HIGH SPEED – ENERGY EFFICIENT SUCCESSIVE APPROXIMATION ANALOG TO DIGITAL CONVERTER USING TRI-LEVEL SWITCHING

SAHAR SARAFI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

NOVEMBER 2015
To my beloved husband and family
ACKNOWLEDGEMENT

I am ever so grateful that after four years I am able to complete my PhD degree here at UTM. I have been blessed to be surrounded by family, friends, professors, officemates and colleagues who have provided cheers and support throughout my PhD.

My deep appreciation and gratitude goes to my supervisors Professor. Dr. Abu Khari Bin Aain for his kindness, constant endeavor, guidance and the numerous moments of attention he devoted throughout this work.

I would like to express my deepest gratitude to my parents who have given me unconditional support. I would like to thank my dearest husband for his patience, and his endless support in any possible way. This research would have never reached to this point without his support and patience. My success will always be his success too.

Last but not least, thanks to those who have helped me in the whole duration of my research development. For other researchers or students who wish to contact me, please do so via my email, Sahar.sarrafi1@gmail.com.
ABSTRACT

This thesis reports issues and design methods used to achieve high-speed and high-resolution Successive Approximation Register analog to digital converters (SAR ADCs). A major drawback of this technique relates to the mismatch in the binary ratios of capacitors which causes nonlinearity. Another issue is the use of large capacitors due to nonlinear effect of parasitic capacitance. Nonlinear effect of capacitor mismatch is investigated in this thesis. Based on the analysis, a new Tri-level switching algorithm is proposed to reduce the matching requirement for capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-linearity (DNL) of the proposed scheme are reduced by factor of two over conventional SAR ADC, which is the lowest compared to the previously reported schemes. In addition, the switching energy of the proposed scheme is reduced by 98.02% compared with the conventional SAR architecture. A new correction method to solve metastability error of comparator based on a novel design approach is proposed which reduces the required settling time about 1.1τ for each conversion cycle. Based on the above proposed methods two SAR ADCs: an 8-bit SAR ADC with 50MS/sec sampling rate, and a 10-bit SAR split ADC with 70 MS/sec sampling rate have been designed in 0.18µm Silterra complementary metal oxide semiconductor (CMOS) technology process which works at 1.2V supply voltage and input voltage of 2.4Vp-p. The 8-bit ADC digitizes 25MHz input signal with 48.16dB signal to noise and distortion ratio (SNDR) and 52.41dB spurious free dynamic range (SFDR) while consuming about 589µW. The figure of merit (FOM) of this ADC is 56.65 fJ/conv-step. The post layout of the 10-bit ADC with 1MHz input frequency produces SNDR, SFDR and effective number of bits (ENOB) of 57.1dB, 64.05dB and 9.17Bit, respectively, while its DNL and INL are -0.9/+2.8 least significant bit (LSB) and -2.5/+2.7 LSB, respectively. The total power consumption, including digital, analog and reference power, is 1.6mW. The FOM is 71.75fJ/conv. step.
ABSTRAK

Tesis ini melaporkan isu dan teknik reka bentuk yang diguna untuk menghasilkan penukar analog kepada digital Daftar Penghampiran Berturutan (SAR ADCs) yang berkelajuan dan resolusi tinggi. Satu kelemahan utama teknik ini berkaitan dengan ketakpadanan dalam nisbah perduaan kapasitor yang menyebabkan ketaklinaran. Satu lagi isu ialah penggunaan kapasitor besar disebabkan oleh kesan ketaklinaran kapasitor parasitik. Kesaran ketidaklinaran kapasitor parasitik ini dikaji dalam tesis ini. Hasil daripada kajian ini, satu cara pensuisan Tri-tahap algoritma dicadangkan untuk mengurangkan keperluan sepadan kapasitor dalam SAR ADC. Ketidaklelurusan kamilan (INL) dan ketidaklelurusan perbezaan (DNL) pensuisan yang dicadangkan berjaya dikurangkan sebanyak dua kali ganda dan ini adalah yang paling rendah berbanding kaedah konvensional. Kuasa pensuisan juga dikurangkan sebanyak 98.02%. Satu cara pembetulan untuk menyelesaikan ralat metastabiliti juga dicadangkan dan berjaya mengurangkan masa menetap kepada 1.1τ bagi setiap kitar penukaran. Berdasarkan kepada teknik yang dicadangkan, dua SAR ADC telah direka bentuk: satu 8-bit SAR ADC dengan kadar pensampelan 50MS/saat dan satu 10-bit SAR ADC-Pecahan dengan kadar pensampelan 70MS/saat. Keduanya menggunakan proses CMOS 0.18µm daripada Silterra dengan bekalan kuasa 1.2V dan voltan masukan 2.4Vp-p. Bagi masukan 25MHz, ADC 8-bit mendigitalkan 48.16dB isyarat kepada hingar dan kadar herotan (SNDR) dan 52.41dB jut dinamik bebas palsu (SFDR) dengan menggunakan kuasa 589µW. Angka kebaikan (FOM) untuk ADC ini adalah 56.65 fJ/penukaran langkah. Pasca bentangan bagi ADC 10-bit dengan ulangan masukan 1MHz menghasilkan SNDR, SFDR and nombor bit berkesan (ENOB) of 57.1dB, 64.05dB dan 9.17Bit, setiap satu, manakala DNL and INL adalah -0.9/+2.8 bit paling kurang nilai (LSB) dan -2.5/+2.7 LSB. Jumlah semua kuasa yang diguna termasuk litar digital, analog dan kuasa rujukan adalah 1.6mW. FOM pula adalah 71.75fJ/penukaran langkah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Problem statement 2
1.3 Objectives 7
1.4 Scope of work 7
1.5 Contributions 9
1.6 Thesis Organization 10

2 LITERATURE REVIEW 12

2.1 Introduction 12
2.2 ADC overview 12
 2.2.1 Analog-to-Digital Conversion Process 12
2.3 ADC Architectures 13
2.4 Successive Approximation Register ADC
 2.4.1 Search Algorithm
 2.4.2 DAC architecture
 2.4.3 Switching algorithms
2.5 Metastability Error of Comparator
2.6 Sampling switch
2.7 Summary

3 RESEARCH METHODOLOGY

3.1 Introduction
3.2 Investigation of nonlinear effect of capacitor mismatch on SAR ADCs
 3.2.1 Conventional method for linearity analysis
 3.2.2 Proposed Linearity-analysis method
 3.2.3 Behavioral simulation results
 3.2.4 Conclusion of investigation
3.3 Proposed switching algorithm
 3.3.1 Linearity performance analysis of the proposed switching algorithm
 3.3.2 Switching energy of proposed switching algorithm
3.4 First designed ADC
3.5 Second designed ADC
 3.5.1 Split DAC
 3.5.2 Analysis of parasitic capacitors effect on the Split SAR ADCs
 3.5.3 Proposed solution for nonlinear effect of parasitic capacitors on the Split SAR ADCs
 3.5.4 Implementation of the proposed compensation method
 3.5.5 Metastability Solution

4 CIRCUIT DESIGN AND LAYOUT

4.1 Introduction
4.2 Circuit design
4.2.1 Sampling switch 78
4.2.2 Comparator 86
4.2.3 Clock generator design 102
4.3 Layout design 106
 4.3.1 Layout plan 106
 4.3.2 Capacitive DAC Array Layout 109

5 SIMULATION RESULTS 110
 5.1 Introduction 110
 5.2 Simulation results of sampling switch 110
 5.3 Comparator simulation results 120
 5.4 Comparison proposed switching algorithm with other algorithms 123
 5.5 Simulation results of overall ADCs 124
 5.5.1 Circuit Model of a Package Lead 125
 5.5.2 Power Supply 126
 5.5.3 Dynamic test of ADC 127
 5.5.4 INL and DNL Tests 133
 5.5.5 Energy efficiency test 136
 5.6 Comparison 139

6 CONCLUSION AND FUTURE WORK 143
 6.1 Conclusion 143
 6.2 Future work 145

REFERENCES 146
Appendices A-C 155-161
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Measured errors from different capacitors of MSB-array and LSB-array</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of THD of different switches (a) $V_{dd}=1V$, $F_s=100MHz$, $V_{in}=2Vp$-p (b) $V_{dd}=0.8V$, $F_s=50MHz$, $V_{in}=0.7Vp$-p</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of different switching Schemes in N-bit SAR ADC</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of performance of designed ADCs</td>
<td>138</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison with state-of-the-art ADCs</td>
<td>141</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of 2nd SAR ADC with the state-of-the-art</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conversion rate of SAR ADCs in different CMOS technology process [7].</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>gds-Vds curve at different Vgs for an NMOS transistor with size of w/l=10 µ/10µ in Silterra 0.18um CMOS technology.</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Conversion rate of SAR ADCs in different CMOS technology process versus (Vdd -Vth) (from 1997 to 2014) [7].</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Block diagram of ADC to show the conversion process [36].</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The resolution versus sampling frequency for the published ADCs in ISSCC and VLSI (from 1997 to 2014) [4].</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>The sampling rate versus technology process for the published ADCs (from 1997 to 2014) [4]</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>The block diagram of SAR ADC.</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Binary search algorithm [37].</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Charge redistribution 4-bit SAR DAC [43].</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>a) Conventional C-2C array [47]. b) Pseudo C-2C capacitor array [49].</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>a) simplified schematic of serial DAC [45]. b) Block diagram of proposed charge sharing SAR ADC in [47].</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Conventional split SAR ADC [76].</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>MIM capacitor schematic with its parasitics [79].</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>a) Presented split capacitor array in [80]. b) Presented split capacitor array in [81]. c) Presented split capacitor array in [67].</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>A 3-bit set-and-down switching procedure.</td>
<td>30</td>
</tr>
</tbody>
</table>
2.13 A 3-bit common mode voltage based switching (merged capacitor switching) procedure.

2.14 A 3-bit Tri-Level switching procedure.

2.15 Waveform of conventional switching scheme, and waveform of tri-level switching scheme in [88].

2.16 Outputs of a typical clocked comparator [96].

3.1 Flowchart of research methodology.

3.2 ADC design procedure flowchart.

3.3 A simple capacitor array to investigate the linearity performance of DACs in SAR-ADCs.

3.4 Standard deviation of INL versus output code. a) by calculation. b) by Monte-Carlo simulation.

3.5 Standard deviation of DNL versus output code. a) by calculation. b) by Monte-Carlo simulation.

3.6 Proposed switching algorithm for a 4-Bit ADC. (Sampling phase and detection two MSBs)

3.7 Proposed switching algorithm for a 4-Bit ADC. (After detection of first two bits).

3.8 a) Standard deviation of INL versus output code. a) Standard deviation of DNL versus output code.

3.9 Schematic of the first designed SAR ADC.

3.10 The second Designed SAR ADC (Split DAC with proposed switching algorithm).

3.11 Flowchart of implementing the proposed compensation method in ADC working phases.

3.12 The status of capacitor arrays at the end of conversion process for output codes of a) 1000001001. b) 1000010010. c) 1000100010. d) 1001000100.

3.13 SAR ADC operation phase. a) Sampling phase. b) MSB-phase of conversion. c) LSB-phase of conversion.

3.14 Investigation of metastablity error in presence of DAC settling issue in four different states.

3.15 Metastability solution. a) Block diagram of output flip-flops.
b) Circuit of metastable state detector. c) Circuit of output flip flop with metastable solution.

4.1 Threshold voltage variation versus input voltage (Vbs). a) by MOSIS models [116]. b) by PTM models [117].

4.2 Block diagram of the proposed switch.

4.3 Threshold voltage curve, variable factor of Vth and its approximated curve as a linear function of input voltage.(180nm Silterra CMOS technology)

4.4 a) The proposed CMOS switch. b) Bootstrapping circuit for NMOS switch. c) Boosting circuit for PMOS switch.

4.5 Dynamic latched comparator.

4.6 Transient of regeneration latch outputs.

4.7 Latch delay versus Vcm for different power supply voltages (ΔVin=1mV).

4.8 Investigation of power supply (Vdd) and input common-mode voltage (Vcm) on the latch noise.

4.9 Input referred noise as a function of ρ. (Φ=1.4, Vdd =1.2V, Vcm=0.75V)

4.10 Input referred noise as a function of Φ. (ρ=2, Vdd =1.2V, Vcm=0.75V)

4.11 Input referred offset voltage of dynamic latch versus Vcm in different supply voltages.

4.12 Pre-amplifier design.

4.13 Conventional clocking system. a) Ring oscillator. b) Clock signals to pick comparator output.

4.14 Timing of each conversion cycle.

4.15 a) Flip flop circuit used as a cell in ring oscillator. b) circuit to produce Qi signals.

4.16 Circuit to produce sampling clock.

4.17 Layout plan.

4.18 Prepared layout for the 2nd ADC.

4.19 DAC array layout plan.

5.1 a) Bootstrapped clock signals by conventional and proposed
circuits. (at Vdd =1V and Fs=100 MS/sec) b) enlarged bootstrapped clock for input voltage close to the “gnd”. c) enlarged bootstrapped clock for input voltage close to the “vdd”.

5.2 Comparison of Total Harmonic Distortion (THD) of the proposed bootstrapped switch with the conventional switch for various sampling frequencies at different power supply voltages.

5.3 On-state resistance (Ron) of switch versus input voltage

5.4 The effect of devices size ratio on sampling performance for various temperatures. a) HD2 versus (Wp/Wn). b) HD3 versus (Wp/Wn). c) THD versus (Wp/Wn) for single-ended mode. d) THD versus (Wp/Wn) for differential modes. (NMOS switch size is 5 um/0.18 um and fs=100 MHz, fin=1 MHz at Vdd=1 V)

5.5 The proposed CMOS switch performance in time domain. (Vdd =1.2 V, Vin =1.2 Vpp).

5.6 The performance of the proposed structure in time domain.
 a) Vdd =0.8 V, Vin=0.8 Vp-p, fin=9.3 MHz, fs=50 MHz b) Vdd=1V, Vin=1V p-p, fin=9.3 MHz, fs=100 MHz.

5.7 The FFT spectrums. a) Vdd =1.2V and Fs=70MHZ (for designed ADC). b) Vdd =1V and Fs=100 MHZ. c) Vdd =0.8V and Fs=50 MHZ.

5.8 THD versus sampling frequency

5.9 Worse case test of comparator.

5.10 Test set up to determine the input referred offset voltage.

5.11 Comparator offset voltage obtained from 100 samples of transient Monte-Carlo simulations. (Vcm=0.8V)

5.12 Comparison of switching energy at each output code for different algorithms.

5.13 The equivalent circuit of bonding-wire and Package-Leads.

5.14 The circuit to produce supply voltage with noise and package effects.
5.15 Power supply voltage waveform in ideal state, with noise (out of chip) and after passing through package and pad equivalent circuit (inside chip).

5.16 Test bench to investigate the dynamic performance of designed ADCs.

5.17 FFT plot of the proposed ADC with sampling rate at 50 MS for two different input frequencies.

5.18 Dynamic performance versus input frequency at 50MS.

5.19 FFT spectrum of the 2nd designed SAR ADC at 70MS/sec with Fin=1 MHz. a) Before compensation. b) After compensation. (post-layout)

5.20 SNDR plot versus input frequency (Vdd =1.2, Fs = 70MS/sec, Vin = 2.4Vpp).

5.21 SFDR plot versus input frequency (Vdd =1.2, Fs = 70MS/sec, Vin = 2.4Vpp).

5.22 ENOB plot versus input frequency (Vdd =1.2, Fs = 70MS/sec, Vin = 2.4Vpp).

5.23 Test bench to investigate the static performance of designed ADCs.

5.24 DNL and INL versus output code.

5.25 DNL of 10Bit split SAR ADC versus output codes. a) Before compensation. b) After compensation.

5.26 INL of 10Bit split SAR ADC versus output codes. a) Before compensation. b) After compensation.

5.27 Dynamic performance of designed split SAR ADC at different sampling rates (Vdd =1.2, Vin = 2.4Vp-p and Fin= Nyquist frequency).

5.28 Figure of merit FOM, of designed split SAR ADC at different sampling rates (Vdd =1.2, Vin = 2.4Vp-p and Fin= Nyquist frequency).

5.29 Comparison of conversion rate of SAR ADCs in different CMOS technology process with this work.
The FOM versus conversion rate of SAR ADCs in different CMOS technology process with this work.
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>Analog-to-Digital</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>BW</td>
<td>bandwidth product</td>
</tr>
<tr>
<td>CM</td>
<td>Common Mode</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>D/A</td>
<td>Digital-to-Analog</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential Non-Linearity</td>
</tr>
<tr>
<td>DR</td>
<td>Dynamic Range</td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective Number Of Bits</td>
</tr>
<tr>
<td>FOM</td>
<td>Figure-of-merit</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>INL</td>
<td>Integral Non-Linearity</td>
</tr>
<tr>
<td>IOT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Efect Transistor</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>NMOS</td>
<td>n-channel Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>OTA</td>
<td>Operational Transconductance Amplifier</td>
</tr>
<tr>
<td>PMOS</td>
<td>p-channel Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>S/H</td>
<td>Sample-and-Hold</td>
</tr>
<tr>
<td>SAR</td>
<td>Successive Approximation Register</td>
</tr>
<tr>
<td>SC</td>
<td>Switched Capacitor</td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious Free Dynamic Range</td>
</tr>
<tr>
<td>SNDR</td>
<td>Signal-to-Noise-and-Distortion Ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SoC</td>
<td>System on a Chip</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon On Insulator</td>
</tr>
<tr>
<td>T/H</td>
<td>Track-and-Hold</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>Vpp</td>
<td>Volts peak-to-peak</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C_G</td>
<td>Gate capacitance</td>
</tr>
<tr>
<td>C_L</td>
<td>Load capacitance</td>
</tr>
<tr>
<td>C_{ox}</td>
<td>Gate oxide capacitance</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>f_S</td>
<td>Sampling frequency</td>
</tr>
<tr>
<td>g_m</td>
<td>Transconductance</td>
</tr>
<tr>
<td>g_{ds}</td>
<td>Channel conductance</td>
</tr>
<tr>
<td>$h(t)$</td>
<td>Sampling function</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain current</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>K</td>
<td>Boltzmann’s constant</td>
</tr>
<tr>
<td>L</td>
<td>Channel length</td>
</tr>
<tr>
<td>L_{min}</td>
<td>Minimum channel length</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>N</td>
<td>Number of bits</td>
</tr>
<tr>
<td>nF</td>
<td>Nanofarad</td>
</tr>
<tr>
<td>pF</td>
<td>Picofarad</td>
</tr>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>R_{ON}</td>
<td>Switch on-resistance</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature, sampling period</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_{ox}</td>
<td>Oxide thickness</td>
</tr>
<tr>
<td>τ</td>
<td>Time constant</td>
</tr>
<tr>
<td>V_-</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>V+</td>
<td>Non-inverting Input</td>
</tr>
<tr>
<td>V_{dd}</td>
<td>Positive supply voltage</td>
</tr>
<tr>
<td>V_{dsat}</td>
<td>Drain-source saturation voltage</td>
</tr>
<tr>
<td>V_{FS}</td>
<td>Full-scale voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-source voltage</td>
</tr>
<tr>
<td>V_{pp}</td>
<td>Voltage Peak-to-Peak</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Voltage Reference</td>
</tr>
<tr>
<td>V_{Supply}</td>
<td>Voltage Supply</td>
</tr>
<tr>
<td>V_{th}</td>
<td>Threshold voltage</td>
</tr>
<tr>
<td>W</td>
<td>Channel width</td>
</tr>
<tr>
<td>\mu F</td>
<td>Microfarad</td>
</tr>
<tr>
<td>\mu</td>
<td>Carrier mobility</td>
</tr>
<tr>
<td>\sigma^2</td>
<td>Variance</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MATLAB code for switching energy of the proposed switching algorithm</td>
<td>157</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB code for behavioural simulation of linearity performance of the proposed switching algorithm</td>
<td>160</td>
</tr>
<tr>
<td>C</td>
<td>List of publications</td>
<td>163</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the advancement in fabrication technology in recent decades, transistors have become faster making possible to achieve high-rate energy-efficient digital circuits. For analog circuits the evolution of technology is not as beneficial. Besides of high speed performance and energy efficiency, there are several advantages of processing in digital domain such as storage capability, unlimited signal to noise ratio, programmability and performing complex algorithms. Thus, there is an increasing trend to perform more and more signal processing functions in digital.

Since the nature of signals needed to be processed in real world is analog, there is an increasing demand for analog to digital converters (ADCs). ADCs act as the entrance gates in digital signal processing systems. They have crucial roles in modern signal processing and communication systems because their speed and accuracy can effect on overall system performance.

Recently, the applications of ADCs have been expanded widely as many electronic systems that used to be entirely analog have been implemented using digital electronics [1]. This research is focused on high speed ADCs with sampling frequencies greater than 5 MS/sec and resolutions 10-14 bits used in many types of instrumentation (including digital oscilloscopes, spectrum analyzers, and medical imaging), video, radar, communications applications (including IF sampling,
software radio, base stations, and set-top boxes) and consumer electronics equipment (such as digital cameras, display electronics, DVDs, enhanced definition TVs).

On the other hand, during the last decade much effort has been put into the reduction of the supply voltage and the supply power of mixed signal CMOS systems. Three main reasons can be given for the necessity of low-voltage circuits. The first one comes from the continued down-scaling of device feature size. As the channel length is scaled down into submicron and the gate-oxide thickness becomes only several nanometres thick, the supply voltage has to be reduced due to reliability issues. The second reason is referred to the increasing components on chip. A silicon chip can only dissipate a limited amount of power per unit area. The last reason is dictated by portable, battery-powered equipment. One of the most effective ways to reduce active power consumption is by lowering the supply voltage [2].

However lowering supply voltage creates a number of challenges in high speed, high resolution circuit design. Unlike digital circuits and systems that have enjoyed benefits of scaling, there are some serious issues which analog circuits deal with them such as ever-shrinking signal range, lower device gain, poor matching, and increased substrate noise [3]. Since there is only comparator circuit as analog component in SAR-ADCs and there isn’t any gain stage to amplify residue in SAR ADCs, this architecture is more popular among various ADC architectures for low voltage applications.

This work concentrates on low voltage SAR ADC by searching for and developing techniques and circuit structures suitable for low voltage designs. In parallel, this work also aims to achieve high-accuracy high-speed low-power design.

1.2 Problem statement

SAR ADCs are conventionally used for medium-speed medium-resolution applications as categorized as the first group of applications mentioned above. Recently, many intelligent design techniques and advances in CMOS technologies
have enhanced the conversion rate and resolution achieved by SAR architecture. However there are some issues to design high speed low-voltage SAR ADC with high resolution as explained below.

1.2.1.1 Architectural issues of SAR ADC to achieve high sampling rate

As mentioned above the most component of SAR ADC are digital circuits and digital circuits benefit from scaling technology process. Therefore it is expected that SAR ADCs, also benefit from small technology process. Figure 1.1 shows the sampling rate of SAR ADCs versus their technologies consisting of all SAR ADCs published from 1999 to 2014 from [4] and other outstanding designs from different journals such as [5-7]. As explained it is clear that SAR ADC is a compatible architecture with technology advancement.

![Figure 1.1 Conversion rate of SAR ADCs in different CMOS technology process [7].](image)

Although SAR ADC benefits from technology scaling, the main limitation of this ADC to achieve high conversion rate is not related to the technology. The main obstacle to speed up the SAR ADCs is due to large capacitor-arrays consisting of a number of unit capacitors. To achieve high resolution, large size and large number of unit capacitors are needed which takes longer time to settle the comparison voltage levels in every conversion cycles [8].

Decreasing the total capacitance of the capacitor arrays is an effective solution to obtain high speed SAR ADC which can be implemented with two methods. The first method is reduction of the unit capacitor size. Since the
comparison voltage in each conversion cycle is obtained by charge redistribution in capacitor array, the ratios between capacitors determine the comparison voltage level. Therefore any mismatch between capacitor leads to errors in conversion steps and deviation from ideal I/O transfer function which is known as non-linearity effects. Therefore some extra circuits should be added for calibration or error correction. The second method to decrease the total capacitance array is by decreasing the number of unit capacitors which requires a new search algorithm or new switching methods.

1.2.1.2 Effect of lowering supply voltage on SAR ADC sampling rate

As mentioned above most SAR ADC components are digital circuits. Although down scaling supply voltage leads to decrease energy per operation in digital circuits, it causes increase in delay [9-12]. In fact power consumption is reduced at the cost of lower performance. Since changes in supply voltage affects all gates in the same way, delay of any gate remains roughly proportional to the delay of an inverter which is investigated with detail in [13]. As conclusion, as power supply voltage approximates to the threshold voltage, delay of digital cells is increased and maximum operation speed is limited.

Further SAR ADC operation is based on consecutive switching of capacitive DAC, there is another effective factor of switch conductance to determine the required DAC settling time. In real implementation, NMOS and PMOS devices are used as switches which operate on linear region like a resistor. There is a direct relation between current from drain to source, \(I_{ds} \), of MOSFETs in ON-state and applied voltage to the gate-source connection, \(V_{gs} \).

Since the maximum applied \(V_{gs} \) is limited to the supply voltage, supply voltage reduction results to decrease the conductance of MOSFETs. As \(V_{gs} \) is decreased, the conductance of switch is reduced which means more time is required for DAC settling. Figure 1.2 shows the conductance of switch, \(g_{ds} \), versus \(V_{ds} \) for different \(V_{gs} \) values for an NMOS transistor of Silterra’s 0.18um CMOS technology. As explained above, as supply voltage reduces and \((V_{dd} - V_{th})\) decreases, digital circuit delay
increases. Hence the SAR logic unit consisting of digital circuits needs more time which means less conversion speed.

![Figure 1.2](image)

Figure 1.2 g_{ds}-V_{ds} curve at different V_{gs} for an NMOS transistor with size of $w/l=10 \mu/10\mu$ in Silterra 0.18um CMOS technology.

Based on the above explanation, as supply voltage approximates to the threshold voltage it is expected to limit the conversion rate of SAR. Figure 1.3 shows sampling rate of SAR ADCs versus $(V_{dd} - V_{th})$ of all SAR ADCs published from 1999 to 2014 from [4] and other outstanding designs from different journals. This graph confirms that sampling rate of SAR ADCs decreases as $(V_{dd} - V_{th})$ reduces.

![Figure 1.3](image)

Figure 1.3 Conversion rate of SAR ADCs in different CMOS technology process versus $(V_{dd} - V_{th})$ (from 1997 to 2014) [7].
1.2.1.3 Sampling switch issues

The low supply voltage inherently limits the maximum input signal swing of an ADC, and thus may lead to a poor peak signal-to-noise ratio (SNR). To achieve higher accuracy and higher signal to noise and distortion ratio (SNDR), it is better to have larger input range which is limited to the power rails. However rail-to-rail input leads to the difficulty of circuit design (especially analog parts) in rail-to-rail condition.

The sampling switches as the input gate of SAR ADC has an important role in determining the overall performance. MOSFET transistor is a natural switch which is extensively used in S/H. However there are several issues (such as charge injection [14], clock feed through, MOS transconductance variation [15-17], body effect [18-23]) which are exacerbated for low voltage rail-to-rail condition. By considering the limitation of maximum tolerable voltage for gate-source connection of MOSFETs, tracking rail-to-rail input voltage is not possible with a simple MOSFET switch. Furthermore, in comparison to input signal range, threshold voltage variation is not negligible and causes nonlinearity effect on “ON” state switch resistance [14, 24, 25]. To achieve high-speed high-resolution ADCs, high-resolution high speed switches are needed.

Although there are some techniques to boost the V_{gs} and make it signal independent, final achieved V_{gs} value is a function of V_{dd}, too. Thus lowering supply voltage means restricting the band width of switches performances, too. The techniques mentioned above are discussed and analyzed more deeply in the following chapters.

The above mentioned issues to enhance the conversion rate of SAR ADCs and additional difficulties resulting from lowering supply voltage call for research work to design proper circuits, concentrated on rail-to-rail low voltage designs, and finding new methods for enhancing SAR-ADC characteristics at this condition.

1.2.1.4 Metastability error of comparator

One of the comparator error which is known as metastability error is a degrading factor in SAR ADC performance. Metastability is a problem that occurs in
all latching comparators as the output does not saturate to valid regions of logical one or zero during comparison time. Since the conversion process of SAR ADC is a serial operation, any error in output of comparator in each cycle penetrates to the remind process without any chance to get back and doing correction. Although there are some techniques to solve this issue, but most of them are not suitable solutions for low voltage applications due to the required analog components. Further investigation of metastable error besides of incomplete DAC settling shows more research work is required to develop current solutions or find new approach.

1.3 Objectives

This PhD thesis focuses on design of a rail-to-rail low voltage SAR ADC in 0.18µm process CMOS technology. By taking into account the aforementioned problem statements, the following objectives are the main concern of this research.

1. To investigate non-linear effect of capacitor mismatch and effective methods to control it.
2. To implement the design using a small power supply voltage of 1.2V.
3. To enhance SAR-ADC conversion speed higher than 50MS/sec.

1.4 Scope of work

The scope of this research is as explained below:

- Investigation capacitor mismatch:

 Capacitor mismatch is an inevitable issue of capacitive DAC arrays and all SAR ADCs suffer from this issue beyond their used technologies and applied supply voltages. Thus investigation of capacitor mismatch and finding a model consisting of all effective factors to control the resulted nonlinearities in converter performance is within the scope of this research.
• Proposing a new switching algorithm

Since the mismatch requirement and switching algorithm determine the size and number of unit capacitors in SAR ADC, a switching algorithm is developed to decrease the number of unit capacitors without damaging the linearity of performance.

• The choice of process technology and supply voltage

When we look at the new application areas where we see the future wave of sub stream innovation happening such as medical and wearable’s, IoT, ... we see that it is not necessarily needed to use the most advanced technologies such as 28nm [26]. The chosen technology for this work is 0.18um CMOS technology process which is the most popular and commercial technologies in the last decade [26-28]. Now the main challenge in this mature technology is enhancement of energy efficiency which is studied through circuit architecture development and decreasing the supply voltage [6, 7, 29-32]. According to the shown supply voltage margin reduction in [33], 1.2 volt is considered as the supply voltage.

• Development of conversion rate

CMOS technology and supply voltage in this work are 0.18µm and 1.2V, respectively. As shown in Figure 1.1, the maximum achieved conversion rate in 0.18um technology is 50MS/sec in [6, 7]. Further (V_{dd} - V_{th}) is a value between 0.6V and 0.7V which the maximum achieved conversion rate is 50MS/sec as shown in Figure 1.3. The highest speed converters in this range are 9-bit with 40MS/sec and two 10-bit ADCs with 50MS/sec in 90nm, 65nm and 0.18um technologies, respectively [6, 34, 35]. The goal of this work is to achieve conversion rate higher than 50 MS/sec.

• Development in sampling switch design

The sampling switches as the fundamental block are investigated at low supply voltage. Some solutions are proposed to enhance their performance.

• Development in metastability solution
A new development in correction method for metastability error is proposed which is useful for incomplete settling of DAC output voltage, also.

1.5 Contributions

In this thesis, two SAR ADCs are presented with 5 contributions which are listed below. The main contributions leads to improve the conversion rate and linearity performance of SAR ADCs at low supply voltage, energy efficient condition.

1. Nonlinear effect of capacitor mismatch on SAR ADC performance is investigated which leads to the development of a new model of capacitor mismatch on capacitive-DACs. Based on the new model, effective factors to control the non-linear effect of capacitor mismatch are determined.

2. From the achieved results from the above mentioned investigation, a new Tri-level switching algorithm is proposed to reduce the matching requirement for capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-linearity (DNL) of the proposed scheme are reduced by factor of two over the conventional SAR ADC which is the lowest compared to the previous schemes. In addition, the switching energy of the proposed scheme is reduced by 98.02% as compared with the conventional architecture which is the most energy-efficient algorithms in comparison with the previous algorithms, too.

3. Nonlinear effect of parasitic capacitors on split SAR ADC performance is investigated and a new error correction method is proposed to improve its performance. In the proposed method, the maximum possible error is measure before the ADC starts the conversion process. Since this error is negative, it is injected to the DAC array by pre-charging the LSB array during MSB conversion phase. After complete the conversion process, an error correction is applied through MATLAB software. Differential nonlinearity (DNL) of ADC before compensation is within -1LSB and +4.3LSB which is restricted to
-0.9LSB and +2.8LSB after applying compensation. Also, integral nonlinearity (INL) of ADC before compensation is within -4.4LSB and +5.3LSB which is restricted to -2.5LSB and +2.7LSB after applying compensation.

4. One of the comparator error which is known as metastability error is a degrading factor in SAR ADC performance. A new development in correction method for metastability error is proposed which is useful for incomplete settling of DAC output voltage, also.

5. A new optimized CMOS switch is proposed consisting of a bootstrapped NMOS switch and a boosted PMOS switch as a transmission gate. By utilizing this technique, the nonlinearity resulting from the threshold voltage variation (body effect) of NMOS switch is mitigated, considerably, compared to standard CMOS switch or a bootstrapped NMOS switch.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 reviews the successive approximation structure and its positive and negative characteristics. This chapter is followed by introducing the previous solutions and designs in terms of search algorithms and switching schemes in the published high-performance SAR ADCs. After review of conversion process and algorithms, the metastable state of comparator and conventional solution is introduced. At the last part of this chapter a review on sampling switches, which is subjected to develop in this thesis, is presented.

Chapter 3 presents research methodology of this research. At first, analysis of nonlinear effect resulted from capacitor mismatch is discussed. Then the proposed switching algorithm is presented with its performance details in aspect of linearity and energy consumption. Next the first ADC design which is based on the presented algorithm is explained. For the second ADC design split architecture is combined
with the new algorithm. This section is followed by investigation of nonlinear error from parasitic capacitors. The presented investigation is a way to reach the proposed correction method.

Chapter 4 presents the circuit design details and layout preparation. This chapter starts with the proposed sampling CMOS switch which acts as entrance gate of ADC. The circuits of comparator, clock generation and output buffers are presented at the following of this chapter. At the second part of this chapter layout of the second ADC is exposed and discussed.

Chapter 5 exposes the achieved results from simulation of each circuit. The simulation condition applied to the designed ADCs is discussed which is followed by simulation results of both designed ADCs. Finally, the performances of designed ADCs are compared with previous published works.

Chapter 6 concludes the research findings. Recommendations for future works are also addressed to assist other researchers in pursuing the works for further development and improvement.

44. J. Craninckx and G. Van der Plas, A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS. in *Solid-State Circuits Conference ISSCC.* 2007. p. 246 - 600

74. Liu, C.-C., et al. *A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13um CMOS.* in *VLSI Circuits, 2009 Symposium on.* 2009.

115. Morshed, T.H., et al., BSIM4v4. 7 MOSFET Model.

120. BALLA, P. and Y.D. YKUNTAM, High Speed and Low Power Double-Tail Comparator using Switching Transistor. 2014.

