ULTRASONIC- AND MICROWAVE-ASSISTED EXTRACTION OF CURCUMINOIDS AND CYCLODEXTRIN COMPLEXES OF CURCUMIN FROM C. domestica Val.

BINTA HADI JUME

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy(Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

MAY 2014
I dedicated this thesis to my parent and my family for their support, encouragement and understanding.
I wish to express my deep and sincere gratitude to Professor Dr. Mohd Marsin Sanagi, my main supervisor and mentor during PhD study, for his helpful support, advice, constructive criticism, and critical review of the thesis. Special appreciation is extended to my Co-supervisors Professor Dr. Wan Aini Wan Ibrahim and Dr. Shajarahtunnur Jamil for their help, support, and helpful technical discussions. I would also like to thank Professor Dr. Madzlan Bin Aziz and Professor Dr. Wan Azelee Wan Abu Bakar, Dean of Faculty of Science and Head of Department of Chemistry, Universiti Teknologi, Malaysia, respectively, for their guidance and feedback. I also appreciate Professor R. M. Smith and Professor Hassan Aboul-Enein for their valuable help and guidance.

I would like to express my deep appreciation to my beloved father Alhaji Hadi Jume. He sacrificed a lot to raise me and to support my education. I thank my devoted mother Hajiya Sa’adatu Hadi Jume from the bottom of my heart for her prayers and encouragement. I will never forget my beloved husband Dr. Mu’azu Mohammed Abdullahi, for his help, support, prayers and encouragement. He was always there to help and support me at all the times. He sacrificed a lot to provide me comfort and a good study environment during this PhD study. My special appreciation is also extended to my little son Al-Amin Mohammed Mu’azu and my baby girls; Faridah Mohammed Mu’azu and Fadilah Mohammed Mu’azu. I forgot my troubles and found peace of mind when I’m playing with them. Foremost, I also give thanks to Almighty Allah for giving me the opportunity to meet and study with these great people at UTM. I cherish my entire friends for their support in one way or the other.
ABSTRACT

This study investigates the isolation of curcuminoids from *Curcuma domestica* Val. using ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) compared with conventional cold solvent extraction method and the use of inclusion complexation of curcumin with methyl-β-cyclodextrin (Mβ-CD) for improving their solubility. The extractions were optimized by determining the content of three curcuminoid markers, namely curcumin (C), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC). The extraction efficiencies were compared in terms of extraction time, sample throughput and solvent consumption. The optimized parameters for UAE of curcuminoids were extraction amplitude of 100, particle size of 0.30-0.60 mm, extraction time of 20 min, extraction solvent volume of 10 mL and extraction temperature of 60°C. Meanwhile, the relative recoveries (RRs) for aqueous extraction were in the range of 91.59-98.99%, 89.79-94.95% and 89.33-94.77% for C, DMC and BDMC, respectively. Although UAE using methanol resulted in a slightly higher extraction yield and shorter extraction time compared to those using water, both methods showed similar pattern of results. Despite these, water is cost effective, safe and environmentally friendly. These advantages of aqueous solvent can be used as a yardstick to substitute organic solvents for UAE of curcuminoids from *C. domestica*. At maximum set energy, the MAE optimum extraction parameters were particle size of 0.30-0.60 mm, extraction time of 3 min, extraction solvent volume of 10 mL and extraction temperature of 60°C with RRs of 92.48-99.44%, 90.58-97.43% and 90.03-96.07% for C, DMC and BDMC, respectively. Both UAE and MAE applications showed remarkable improvements in terms of extraction time, solvent consumption, extraction yield and the quality of extracts compared to conventional cold solvent extractions method. However, as compared to UAE, the optimized MAE application was better in term of quantity of curcuminoids. MAE is also simpler, faster, more efficient approach and allows the possibility of simultaneous multiple extractions. The inclusion complex formed using Mβ-CD with the application of MAE was more stable than that with UAE based on the stability constant (K_C) values of 213.08 M^{-1} and 515.19 M^{-1}, for UAE and MAE, respectively. Results from characterization of the inclusion complex with scanning electron microscope showed that co-precipitation method was best for UAE while all of the mixing methods can be used for the inclusion complexation with MAE application. The kneading and co-precipitation methods were found to be the best for the inclusion complexation between turmeric rhizome oleoresins and Mβ-CD in UAE, while all of the mixing methods were found to be suitable for inclusion complexation of turmeric rhizome oleoresins with Mβ-CD in MAE as indicated by Fourier transform infrared spectroscopy.
ABSTRAK

Kajian ini menyelidik pengasingan kurkumin daripada Curcuma domestica Val. menggunakan pengekstrakan berbantukan ultrasonik (UAE) dan pengekstrakan berbantukan gelombang mikro (MAE) berbanding dengan kaedah pengekstrakan pelarut sejuk konvensional dan penggunaan pengkompleksan rangkuman kurkumin dengan metil-β-sikloleksitridin (Mβ-CD) bagi meningkatkan keterlarutan. Pengekstrakan telah dioptimumkan dengan menentukan kandungan tiga kurkuminoid penanda iaitu kurkumin (C), demetoksikurkumin (DMC) dan bisdemetoksikurkumin (BDMC). Kecekapan pengekstrakan telah dibandingkan daripada segi masa pengekstrakan, kadar pemindahan sampel dan penggunaan pelarut. Parameter optimum bagi UAE kurkuminoid ialah amplitud pengekstrakan 100, saiz partikel 0.30-0.60 mm, masa pengekstrakan 20 min, isipadu pelarut pengekstrakan 10 mL dan suhu pengekstrakan 60°C. Sementara itu, pengembalian relatif (RR) bagi pengekstrakan akueus adalah dalam julat 91.59-98.99%, 97.909-94.95% and 89.33-94.77% bagi masing-masing C, DMC dan BDMC. Walaupun UAE yang menggunakan metanol menghasilkan pengembalian pengekstrakan yang lebih tinggi sedikit dan masa pengekstrakan lebih singkat berbanding dengan pengekstrakan yang menggunakan air, kedua-dua kaedah ini menunjukkan pola hasil yang sama. Di sebalik itu, air adalah efektif kos, selamat dan mesra alam. Kelebihan pelarut akueus ini boleh digunakan sebagai kayu pengukur untuk menggantikan pelarut organik bagi UAE kurkuminoid daripada C. domestica. Pada tenaga maksimum yang ditetapkan, parameter optimum MAE ialah saiz partikel 0.30-0.60 mm, masa pengekstrakan 3 min, isipadu pelarut pengekstrakan 10 mL dan suhu pengekstrakan 60°C dengan nilai RR 92.48-99.44%, 90.589-97.43% dan 90.03-96.07% masing-masing bagi C, DMC dan BDMC. Kedua-dua aplikasi UAE dan MAE menunjukkan penambahbaikan yang ketara daripada segi masa pengekstrakan, penggunaan pelarut, hasil pengekstrakan dan kualiti ekstrak berbanding dengan kaedah pengekstrakan pelarut sejuk konvensional. Walau bagaimanapun, berbanding UAE, aplikasi MAE yang optimum adalah lebih baik daripada segi kuantiti kurkuminoid. MAE juga merupakan pendekatan yang lebih ringkas, cepat, lebih cekap dan memungkinkan pengekstrakan berganda serentak. Kompleks rangkuman yang dihasilkan menggunakan Mβ-CD dengan MAE adalah lebih stabil berbanding dengan UAE berdasarkan nilai pemalar kestabilan (K_C) iaitu 213.08 M⁻¹ dan 515.19 M⁻¹, bagi masing-masing UAE dan MAE. Hasil dari pengekstrakan pengekstrakan dengan mikroskopi elektron pengimbas menunjukkan kaedah ko-pemendakan adalah terbaik bagi UAE manakala semua ko-pemendakan didapati boleh digunakan bagi pengkompleksan rangkuman dengan penggunaan MAE. Kaedah ulian dan ko-pemendakan didapati terbaik bagi pengkompleksan rangkuman antara oleoresin rizom kunyit dengan Mβ-CD dalam UAE, manakala kaedah pencampuran yang lain didapati sesuai bagi pengkompleksan rangkuman oleoresin rizom kunyit dengan Mβ-CD dalam MAE seperti ditunjukkan oleh spektroskopi inframerah transformasi Fourier.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Research Background
1.2 Problem Statement
1.3 Objectives of Study
1.4 Scope of the Research
1.5 Justification of the Research
1.6 Framework of the Research
1.7 Thesis Organization

2 LITERATURE REVIEW
2.1 Introduction

11
2.2 Usages of Curcumin
2.3 Constituents and Chemistry of Turmeric
2.4 Extraction of Curcumin
2.5 Conventional Extraction Methods
 2.5.1 Soxhlet Extraction
 2.5.2 Solvent Extraction
 2.5.3 Reflux Extraction
2.6 Unconventional Extraction Methods
 2.6.1 Ultrasonic-Assistance Extraction
 2.6.2 Microwave Extraction
 2.6.2.1 Mechanism of Microwave Extraction
 2.6.2.2 Mechanism of Microwave Heating
 2.6.2.3 Parameters Affecting Microwave-Assisted Extraction
 2.6.3 Subcritical Water Extraction
 2.6.4 Supercritical Fluid Extraction System
 2.6.5 Accelerated Solvent Extraction or Pressurized Liquid Extraction
2.7 Structural Features and Characteristics of Cyclodextrin
 2.7.1 Physico-Chemical Properties of β-Cyclodextrin
 2.7.2 Applications and Current use of Cyclodextrins
 2.7.3 Mechanism of Complexation between Cyclodextrin and Insoluble Compound
 2.7.4 Stoichiometry and Association Constant of Compound-Cyclodextrin Inclusion Complex
 2.7.5 Method for Determination of Stoichiometry and Association Constant of the Inclusion Complex: The Phase Solubility Method

3 EXPERIMENTAL
3.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Chemicals and Materials</td>
<td>45</td>
</tr>
<tr>
<td>3.3 Extraction of the Components of the Rhizomes of C. domestica Val.</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Ultrasonic-Assisted Extraction Procedure</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Microwave-Assisted Extraction Procedure</td>
<td>48</td>
</tr>
<tr>
<td>3.6 Preparation Stock Solutions</td>
<td>49</td>
</tr>
<tr>
<td>3.7 Optimization of High Performance Liquid Chromatography Parameters</td>
<td>49</td>
</tr>
<tr>
<td>3.7.1 UV Wavelength Detection</td>
<td>50</td>
</tr>
<tr>
<td>3.7.2 Mobile Phase Flow Rate</td>
<td>50</td>
</tr>
<tr>
<td>3.7.3 Mobile Phase</td>
<td>50</td>
</tr>
<tr>
<td>3.7.4 Temperature of the Column</td>
<td>51</td>
</tr>
<tr>
<td>3.7.5 High Performance Liquid Chromatographic Conditions</td>
<td>51</td>
</tr>
<tr>
<td>3.8 Cold Solvent Extraction</td>
<td>52</td>
</tr>
<tr>
<td>3.9 Optimization of Extraction Parameters and Practical Considerations</td>
<td>52</td>
</tr>
<tr>
<td>3.10 Standard Calibration Curve</td>
<td>53</td>
</tr>
<tr>
<td>3.11 Method Validation</td>
<td>53</td>
</tr>
<tr>
<td>3.11.1 Linearity</td>
<td>54</td>
</tr>
<tr>
<td>3.11.2 Limit of Detection</td>
<td>54</td>
</tr>
<tr>
<td>3.11.3 Limit of Quantification</td>
<td>55</td>
</tr>
<tr>
<td>3.11.4 Relative Recovery</td>
<td>55</td>
</tr>
<tr>
<td>3.11.5 Precision</td>
<td>56</td>
</tr>
<tr>
<td>3.12 Phase Solubility</td>
<td>57</td>
</tr>
<tr>
<td>3.13 Preparation of Inclusion Complexation in Solution State</td>
<td>58</td>
</tr>
<tr>
<td>3.13.1 Kneading Method</td>
<td>59</td>
</tr>
<tr>
<td>3.13.2 Co-precipitation Method</td>
<td>59</td>
</tr>
<tr>
<td>3.13.3 Physical Mixture</td>
<td>60</td>
</tr>
<tr>
<td>3.14 Characterisation of Inclusion Complexes</td>
<td>60</td>
</tr>
<tr>
<td>3.14.1 Fourier Transform Infrared Spectroscopy</td>
<td>60</td>
</tr>
<tr>
<td>3.14.2 Scanning Electron Microscopy</td>
<td>61</td>
</tr>
</tbody>
</table>
4 ULTRASONIC-ASSISTED EXTRACTION AND COLD SOLVENT EXTRACTION OF CURCUMINOIDS FROM C. domestica Val. USING METHANOL

4.1 Introduction

4.2 Effect of Extraction Parameters in Ultrasonic-Assisted Extraction of C. domestica Val. with Methanol

4.2.1 Effect of Ultrasound Amplitude

4.2.2 Effect of Particle Size

4.2.3 Effect of Extraction Time

4.2.4 Effect of Solvent Volume

4.2.5 Effect of Temperature

4.2.6 Effect of Methanol Modified with Water

4.3 Effect of Optimum Extraction Parameter on Cold Solvent Extraction with Methanol

4.3.1 Effect of Extraction Time at Room Temperature

4.3.2 Effect of Solvent Volume on the Extraction at Room Temperature

4.3.3 Effect of Particle Size on the Extraction at Room Temperature

4.4 Validation Method

4.4.1 Calibration Curve

4.4.2 Limit of Detection and Limit of Quantification

4.4.3 Relative Recoveries

4.4.3.1 Methanolic Solvent Extraction with Ultrasound-Assisted Extraction

4.4.3.2 Cold Solvent Extraction with Methanol

4.5 High Performance Liquid Chromatograms

4.6 Summary
5 CYCLODEXTRIN COMPLEXATION ULTRASONIC-ASSISTED EXTRACTION OF CURCUMINOIDS FROM C. domestica Val. USING AQUEOUS SOLVENT

5.1 Introduction 88

5.2 Effect of Extraction Parameters on Ultrasonic-Assisted Extraction with Water 89

5.2.1 Effect of Ultrasound Amplitude of Ultrasonic-Assisted Extraction with Water 89

5.2.2 Effect of Particle Size of Sample on the Ultrasonic-Assisted Extraction with Water 91

5.2.3 Effect of Extraction Time on Ultrasonic-Assistance Extraction with Water 93

5.2.4 Effect of Solvent Volume on Ultrasonic-Assistance Extraction with Water 94

5.2.5 Effect of Temperature on the Ultrasonic-Assistance Extraction with Water 96

5.3 Effect of Optimum Extraction Parameter on Cold Solvent Extraction with Water 97

5.3.1 Effect of Extraction Time on Extraction at Room Temperature with Water 98

5.3.2 Effect of Solvent Volume on Extraction at Room Temperature with Water 99

5.3.3 Effect of Particle Size on Extraction at Room Temperature with Water 100

5.4 Validation Method 101

5.4.1 Linearity 102

5.4.2 Limit of Detection and Limit of Quantification 102

5.4.3 Relative Recoveries 103

5.4.3.1 Aqueous Solvent Extraction with Ultrasonic-Assisted Extraction 103

5.4.3.2 Aqueous Solvent Extraction with Cold Solvent Extraction 104

5.5 Ultrasonic-Assisted Extraction Application on Cyclodextrin
6 MICROWAVE-ASSISTED EXTRACTION OF CURCUMINOIDS AND CYCLODEXTRIN-COMPLEXATION TURMERIC USING AQUEOUS SOLVENT 116

6.1 Introduction 116

6.2 Effect of Extraction Parameters on Microwave-Assisted Extraction with Water 117
 6.2.1 Effect of Particle Size on Microwave-Assisted Extraction with Water 117
 6.2.2 Effect of Extraction Time on Microwave-Assisted Extraction with Water 119
 6.2.3 Effect of Solvent Volume on Microwave-Assisted Extraction with Water 121
 6.2.4 Effect of Temperature on Microwave-Assisted Extraction with Water 122
 6.2.4.1 Microwave Power 124

6.3 Validation Method 124
 6.3.1 Linearity 125
 6.3.2 Limit of Detection 125
 6.3.3 Relative Recoveries 126
 6.3.3.1 Aqueous Solvent Extraction 126

6.4 Microwave-Assisted Extraction of Cyclodextrin-Complexed Turmeric Oleoresin from Rhizomes of C. domestica Val. 127
 6.4.1 Solubility of Curcumin 127

6.5 Characterization 129
 6.5.1 Scanning Electron Microscope 130
6.5.2 Fourier Transform Infrared Spectroscopy 133
6.6 Summary 137

7 CONCLUSIONS AND RECOMMENDATIONS 138
7.1 Conclusions 138
7.2 Suggestions for Further Study 140

REFERENCES 142
Appendice A 158
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Properties of α-, β-, and γ-Cyclodextrins (Connors, 1997)</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters of ultrasonic-assisted extraction</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameters of cold solvent extraction</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Acceptable value for reproducibility (AOAC)</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Polarity of Curcuminoids</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage relative recovery and relative standard deviation for turmeric samples with methanol using ultrasonic-assistance extraction</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage relative recovery and relative standard deviation for turmeric samples with methanol at room temperature</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Validation data of curcuminoids from turmeric sample by ultrasonic-assisted extraction</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage relative recovery and relative standard deviation for turmeric samples with ultrasonic-assisted extraction using aqueous solvent</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage relative recovery and relative standard deviation for turmeric sample with water at room temperature</td>
<td>104</td>
</tr>
<tr>
<td>6.1</td>
<td>Validation data of curcuminoids from turmeric sample using microwave-assisted extraction</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>Percentage relative recovery and relative standard deviation of turmeric samples with microwave-assisted extraction using aqueous solvent</td>
<td>127</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structures of curcumin and related curcuminoids</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Scheme of a conventional Soxhlet extractor (Peter and Naoko, 2013)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>UAE device (Katarzyna et al., 2003)</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic heat and mass transfer mechanisms in microwave and conventional extraction of natural product (Périno-Issartier et al., 2011)</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic representation of yield versus time in extraction processes. (Raynie, 2000)</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>A schematic setup for SWE (Rangsriwong et al., 2008)</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic of SFE (Watanabe et al., 2004)</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of a PLE (Richter et al., 1996)</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical structure of Mβ-CD</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Structures of α-, β- and γ-CDs (Veen et al., 2000)</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Cone shape of CD (Brewster and Loftsson, 2007)</td>
<td>35</td>
</tr>
<tr>
<td>2.12</td>
<td>Approximate dimensions of α-, β- and γ-CDs (Szejtli, 2004)</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>Inclusion complexation between curcumin: Mβ-CD</td>
<td>38</td>
</tr>
<tr>
<td>2.14</td>
<td>Phase solubility diagram (Brewster and Loftsson, 2007)</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of UAE setup (Jadhav et al., 2009)</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic representation of MAE setup (http://globalmicrowave) (2013)</td>
<td>48</td>
</tr>
</tbody>
</table>
3.3 Flowchart of experimental procedure for isolation of curcuminoids in *C. domestica* Val. and inclusion complexation with CD

4.1 Relative response factor variations of curcuminoids with ultrasonic amplitude using UAE at room temperature. Extraction conditions: extraction time of 10 min, solvent volume of 10 mL, particle size between 0.06 – 3.35 mm and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 ×100 mm, 5 µm) and UV detection

4.2 Variations of relative response factor of analytes against particle size of the sample using UAE at optimum conditions of extraction at room temperature, solvent volume of 10 mL, ultrasonic amplitude of 100, extraction time of 10 min and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 ×100 mm, 5 µm) and UV detection

4.3 Variations of relative response factor of analytes against various times using UAE at optimum conditions of extraction at room temperature, an ultrasonic amplitude of 100, particle size of 0.30 – 0.60 mm, solvent volume of 10 mL and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 ×100 mm, 5 µm) and UV detection

4.4 Variations of relative response factor of analytes against various solvent volumes with the UAE at optimum conditions of extraction at room temperature, ultrasonic amplitude of 100, particle size of 0.30 - 0.60 mm, extraction time of 10 min and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 ×100 mm, 5 µm) and UV detection

4.5 Variations of relative response factor of analytes against various
temperatures using UAE at optimum conditions of extraction of ultrasonic amplitude of 100, particle size of 0.30 - 0.60 mm, extraction time of 10 min and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 μm) and UV detection.

4.6 Variations of relative response factor of analytes against methanol concentration in the extraction solvent using UAE under optimum extraction conditions: extraction temperature of 60°C, ultrasonic amplitude of 100, particle size of 0.30 - 0.60 mm, extraction time of 10 min and 2 g of sample. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 μm) and UV detection.

4.7 Variations of relative response factor of analytes against various extraction times using cold solvent extraction at optimum conditions of extraction at room temperature: solvent volume of 10 mL, particle size of 0.06 - 3.35 mm and 2 g of sample with methanol. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 μm) and UV detection.

4.8 Variations of relative response factor of analytes against various solvent volumes using cold solvent (methanol) extraction. Extraction conditions: extraction at room temperature, solvent volume of 10 mL, particle size of 0.06 - 3.35 mm, extraction time of 60 min and 2 g of sample with methanol. Chromatographic conditions: ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 μm) and UV detection.

4.9 Variations of the relative response factor of analytes against various particle sizes using cold solvent extraction. Extraction conditions: extraction at room temperature, solvent volume of 5 mL, extraction time of 60 min and 2 g of sample with methanol.
4.10 Chromatogram of a curcumin (C) standard. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.11 Chromatogram of a demethoxycurcumin (DMC) standard. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.12 Chromatogram of a bisdemethoxycurcumin (BDMC) standard. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.13 Chromatogram of a biphenyl standard (Internal standard). Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.14 Chromatograms of the mixture of pure standard for bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC), curcumin (C). Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.15 Chromatogram of a biphenyl standard (Internal standard), bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC), curcumin (C). Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

4.16 Chromatogram of real sample for Biphenyl standard (Internal standard), bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC), curcumin (C). Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min,
4.17 Combined chromatograms of real sample and standards of curcuminoi
ds. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

5.1 Variations of relative response factor of analytes against various ultrasonic amplitudes using UAE at room temperature, extraction time of 20 min, solvent volume of 10 mL, particle size between 0.06 - 3.35 mm and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

5.2 Variations of relative response factor of analytes against various particle sizes using UAE at room temperature at optimum conditions: solvent volume of 10 mL, ultrasonic amplitude of 100, extraction time of 20 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

5.3 Variations of relative response factor of analytes against various extraction times using UAE at room temperature at optimum conditions: ultrasonic amplitude of 100, particle size of 0.30 – 0.60 mm, solvent volume of 10 mL and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

5.4 Variations of relative response factor of analytes against various solvent volumes with the UAE at room temperature using optimum conditions: ultrasonic amplitude of 100, particle size of 0.30 - 0.60 mm, extraction time of 20 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP
5.5 Variations of relative response factor of analytes against various temperatures using UAE at optimum conditions: ultrasonic amplitude of 100, particle size of 0.30 - 0.60 mm, solvent volume of 10 mL, extraction time of 20 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

5.6 Variations of relative response factor of analytes against various times using cold solvent extraction at optimum conditions of extraction at room temperature, solvent volume of 10 mL, particle size of 0.06 - 3.35 mm and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

5.7 Variations of relative response factor of analytes against various solvent volumes using cold solvent extraction at optimum conditions of extraction at room temperature, particle size of 0.06 - 3.35 mm and extraction time of 60 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

5.8 Variations of relative response factor of analytes against various particle sizes using cold solvent extraction at optimum conditions of extraction at room temperature, solvent volume of 10 mL and extraction time of 60 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection.

5.9 Solubility of curcumin as a function of Mβ-CD (a), and plot of linearity graph ranges from 0 - 200 mM Mβ-CD (b), in ethanol-water (20:80; v/v) solution at 30°C, data point is the average of 3 measurements.
5.10 SEM photograph (magnification × 10000) of turmeric rhizomes oleoresin (TRO) after extraction using UAE with aqueous solvent

5.11 SEM photograph (magnification × 5000) of Mβ-CD

5.12 SEM photograph (magnification × 5000) of turmeric rhizomes oleoresin-methyl-β-cyclodextrin physical mixture method (TRO-Mβ-CD PM) using UAE with aqueous solvent

5.13 SEM photograph (magnification × 15000) of turmeric rhizomes oleoresin-methyl-β-cyclodextrin kneading method (TRO-Mβ-CD K) using UAE with aqueous solvent

5.14 SEM photograph (magnification × 25000) of turmeric rhizomes oleoresin-methyl-β-cyclodextrin co-precipitation method (TRO-Mβ-CD CP) using UAE with aqueous solvent

5.15 FTIR spectrum of turmeric rhizomes oleoresin (TRO) after extraction with UAE using aqueous solvent

5.16 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin kneading complex (TRO-Mβ-CD K) using UAE with aqueous solvent

5.17 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin co-precipitation method (TRO-Mβ-CD CP) using UAE with aqueous solvent

5.18 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin physical mixture method (TRO-Mβ-CD PM) using UAE with aqueous solvent

5.19 FTIR spectrum of pure Mβ-CD

6.1 Variations of relative response factor of analytes against particle size using MAE at room temperature at optimum conditions of extraction, solvent volume of 10 mL, extraction time of 4 min and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H$_2$O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 μm) and UV detection

6.2 Variations of relative response factor of analytes with extraction
time using MAE at optimum conditions: room temperature, particle size of 0.30 – 0.60 mm, solvent volume of 10 mL and 2 g of sample with water. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

6.3 Variations of relative response factor of analytes with solvent volume using MAE at optimum conditions; at room temperature, particle size of 0.30 – 0.60 mm, extraction time of 3 min, 2 g of sample and water. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

6.4 Variations of relative response factor of analytes with temperature using MAE. Extraction conditions: particle size, 0.30 – 0.60 mm; extraction time, 3 min; 2 g of sample and water. Chromatographic conditions: mobile phase ACN-H₂O (30:70; v/v), 1 mL/min, temperature 40°C, 254 nm, PFP column (4.6 × 100 mm, 5 µm) and UV detection

6.5 Solubility of curcumin as a function of Mβ-CD (a), and plot of linearity graph ranges from 0-200 mM Mβ-CD (b), in ethanol-water (20:80 v/v) solution at 30°C. Each data point is the average of three measurements

6.6 SEM image (magnification × 10,000) of turmeric rhizomes oleoresin (TRO) after extraction using MAE with aqueous solvent

6.7 SEM image (magnification × 5000) of Mβ-CD

6.8 SEM image (magnification × 25,000) of turmeric rhizomes oleoresin-methyl-β-cyclodextrin physical mixture method (TRO-Mβ-CD PM) using MAE with aqueous solvent

6.9 SEM image (magnification × 25,000) of turmeric rhizomes oleoresin-methyl-β-cyclodextrin kneading method (TRO-Mβ-CD K) using MAE with aqueous solvent

6.10 SEM image (magnification × 25,000) of turmeric rhizomes
oleoresin-methyl-β-cyclodextrin co-precipitation method (TRO-Mβ-CD CP) using MAE with aqueous solvent 132

6.11 FTIR spectrum of turmeric rhizomes oleoresin (TRO) after extraction with MAE using aqueous solvent 134

6.12 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin kneading complex (TRO-Mβ-CD K) using MAE with aqueous solvent 135

6.13 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin co-precipitation method (TRO-Mβ-CD CP) using MAE with aqueous solvent 135

6.14 FTIR spectrum of turmeric rhizomes oleoresin-methyl-β-cyclodextrin physical mixture method (TRO-Mβ-CD PM) using MAE with aqueous solvent 136

6.15 FTIR spectrum of pure Mβ-CD 136
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-CD</td>
<td>Alpha-cyclodextrin</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ASE</td>
<td>Accelerated solvent extraction</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of analytical communities</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Reflectance</td>
</tr>
<tr>
<td>BDMC</td>
<td>Bisdemethoxycurcumin</td>
</tr>
<tr>
<td>β-CD</td>
<td>Beta-cyclodextrin</td>
</tr>
<tr>
<td>BP</td>
<td>Biphenyl</td>
</tr>
<tr>
<td>CD</td>
<td>Cyclodextrin</td>
</tr>
<tr>
<td>C</td>
<td>Curcumin</td>
</tr>
<tr>
<td>CP</td>
<td>Co-precipitation</td>
</tr>
<tr>
<td>DMC</td>
<td>Demethoxycurcumin</td>
</tr>
<tr>
<td>DMAE</td>
<td>Dynamic microwave assisted extraction</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>γ-CD</td>
<td>Gamma-cyclodextrin</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>HS-SPME</td>
<td>Head space-solid phase microextraction</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HPLC-FD</td>
<td>High performance liquid chromatography Flourescence detection</td>
</tr>
<tr>
<td>HPβCD</td>
<td>Hydroxylpropyl β-cyclodextrin</td>
</tr>
<tr>
<td>HPγCD</td>
<td>2-hydroxypropyl-γ-cyclodextrin</td>
</tr>
<tr>
<td>IS</td>
<td>Internal standard</td>
</tr>
<tr>
<td>K</td>
<td>Kneading</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>Mβ-CD</td>
<td>Methyl- β-cyclodextrin</td>
</tr>
<tr>
<td>MAE</td>
<td>Microwave-assisted extraction</td>
</tr>
<tr>
<td>MAE-HS-SPME</td>
<td>Microwave-assisted extraction head space-solid phase microextraction</td>
</tr>
<tr>
<td>MβCD-K</td>
<td>Methyl Beta cyclodextrin-kneading</td>
</tr>
<tr>
<td>MβCD-CP</td>
<td>Methyl Beta cyclodextrin-co-precipitation</td>
</tr>
<tr>
<td>MβCD-PM</td>
<td>Methyl Beta cyclodextrin-physical mixture</td>
</tr>
<tr>
<td>PHWE</td>
<td>Pressurised hot water extraction</td>
</tr>
<tr>
<td>PLE</td>
<td>Pressurised liquid extraction</td>
</tr>
<tr>
<td>PSE</td>
<td>Pressurised solvent extraction</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polyaromatic hydrocarbons</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PFP</td>
<td>Penta fluoro phenyl</td>
</tr>
<tr>
<td>PM</td>
<td>Physical mixture</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative standard deviation</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reversed phase high performance liquid chromatography</td>
</tr>
<tr>
<td>RP-HPLC-UV</td>
<td>Reversed phase high performance liquid chromatography ultraviolet spectroscopy</td>
</tr>
<tr>
<td>RR</td>
<td>Relative Recovery</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>SFC</td>
<td>Supercritical fluid chromatography</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical fluid extraction</td>
</tr>
<tr>
<td>SWE</td>
<td>Subcritical water extraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SWE</td>
<td>Subcritical or superheated water extraction</td>
</tr>
<tr>
<td>SBEβCD</td>
<td>Sulfated butyl ethyl β-cyclodextrin sodium salt</td>
</tr>
<tr>
<td>SPME</td>
<td>Solid phase microextraction</td>
</tr>
<tr>
<td>TLC</td>
<td>Tin layer chromatography</td>
</tr>
<tr>
<td>TRO-Mβ-CD</td>
<td>Turmeric rhizomes oleoresin-methyl β-cyclodextrin</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet spectroscopy</td>
</tr>
<tr>
<td>UAE</td>
<td>Ultrasonic-assisted extraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>r^2</td>
<td>Coefficients of determination</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g mol$^{-1}$</td>
<td>Gram per mole</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>μL</td>
<td>Micro liter</td>
</tr>
<tr>
<td>μgL$^{-1}$</td>
<td>Microgram per liter</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mgL$^{-1}$</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>pm</td>
<td>Picometer</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minutes</td>
</tr>
<tr>
<td>K_C</td>
<td>Stability constant</td>
</tr>
<tr>
<td>S_0</td>
<td>Intrinsic solubility</td>
</tr>
<tr>
<td>k</td>
<td>Slope</td>
</tr>
</tbody>
</table>
LIST OF APPENDICE

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of papers published and presented in seminar</td>
<td>158</td>
</tr>
</tbody>
</table>
1.1 Research Background

Turmeric is a member of the Zingiberaceae family native to South Asia, which is a perennial herb with short and thick rhizomes with yellow flesh (Somchit et al., 2002), grown in warm, rainy regions of the world such as India, China, Indonesia, Jamaica and Peru. Its rhizomes are oblong, ovate, perform and often short branched (Jayaprakasha et al., 2002). The plant reaches up to 3 feet (0.9 m) tall and the leaves are dark and medium green in colour with about 1.5 feet (0.45 m) long by 8 inches (20.3 cm) wide (Jayaprakasha et al., 2005). The dry rhizomes of C. domestica Val. have been reported to contain 3 - 5% of essential oil and 0.02 - 2.0% aromatic yellow curcuminoids (Began et al., 2000). It exhibits poor to moderate stability in water, oxidized or changes in pH when exposed to light but, has good tinctorial strength. Turmeric oleoresin is the combination of flavours and colour principles obtained from turmeric, however, the principal colouring material in turmeric and its oleoresin are curcumin. Curcumin is orange yellow in colour, crystalline powder, insoluble in water and hexane. It is partially soluble in ether, dichloromethane and freely soluble in ethanol, methanol, acetone and glacial acetic acid (Cheng et al., 1982).
It has been reported that the leguminous plant has a great commercial and medicinal value. *C. domestica* Val. consists of two constituents: phenolic pigment and essential oil. However, the major components of essential oil are ar-tumerone, zingiberene, tumerone and curlone, while that of phenolic pigments are C, DMC and BDMC (Taylor and McDowel, 1992). The yellow pigments are used as colouring agents and the mature rhizomes are ground to give an aromatic yellow powder which is used as spices (Kan, 1997; Anna *et al*., 2003). Several phenolic compounds are flavonoids and curcuminoinds as reported by Jayaprakasha *et al*. (2005). Health benefits of flavonoids are well known and they displayed a remarkable range of biomedical and pharmacological properties that may significantly affect the function of various mammalian cells (Middleton *et al*., 2000).

Although several active phytochemicals, and high activity profile drugs have been discovered from plants, but the quality and safety related problems of herbal drugs have still been challenged for researchers. The main problems for these drawbacks are the lack of reliable extraction, methodologies and high performance for establishing the purity and standard for the herbal drugs (Huie, 2002). As a result of the above-mentioned factors, herbal medicines have yet to find their way in order to be accepted in the global market. An individual plant may consist of several active phytochemicals existing in abundance along with certain constituents of the low activity profile. There is thus a need in the development of efficient procedures of extraction and analytical techniques with high performance (Smith, 2003) for extracting the phenolic compounds (Beejmohun *et al*., 2007).

Recent years have shown growing popularity and faith in the use of herbal medicine worldwide. This is attributed to the realisation that modern synthetic drugs have failed to provide curative and guarantee to most of the human diseases with sometime producing side effects and in the end then give more problems than the actual disease. The natural medicine provides a ray of hope through its phytochemicals, which are believed to act in a synergistic manner, providing healing without side effects (Vivekananda *et al*., 2007).
There has been an increasing interest in newer extraction techniques, in the herbal drug (Nyiredy, 2004). These techniques are amenable to automation and provide shortened extraction times, organic solvent consumption reduction, prevention of pollution in analytical laboratories and reduced sample preparation costs (Poole and Poole, 1996; Wan and Wong, 1996). These conventional methods for the extraction of natural products from plant material for instance Soxhlet, has been widely used not only as a technique for extraction of natural products, but also as a comparison for newer extraction techniques (Luque-Garcia and Luke de Castro, 2004; Sanghi and Kannamkumarath, 2004) which are characterised by the consumption of large volumes of solvent and energy, lengthy extraction procedures, and the potentially deleterious degradation of labile compounds (Kerem et al., 2005).

However, with the problem of consumption of solvent, often in large quantities, toxic and together with time consumption problem. This also resulted in consideration of more new extraction techniques such as microwave-assisted extraction (MAE) (Letellier and Budzinski, 1999; Lopez-Avila, 1999; Camel, 2000), supercritical fluid extraction (SFE) (Hawthorne, 1990; Bowadt and Hawthorne, 1995; Smith, 1999), subcritical water extraction (SWE) or superheated water extraction and accelerated solvent extraction (ASE) (Bjorklund et al., 2000). In addition, ultrasonic-assisted extraction (UAE) as a novel technique for extraction of plant tissue has gained increasing attention (Djilani et al., 2006). A variety of methods for extraction of plant materials have been reported (Ong et al., 2000). The traditional solvent extraction techniques for natural products are mostly based on solvent type and required long extraction time and have low efficiency. Most of these techniques have advantages and disadvantages with regard to solvent volume, extraction time and extraction efficiency as well as working at a high elevated temperature and pressure which improves the extraction process.

Microwave energy has a greater potential for rapid heating of sample and have long appeared in analytical laboratories. Abu-Samra et al. (1975) were the first researchers to use a domestic microwave oven in the laboratory in metals analysis
from biological samples. Since then the application of microwave method has been developed for different applications (Sparr and Bjorklund, 2000). But in the last two decades, pharmaceutical and natural products have become interested in using MAE as an alternative to conventional methods of extraction. The use of MAE has created increasing interest in the last couple of years due to its rapid, safe, easy to use and cost effective. The microwave heating allows a better recovery and a better sensitivity than conventional methods and good linearity (Pare, 1991; Pare et al., 1994). In comparison with pressurized solvent extraction or supercritical fluid extraction, MAE can be conducted at atmospheric pressure and therefore can be initiated very rapidly. Furthermore, it offers a significant improvement in terms of analysis time and solvent consumption. Microwaves find their applications not only in plant matrix extraction but also in pesticides, organic pollutants, metals and polymers (Tatke and Jaswal, 2011).

The possibility of the use of ultrasonication process was due to the fact that ultrasonic waves break the cells of the vegetal matrix and the cell's contents are released into the extraction medium (Vinatoru et al., 1997). The enhancement of extraction efficiency of organic compounds by ultrasonic is due to the phenomenon called acoustic cavitations (Toma et al., 2001). When ultrasonic is used in combination with conventional heating, the effect of ultrasonic treatment increased. Ultrasonic also offers a mechanical effect allowing greater penetration of solvents into the sample matrix, increasing the contact surface area between the solid and liquid phase, as a result the solute quickly diffuses from the solid phase to the solvent (Rostagno et al., 2003). Thus, UAE proved to be an inexpensive, simple and efficient alternative to conventional extraction techniques. Ultrasonic has an important role in food engineering due to consumer interest in minimally processed foods and has a wide range of current and future applications in the food industry (Ertugay et al., 2004).

Cyclodextrin (CD) is a well-known material used as the solubilising agent for hydrophobic drugs. The CD is a cyclic oligosaccharides of α-(1,4)-linked D-glucopyranose units arranged in a ring formation containing a hydrophilic outer
surface (Szejtli, 1982). The hydrophobic internal cavity provides the capability to form inclusion complexes with a variety of “guest” hydrophobic larger molecules. Such binding allows CD to increase the water solubility of the oleoresin, which is very hydrophobic and not soluble in water (Zaibunnisa et al., 2009). CDs are thus often used to enhance the solubility of pesticides for agricultural and environmental application (Zhang et al., 2005).

Among all the CDs, the β-CD (β-CD) and its derivatives are most widely used in research and manufacturing due to cost availability and suitable cavity size for most of the common guests (Loftsson and Brewster, 1996a). It has a molecular weight between 200-800 g/mol (Waleczek et al., 2003). Substituent on the CD molecules is likely to influence the interactions between drug and carrier by changing the shape of the CD cavity or altering the charge-charge interactions (Tonnessen et al., 2002).

Several methods have been developed for the determination of curcumin, including using TLC and spectrophotometry (Janssen and Gole, 1984). Reversed-phase HPLC (RP-HPLC) separated on a styrene-divinylbenzene copolymer column using a diode array detector has been reported by Taylor and McDowell (1992). Tonnesen and Karlsen (1983) and Smith and Witoska (1984) reported the use of RP-HPLC separations using ultraviolet spectroscopy and electrochemical detection. The research work was focused on the application of novel extraction methods of MAE and UAE in isolating three major components of phenolic pigments: curcumin, demethoxycurcumin and bisdemethoxycurcumin in C. domestica Val.. Methanol and water were used for the optimized with UAE application while water was only used for optimized MAE application. RP-HPLC coupled with UV was used because it offers a more convenient and accurate means of separating and estimating individual curcuminoids. Solubility optimization of aqueous extracts with CD was carried out with MAE and UAE methods.
1.2 Problem Statement

Curcuminoids are natural substances with a lot of biological activities, including antiinflammatory, antioxidant and antitumor. However, their usage in the pharmaceutical field is limited by their aqueous insolubility as well as their isolation with aqueous solvent. These shortcomings have led to the consideration of methods which enhance the aqueous solubility. Despite being well established, conventional techniques for natural products isolation suffer from a few drawbacks due to their high cost, time consuming, less environmentally friendly and less health promoting compatibility. The research explores unconventional MAE and UAE techniques of natural product isolation that are most promising, efficient, cost effective and environmentally friendly and improving the solubility of extracting compound by inclusion complexes with CD.

1.3 Objectives of Study

The research is aimed towards improved extraction of curcuminoids, a group of less water soluble compounds using UAE and MAE methods and the inclusion complexation of CD with curcumin. In line with the major aim the targeted objectives are as follows:

i. To optimize UAE methods for turmeric compounds using water and methanol.

ii. To optimize MAE methods for turmeric compounds using water.

iii. To compare the optimized MAE and UAE methods.
iv. To investigate the application of CD for improving the solubility of curcumin in aqueous extract for both MAE and UAE.

v. To characterize the inclusion complex of turmeric using Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

1.4 Scope of the Study

The work was centered on the extraction of the major compounds of phenolic pigments from *C. domestica* Val. using MAE and UAE and the analytes were analysed using HPLC with UV detection. Enhancement of the solubility of CD was studied with methyl beta-cyclodextrin (Mβ-CD) and the inclusion complex was analysed by HPLC-UV and characterized by FTIR and SEM.

1.5 Justification of the Research

Extraction techniques have been widely investigated to obtain such valuable natural compounds from plants for commercialization. However, the quality and safety related problems of natural drugs have still been challenged for researchers. The main reasons for this drawback are the lack of reliable high performance and extraction, and methodologies for establishing the purity and standard for the herbal drugs. As a result of the above mentioned factors, the herbal medicines have still to find their way in order to be accepted in the global market. Thus, there is a need arises for development of newer extraction techniques in the herbal drug which is amenable to automation, with shortened extraction times, reduced organic solvent
consumption, prevention of pollution in analytical laboratories and reducing sample preparation costs. The ultimate goal is total or partial replacement of organic solvent with aqueous one that is cost effective, environmentally friendly and safe. The issues of aqueous turmeric rhizomes oleoresin crude extract solubility are also an area of interest.

1.6 Framework of the Research

The research entails extraction of curcuminoids from turmeric, a member of the Zingiberaceae family. The sample (rhizomes) was chopped into smaller pieces and air dried for two weeks before ground into powder in a mill blender and finally, stored in a sealed plastic container for further analysis. Extraction experiments were carried out using water for both MAE and UAE applications. Methanol was used in UAE application. In UAE, the parameters optimized are irradiation time, particle size, amplitude, solvent volume and temperature for both aqueous and methanol. The irradiation time, solvent volume, particle size and temperature were optimized with MAE application. The crude extract was carefully decanted and rinsed with the solvents. The combined solutions were centrifuged at 3800 rpm for 15 min, and then evaporated to dryness in a water bath heater. The methanol crude was filtered and evaporated using a rotary evaporator. In both cases the concentration in form of percentage yield was estimated using HPLC.

Phase solubility studies were performed using the optimum 20 mg of evaporated turmeric rhizomes oleoresin crude extract. The crude extract were obtained by the optimized condition of UAE and MAE methods was added to a glass bottle each separately containing Mβ-CD in 5.0 mL of ethanol-water (20:80; v/v), solution at various concentration ranging from 0 – 200 mM. The apparent stability constant, K_C, of curcumin in turmeric oleoresin for the Mβ-CD inclusion complexes was calculated from the slope and intercepts of the linear segment of the phase
solubility line. The mixing methods in Mβ-CD-turmeric rhizomes oleoresin inclusion complex used include kneading method, co-precipitation method and physical mixture method. The complexes were characterized using FTIR and SEM.

1.7 Thesis Organization

An overview of related research works on curcumin, extraction methods, conventional and unconventional extraction methods, CD inclusion complexes were presented in Chapter 2. The review provides a commentary on the general significance of the curcumin. It then provides a summary of the key mechanisms involved and aims to provide some background information that can be utilized in subsequent extraction work. The review also summarizes developments of natural product isolation using unconventional methods.

The experimental program is presented in Chapter 3. The apparatus, laboratory equipment, stock solution preparation, HPLC parameter optimization, optimization of extraction parameters, methodology of validation, phase solubility, preparation of inclusion complexation and its characterisation are explained together with technicality in the sample preparation.

Chapter 4 presents UAE with methanol together with cold solvent extraction. The optimized effect of extraction parameters with methanol using both UAE and cold solvent extraction are also presented in this chapter.

Chapter 5 presents the extraction of CD inclusion complexes with turmeric oleoresin using UAE with water. The optimized extraction parameters with aqueous solvent coupled with CD and cold solvent extraction are also described.
Chapter 6 presents MAE with water coupled with CD in order to improve the solubility of curcumin. The optimized effect of extraction parameters with aqueous solvent coupled with CD are also discussed in this chapter.

The overall conclusions and suggestions for further research are presented in Chapter 7.
precise economic evaluation, an additional experiments for establishing large-scale units is necessary.

Although UAE can be used successfully for extraction purposes, it should be borne in mind that ultrasonic conditions, including amplitude used and time can lead to the destruction of bioactive compounds. It is also well known that ultrasonic can lead to the production of free radicals within the cavitation bubbles and in some circumstances, these free radicals can induce undesirable changes and/or destruction of the compounds extracted. This unfavourable reaction can be looked into further in order to guard against destruction of bioactive compounds and formation of free radical due to acoustic cavitations.

This research looked at the solubility of turmeric rhizomes oleoresin as a whole. However, if the main aim is to increase solubility in the individual curcuminoids, there is a need for purification after extraction using any available and suitable method in order to avoid interference of the other compounds before inclusion complexation is carried out. CD as solubilizing agent is an expensive material used for solubility improvement, a further research is needed to understand whether re-usage is possible as a spent material.
REFERENCES

