tcl</td>
<td>227</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Internet has become an enabler of information in our society and is today a fundamental element of the worldwide communication infrastructure playing a major role in enhancing education, entertainment, business, and social life. This proliferation of content has been followed by a sustained growth of starving Internet consumers. Nowadays Internet traffic is rapidly increasing, not only in volume but also in heterogeneity and complexity of composition. Internet users now demand a faster, a higher-quality, a more reliable, and more secure Internet. Figure 1.1 shows the number of Internet users in fourth quarter of 2013 (2,802,478,934). With this volume of users, many challenging issues and more pressure is faced by the Internet Service Providers (ISPs) to provide quality services with limited resources. At the same time, better traffic monitoring and analysis is needed to ensure the delivery of services to the end users.

Figure 1.1 Internet users in the world distribution by world regions – 2013 – fourth quarter
Currently, many big companies are providing redundant and cheap cloud computing services. These cloud computing services provide a highly flexible environment enabling on-demand network access over the Internet (ISP’s), thus allowing small companies to run their business without spending too much money in creating their own infrastructure to run their business applications, as in Management Information System (MIS). One of such infrastructure is shown in Figure 1.2a. In MIS, a Dashboard, as shown in this figure, is an easy to read, often single page, real-time user interface showing a graphical presentation of the current status and historical trends of any cooperation. To overcome the issue of availability of access, companies invest on redundant connections to the Internet ISPs using a dual-homed network (Karol et al., 2007) setup. Figure 1.2b shows a setup of dual-homed network using BGP routing to connect to two ISPs. Dual or multi homed network is applicable in the real enterprise and medium companies world with their own private network (Abdullah et al., 2014).

In the ever challenging world, ISPs will constantly need to study and analyse the existing traffic over existing infrastructures and predict their future demands. This has to be done smoothly and skilfully without any impacts on end users interactions. To achieve these tasks, simulation is normally carried out in order to
have minimal or no impact on users (Mahdi and Hussain, 2013). The simulation has to represent the real environment and uses as much as possible real parameters to increase the estimated accuracy. A number of network simulators are available nowadays, either free or commercial.

1.2 Background

Sudan is a developing country with a population of 35.5 million; her advancement in ICT is also evolving. Consequently, the number of Internet users is also growing very fast. Table 1.1 shows the increment of Internet users, from 30,000 to 9.3 million over the periods of 2000 to 2014. This is a sharp increase compared to the decreasing population. This demand adds more pressure to the ISPs and introduces challenges which need to be addressed.

<table>
<thead>
<tr>
<th>Year</th>
<th>Users</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>30,000</td>
<td>36,841,500</td>
</tr>
<tr>
<td>2003</td>
<td>300,000</td>
<td>35,035,677</td>
</tr>
<tr>
<td>2009</td>
<td>4,200,000</td>
<td>34,206,710</td>
</tr>
<tr>
<td>2014</td>
<td>9,307,189</td>
<td>35,482,233</td>
</tr>
</tbody>
</table>

Source: Internet World Stats

The need for global IPs for Internet users and companies is becoming a challenge with limited availability of IPv4 addresses. Figure 1.3 shows the increase in demand for year 2014. Migration to IPv6 is a challenge because most people are experts in IPv4. Thus, ISPs must increase the user knowledge through workshops.
Figure 1.3 IPv4 allocations by prefix in Sudan (SD)

Source: Internet Numbers Registry for Africa

In this research, the ICT services provided by Sudan’s Internet Service Provider for the population is used for the case study; in addition, these services are also aimed to be enhanced and developed for optimum provision of services. This Sudan ISP (also referred to as ‘Corporation’), has more than sixty four (64 egress points) sites, represented by different industrial cities, complexes and companies, that are located around the country.

The management of the Corporation decided to centralize the ICT departments into one body, in order to reduce investment, budget and to finally ensure that the technical and supervisory control that are currently outsourced to other commercial companies are now directly taken care of by the Corporation. Thus the Corporation can apply and implement the future ICT infrastructure based on their strategic plan.
1.3 Motivation

The Corporation dream is not impossible. However, at the same time, it is not an easy task and risks have to be managed properly in the migration effort. Some challenges are more related to management issues and culture. Technical issues, which are the main focus of this research, involve migrating from the current static routed configuration environment to the enhanced dynamic routed environment.

Table 1.2: The scope of involvement: current versus future states

<table>
<thead>
<tr>
<th>Current State</th>
<th>Future State</th>
<th>Scope of involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A few sites has own independent ICT department</td>
<td>Centralize the ICT</td>
<td>Management</td>
</tr>
<tr>
<td>Running cost is very high</td>
<td>Initial cost is high (DC, DRC)</td>
<td>Management</td>
</tr>
<tr>
<td>A variety of network topologies</td>
<td>Apply new topology to achieve all corporation needs in next 15 years</td>
<td>Technical</td>
</tr>
<tr>
<td>A variety of ERP applications</td>
<td>Apply centralized ERP for the corporation</td>
<td>Management</td>
</tr>
<tr>
<td>ICT does not support the decision makers such as Dashboard</td>
<td>Fully support the decision makers on click</td>
<td>Management</td>
</tr>
<tr>
<td>Manually maintaining the routing protocol (Static)</td>
<td>Apply suitable dynamic routing</td>
<td>Technical</td>
</tr>
<tr>
<td>Network High availability, Available through Passive Link controlled by Spanning Tree Protocol (STP).</td>
<td>Network Connectivity must be fully utilized for maximization performance</td>
<td>Technical</td>
</tr>
</tbody>
</table>
1.4 Research Questions

Based on the literature reviewed and existing setup requirements as applicable to this case study, the following questions are generated:

1. How can Traffic Matrix Estimation (TME) method that is based on combination of end-to-end recovery (probability) and method of generating traffic matrix be classified?

2. How can the selected method be enhanced and implemented; and the results validated?

3. Based on the survey, which tools can be used to make the computation complexity easy?

4. How can an existing method that is easy to modify, enhanced and aligned with the research needs be selected?

5. How can the traffic generated between each O-D pair in a flow structure, including offset time, source, destination, protocol, type and length, in text file be saved?

6. How can the network simulators be classified; and suitable ones that is cheap (possibly free) and has inherent libraries in modeling dynamic routes such as Border Gateway Protocol (BGP), Interior Gateway Protocol (IBGP) and Route Reflection (RR) be selected for the purpose of this research?

7. How to inject the real data captured from case study network or outcomes from TME text file into selected simulator and disable their traffic generator functionality?

8. How can the result from selected network simulator be validated, and which tools should be used?

9. How can the Hot-Potato routing algorithm be implemented; and their outcomes validated?
10. How can the TME outcomes as input parameters to support Hot-Potato in generating Hot-Potato routing changes plan be used and validated?

11. How can the BGP which run in selected simulator to use Hot-Potato routing protocol instead of the default routing in Interior Border Gateway Protocol (IBGP) within the cluster that uses Route Reflection (RR) setup be enforced?

12. How can the outcome when disabling the default routing in IBGP and use Hot-Potato Routing validated?

13. Since there is no work that integrates TME, HP and BGP, to the best of our knowledge in a simulator environment, how do we synchronize between them and validate the outcome based on the three metrics packet: loss, delay and throughput?

14. How can the impact of link failure in the network when using such integrated model be reduced?

15. How can the scalability when adding new nodes and increase the performance when adding new links when using the integrated model be extended?

1.5 Problem Statements

The problem of the Corporation is to move from the current network configuration which uses static routing protocol to future state network that is based on Traffic Engineering (TE). In TE, the ODGen algorithm TME is limited to the number of hops, the Expectation Maximization (EM) accuracy is 92% and the complexity of calculations that consumes the CPU time (ODGen problem runs in about 19 seconds for each iteration). Thus, there is a need to minimize the real experimental risks as much as possible by using a suitable network simulator NS-2 is normally used to simulate the real network based on the topology and link probabilities. However, networks parameters representing the real network traffic are not used in NS-2. The error percentage observables with BGP simulated in NS-2
with three matrices are 22% for packet losses, 12% average delay and 22% throughput. There is lack of such comprehensive model consisting of TME, BGP and HP in NS-2 based on real network from previous studies and analysis. Previous work such those found in (Teixeira et al. 2008), only HP functionality were tested in BGP and which were used to generate the traffic matrix in order to study the network impacts.

1.6 Research Objectives

The ultimate aim of this research is to assist in providing the best solution to migrate from the current ISP network setup based on static routes to network based on enhanced auto dynamic updates. To enhance this auto dynamic update, the research views the issues based on traffic engineering problems utilized by TM (TME). The proposed Border Gateway Protocol (BGP) which provides scalable internetworking and redundant for ISP’s to be implemented will use Hot-Potato (HP) routing protocol to get the dynamic updates, wherein in turn, HP will get their parameters from TME which are based on the real network setup and traffic data. Specifically, the following are the objectives of the research:

1. Enhanced the Origin – Destination Generator algorithm (ODGen) by increasing the accuracy, simplify the calculation and visualization of the traffic in the NS-2 network simulator instead of using their interior traffic generators based on the real network.
2. Develop an Integrated Simulation Model (ISM) which consists of TME, BGP and HP by using NS-2 simulation based on the real network to study the impacts and visualize- the changes in real network topologies based on Packet loss, Delay and Throughput.

1.7 Scope of Work and Assumptions

This research involves four phases. The first is development of simulation environment (using NS-2) phase. In this phase parameters representing the actual
data packets are injected into the real production network in the NS-2 model. Next, is the TME phase, which is to develop and enhance the existing TME model. The enhanced TME model will include the combination of the end-to-end probability path and traffic matrix algorithms based on Expectation Maximization (EM) whose parameters are based on the real production network traffic. In Phase Three, the Hot Potato (HP) integrated with TME will provide the dynamic updates for IBGP when using Route Reflection (RR) method. The last, is the ISM phase, where here TME, HP with BGP functions are all integrated within an open source network simulator. The four phases are illustrated in Figure 1.4.

Figure 1.4 The steps to develop the ISM

The scope of this research is as follows:

1. Dataset are captured from the Corporation in Sudan which is collected at router-to-router level through a modified sniffer program.
2. The simulation uses NS-2 Network simulator.
3. In generating the TME model, the following are used:

i. The R tools are to be implemented with EM algorithm for the Gaussian mixture model.

ii. Dijkstra’s Minimum Weight Path Algorithm to compute the shortest paths.

iii. The weights used by Dijkstra’s Algorithm and Hot-Potato Algorithm are the Enhanced Interior Gateway Routing Protocol (EIGRP) metric.
4. The work does not include Traffic Matrix optimization.
1.8 Contributions of Research

1. ODGen is enhanced by unlimited number of hops, the accuracy of EM increases from 92% to 97% and computations (in which the average of 10 execution elapsed time equal to 0.07 seconds) is simplified.

2. Injecting the real network traffic in NS-2 instead of using readily available NS-2 internal traffic generators. The results shows that the characteristics of injected traffic and the real traffic are very similar with an average error packet time send 0% and error packet time received 3.61% with 0% packet loss when comparing between them. Thus we are using parameters representing real traffic instead of NS-2 packet traffic generators based on certain distribution function.

3. Development of an Integrated Simulation Models based on NS-2 using real traffic parameters. With the ISM, various scenarios, such as link or node removal and addition can be studied and its impact evaluated. The model, wherein Hot Potato learns the weight from TME optimizes further the switching time for BGP from primary link to the alternative to 0.05 seconds.

1.9 Organization of the Thesis

This thesis includes six chapters and the appendices.

Chapter 2 discusses four main topics. Firstly, NS-2 model based on the real network parameter methods are discussed. This is followed by traffic matrix estimation methods. Thirdly, Hot Potato routing functions in simulators network is described. This is finally followed by a discussion on Border Gateway Protocol functionality on network simulators. At the end of the chapter, the research questions that are generated from these reviewed literatures are discussed.
Chapter 3 shows the steps involved in the research methodology as applicable to this study. Likewise, the models and the proposed data collection strategies are explained.

Chapter 4 explains further on generating NS-2 traffic model based on real network parameter. Development and enhancement of the traffic matrix estimation model based on a production network is elaborated. This chapter also discusses the data collection, experimental setup and implementation of the production network to test the accuracy of the NS-2 model and the TME.

Chapter 5 deals with the TME outcome for Hot-Potato routing algorithm and how IBGP could get dynamic update from Hot-Potato protocol. This chapter also discusses the experimental setup and implementation of the production network to test the effectiveness of the ISM in dealing with link or node failure, as well as the addition of new node or link.

Chapter 6 concludes the thesis by discussing the achievements. The future work also described.
REFERENCES

