INFLUENCE OF ALLOYING ELEMENTS AND AGING TREATMENT ON THE
PHASE TRANSFORMATION AND SHAPE MEMORY BEHAVIOR OF
Cu-Al-Ni SHAPE MEMORY ALLOYS

SAFAA NAJAH SAUD

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

NOVEMBER 2014
To:

My beloved family
ACKNOWLEDGEMENT

First of all I would like to thank Allah for this valuable time given, where I had the chance to understand about His wonders on materials.

I am deeply grateful to my supervisor, Prof Dr. Esah Hamzah for her guidance, patience and support. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. I would like to thank my co-supervisor, Dr. Tuty Asma Abu Bakar for her useful advices and encouragement. Without their valuable advice, kind encouragement and trust, I would not have reached this point.

I would like to acknowledge the Malaysian Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for providing the financial support and facilities for this research under Grant No. R.J130000.7824.4F150. I am also grateful for the Universiti Teknologi Malaysia for their support by international doctorate fellowship (IDF) during this research.

My thanks are also due to the staff, faculty members, and technicians of the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, who contributed to my research.

I am most grateful to my family, my dearest Raheleh and close friends for their infinite support, patience and encouragements during these years.
ABSTRACT

Nickel-Titanium (Ni-Ti) shape memory alloys (SMAs) have been used in many engineering and medical applications. However, their use is limited, due to their low transformation temperatures, difficulties in processing and high cost of the raw materials. As an alternative material to Ni-Ti alloys, copper-based alloys are successfully being used. Among copper-based SMAs, Cu-Al-Ni alloys are used in a wide range of applications, particularly if high temperatures are required. However, Cu-Al-Ni SMAs also have limitations such as very low ductility and low shape recovery strain. Therefore, this research aims to enhance the ductility and shape memory effect of Cu-Ni-Al by alloying additions and aging heat treatment. The base metal, Cu-Al-Ni, was cast without and with different amounts of the fourth alloying elements, namely, titanium (Ti), manganese (Mn) and cobalt (Co). The modified and unmodified alloys were homogenized and aged at 373 K, 423 K and 523 K for 24 and 48 hours. Phase transformation and microstructural changes were characterized using techniques such as optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC), x-ray diffractometry (XRD) and transmission electron microscopy (TEM). The tensile properties and hardness were determined using a universal Instron tensile machine and Vicker’s hardness test machine, respectively. The shape memory test was performed using a specially designed tensile machine equipped with a heating tape. The results revealed that the alloying elements and aging treatment were found to control the phase morphology, orientations and grain size along with the formation of precipitates, thereby improving the shape memory characteristics, ductility and hardness. The volume fraction, size and distribution of the precipitates are mainly dependent on the type and amount of alloying element as well as the condition of aging treatment. The Cu-Al-Ni with the addition of 0.76 wt. % Ti and age treated showed complete recovery after the shape memory test. This may be attributed to the high volume of X-phase precipitates and grain refinement that led to the restricted mobility of martensite variant interfaces and dislocations. It was found that the alloy with 1.14 wt. % of Co gave the best overall improvement in terms of the transformation temperatures, ductility and shape memory recovery. These improvements were mainly due to the exceptionally high content of the gamma-2 (γ_2) phase in the microstructures of the modified alloy. Furthermore, the ductility of the Cu-Al-Ni SMAs increased from 1.65 to 7.0 % when 1.14 wt. % Co was added and the alloy undergone aging treatment where the fracture surfaces showed more ductile features and less brittle cleavages. It was also found that Cu-Al-Ni SMAs with 1.14 wt. % Co obtained full shape recovery after being aged at 523 K for 48 hours.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxxv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Research 1
1.2 Problem Statement 4
1.3 Purpose of the Research 4
1.4 Objectives of the Research 5
1.5 Scopes of the Research 5
1.6 Significance of the Research 6

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 The Development History of Shape Memory Alloys 9
2.3 Martensitic Transformation in Shape Memory Alloys 10
2.4 Shape Memory Effect 19
2.5 Pseudoelasticity 20
2.6 Types of Shape Memory Alloys 21
 2.6.1 Titanium-Based Shape Memory Alloys (NiTi) 22
 2.6.2 Copper-Based Shape Memory Alloys 22
 2.6.3 Other Shape Memory Alloys 24
2.7 Phase Transformation and Structure of Cu-Al-Ni Shape Memory Alloys 25
 2.7.1 Phase Diagram 26
 2.7.2 Martensitic Transformation 28
 2.7.3 Martensitic Stabilization 29
2.8 Effects of Alloying Elements on the Cu-Al-Ni SMA 30
 2.8.1 Martensitic Transformation Temperature of Cu-Al-Ni SMA 30
 2.8.2 Martensitic Structure of Cu-Al-Ni SMA 34
 2.8.3 Mechanical Properties of Cu-Al-Ni SMA 39
2.9 Effects of Aging Treatment and Thermal Treatment on the Cu-Al-Ni SMA 43
 2.9.1 Martensitic Transformation Temperature of Cu-Al-Ni SMA 43
 2.9.2 Martensitic Structure of Cu-Al-Ni SMAs 47
 2.9.3 Mechanical Properties of Cu-Al-Ni SMAs 52
 2.9.4 Other Properties 57
2.10 Fabrication of Cu-Al-Ni Shape Memory Alloys 59
 2.10.1 Melting and Casting Process 59
 2.10.2 Powder Metallurgy 60
 2.10.3 Melt Spinning 61
2.11 Shape Memory Alloy Applications 62
2.12 Summary 66
3 RESEARCH METHODOLOGY 68
3.1 Introduction 68
3.2 Materials 70
3.3 Production of the materials by casting process 71
3.4 Homogenization Process 72
3.5 Sample Preparation for Materials Analysis and Testing 72
 3.5.1 Cutting 72
 3.5.2 Grinding 73
 3.5.3 Polishing 73
 3.5.4 Etching 73
3.6 Materials characterization of Cu-Al-Ni SMAs 74
 3.6.1 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 74
 3.6.2 X-Ray Diffractometry (XRD) 75
 3.6.3 Optical and Electron Microscopy Studies 75
 3.6.4 Differential Scanning Calorimetry (DSC) 76
3.7 Mechanical Test 77
 3.7.1 Microhardness Test 77
 3.7.2 Tensile Test 78
 3.7.3 Shape Memory Effect Test (SME) 78
3.8 Aging Treatment 80

4 RESULTS AND DISCUSSION 81
4.1 Introduction 81
4.2 Evolution of the Microstructural Characteristics and Mechanical Properties of Cu-Al-Ni SMA 82
 4.2.1 Microstructural Characteristics 82
 4.2.2 Transformation Temperatures 88
 4.2.3 Tensile and Microhardness Tests 90
 4.2.4 Shape Memory Effect Test 93
4.3 Evaluation of the Microstructural Characteristics, Transformation Temperature, and Mechanical
Properties of Cu-Al-Ni-XTi SMAs

4.3.1 Microstructural Characteristics
4.3.2 Transformation Temperatures
4.3.3 Mechanical Properties
 4.3.3.1 Tensile and Microhardness Tests
 4.3.3.2 Shape Memory Effect Test

4.4 Evaluation of the Microstructural Characteristics, Transformation Temperature, and Mechanical Properties of Cu-Al-Ni-XMn SMAs

4.4.1 Microstructural Characteristics
4.4.2 Transformation Temperatures
4.4.3 Mechanical Properties
 4.4.3.1 Tensile and Microhardness Tests
 4.4.3.2 Shape Memory Effect Test

4.5 Evaluation of the Microstructural Characteristics, Transformation Temperature, and Mechanical Properties of Cu-Al-Ni-XCo SMA

4.5.1 Microstructural Characteristics
4.5.2 Transformation Temperatures
4.5.3 Mechanical Properties
 4.5.3.1 Tensile and Microhardness Tests
 4.5.3.2 Shape Memory Effect of Cu-Al-Ni-XCo SMAs

4.6 Evolution of the Microstructural Characteristics and Mechanical Properties of aged Cu-Al-Ni SMA

4.6.1 Microstructural Characteristics
4.6.2 Transformation Temperatures
4.6.3 Mechanical Properties
 4.6.3.1 Tensile and Microhardness Tests
 4.6.3.2 Shape Memory Effect Test

4.7 Evolution of the Microstructural Characteristics and Mechanical Properties of aged Cu-Al-Ni-XTi SMAs

4.7.1 Microstructural Characteristics
4.7.2 Transformation Temperatures 167
4.7.3 Mechanical Properties 172
 4.7.3.1 Tensile and Microhardness Tests 172
 4.7.3.2 Shape Memory Effect Test 180

4.8 Evolution of the Microstructural Characteristics and Mechanical Properties of aged Cu-Al-Ni-XMn SMAs 184
 4.8.1 Microstructural Characteristics 184
 4.8.2 Transformation Temperatures 193
 4.8.3 Mechanical Properties 199
 4.8.3.1 Tensile and Microhardness Tests 199
 4.8.3.2 Shape Memory Effect Test 208

4.9 Evolution of the Microstructural Characteristics and Mechanical Properties of aged Cu-Al-Ni-XCo SMAs 210
 4.9.1 Microstructural Characteristics 210
 4.9.2 Transformation Temperatures 221
 4.9.3 Mechanical Properties 226
 4.9.3.1 Tensile and Microhardness Tests 226
 4.9.3.2 Shape Memory Effect Test 235

4.10 Shape memory characteristics of SMA due to the effect of alloying and aging 238
 4.10.1 Introduction 238
 4.10.2 Microstructural characteristics 238
 4.10.3 Transformation temperatures 239
 4.10.4 Mechanical properties and Shape Memory Behavior 240

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 243
 5.1 Conclusions 243
 5.2 Recommendations for future work 245
REFERENCES

Appendices A 267
Appendices B 277
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of copper-based shape memory alloys</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical composition of the cast materials used in the research</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>The transformation temperatures of Cu-Al-Ni shape memory alloy</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Lattice parameters of Cu-Al-Ni SMA with Ti additions</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Transformation temperatures of Cu-Al-Ni SMA with Ti additions</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Thermodynamic parameters of Cu-Al-Ni SMA with Ti additions</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>Fracture stress-strain, microhardness and strain recovery ratio of Cu-Al-Ni SMA with Ti additions</td>
<td>107</td>
</tr>
<tr>
<td>4.6</td>
<td>Lattice parameters of Cu-Al-Ni SMA with the Mn additions.</td>
<td>116</td>
</tr>
<tr>
<td>4.7</td>
<td>Transformation temperatures of Cu-Al-Ni SMA with Mn additions</td>
<td>120</td>
</tr>
<tr>
<td>4.8</td>
<td>Thermodynamic parameters of Cu-Al-Ni SMA with Mn additions</td>
<td>121</td>
</tr>
<tr>
<td>4.9</td>
<td>The fracture stress-strain, microhardness and strain recovery ratio of Cu-Al-Ni SMA with Mn additions.</td>
<td>122</td>
</tr>
<tr>
<td>4.10</td>
<td>Lattice parameters and crystallite size of Cu-Al-Ni SMA with Co additions</td>
<td>132</td>
</tr>
</tbody>
</table>
4.11 Transformation temperature of Cu-Al-Ni SMA with Co additions..............................137
4.12 Thermodynamic parameters of Cu-Al-Ni SMA with Co additions..............................138
4.13 Fracture stress-strain, microhardness and strain recovery ratio of Cu-Al-Ni SMA with Co additions..............................139
4.14 Lattice parameters of Cu-Al-Ni SMA under different aging conditions.........................148
4.15 Transformation temperature of aged Cu-Al-Ni SMA under different aging conditions........151
4.16 Thermodynamic parameters of Cu-Al-Ni SMA under different aging conditions..............151
4.17 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni SMA at different conditions..153
4.18 Lattice parameters of Cu-Al-Ni-0.37 wt. % Ti SMA under different aging conditions........166
4.19 Lattice parameters and crystallite size of Cu-Al-Ni-0.76 wt.% Ti SMA under different aging conditions...166
4.20 Lattice parameters and crystallite size of Cu-Al-Ni-0.99 wt.% Ti SMA under different aging conditions..166
4.21 Transformation temperatures of aged Cu-Al-Ni-0.37 wt. % Ti SMA under different conditions...168
4.22 Transformation temperatures of aged Cu-Al-Ni-0.76 wt. % Ti SMA under different conditions...169
4.23 Transformation temperatures of aged Cu-Al-Ni-0.99 wt. % Ti SMA under different conditions...170
4.24 Thermodynamic parameters of Cu-Al-Ni-0.37 wt. % Ti SMA under different aging conditions...171
4.25 Thermodynamic parameters of Cu-Al-Ni-0.37 wt. % Ti SMA under different aging conditions...171
4.26 Thermodynamic parameters of Cu-Al-Ni-0.37 wt. % Ti SMA under different aging conditions...171
4.27 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.37 wt. % Ti SMA.

4.28 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.76 wt. % Ti SMA.

4.29 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.99 wt. % Ti SMA.

4.30 Lattice parameters of Cu-Al-Ni-0.39 wt. % Mn SMA under different aging conditions.

4.31 Lattice parameters of Cu-Al-Ni-0.71 wt. % Mn SMA under different aging conditions.

4.32 Lattice parameters of Cu-Al-Ni-0.97 wt.% Mn SMA under different aging conditions.

4.33 Transformation temperatures of aged Cu-Al-Ni-0.39 wt. % Mn SMA under different conditions.

4.34 Transformation temperatures of aged Cu-Al-Ni-0.71 wt. % Mn SMA under different conditions.

4.35 Transformation temperatures of aged Cu-Al-Ni-0.97 wt. % Mn SMA under different conditions.

4.36 Thermodynamic parameters of Cu-Al-Ni-0.39 wt. % Mn SMA under different aging conditions.

4.37 Thermodynamic parameters of Cu-Al-Ni-0.71 wt. % Mn SMA under different aging conditions.

4.38 Thermodynamic parameters of Cu-Al-Ni-0.97 wt. % Mn SMA under different aging conditions.

4.39 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.39 wt. % Mn SMA at different conditions.

4.40 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.71 wt. % Mn SMA at different conditions.
4.41 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.97 wt. % Mn SMA at different conditions

4.42 Lattice parameters of Cu-Al-Ni-0.42 wt. % Co SMA under different aging conditions

4.43 Lattice parameters of Cu-Al-Ni-0.72 wt. % Co SMA under different aging conditions

4.44 Lattice parameters of Cu-Al-Ni-1.14 wt. % Co SMA under different aging conditions

4.45 Transformation temperatures of aged Cu-Al-Ni-0.42 wt. % Co SMA under different conditions.

4.46 Transformation temperatures of aged Cu-Al-Ni-0.72 wt. % Co SMA under different conditions.

4.47 Transformation temperatures of aged Cu-Al-Ni-1.14 wt. % Co SMA under different conditions.

4.48 Thermodynamic parameters of Cu-Al-Ni-0.42 wt. % Co SMA under different aging conditions

4.49 Thermodynamic parameters of Cu-Al-Ni-0.72 wt. % Co SMA under different aging conditions

4.50 Thermodynamic parameters of Cu-Al-Ni-1.14 wt. % Co SMA under different aging conditions

4.51 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.42 wt. % Co SMA at different conditions.

4.52 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-0.72 wt. % Co SMA at different conditions.

4.53 The fracture stress-strain, microhardness and strain recovery ratio of aged Cu-Al-Ni-1.14 wt. % Co SMA at different conditions.
<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Temperature-induced phase transformation of an SMA without mechanical loading.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic of the shape memory effect of an SMA showing the detwinning of the material with an applied stress.</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic of the shape memory effect of an SMA showing the unloading and subsequent heating to austenite under no load condition.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Temperature-induced phase transformation in the presence of applied load.</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>A pseudoelastic loading path.</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of a pseudoelastic stress-strain diagram.</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic of a stress-temperature phase diagram for an SMA.</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Stress-Temperature diagram in the martensitic and austenitic domains.</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of stress-strain-temperature for the involved crystallographic changes during the phenomena of SME.</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>The two loading paths discussed for pseudoelasticity in single crystal SMA.</td>
<td>21</td>
</tr>
</tbody>
</table>
2.11 Ternary phase diagram Cu-Al-Ni, vertical cross-section at 3 wt. % Ni.

2.12 Schematic phase diagram of Cu-Al-Ni alloy in temperature-stress coordinates.

2.13 Evolution of (a) DSC heating-cooling curves (b) the M_s transformation temperature and (c) the transformation enthalpy of the as a function of Al content.

2.14 Differential scanning calorimetry profiles for Cu-Al-Ni alloys: (a) Cu-Al-Ni; (b) Cu-Al-Ni-0.2Ti; (c) Cu-Al-Ni-0.4 Mn;(d) Cu-Al-Ni-0.2Zr.

2.15 Optical micrographs for alloys: (a) Cu-9.9wt. % Al-4.43 wt. % Ni, (b) Cu-11.25 wt. % Al-4.07 wt. % Ni and (c) Cu-11.79 wt. % Al-4.37 wt. % Ni

2.16 SEM micrographs of (a) Cu-13.0Al-4Ni (b) Cu-13.5Al-4Ni, (c) Cu-13.7Al-4Ni, and (d) Cu-14.0Al-4Ni SMAs

2.17 Optical micrographs of a) Cu-1 1.85wt.% Al-3.2wt.% Ni-3wt.% Mn, b) Cu-11.9wt.% Al-5wt.% Ni-2wt.% Mn-1wt.% Ti, c) Cu-11.4wt.% Al-2.5wt.% Ni-5wt.% Mn-0.4wt.% Ti, and d) Cu-1 1.8wt.% Al-5wt.% Ni-2wt.% Mn-1%wt.% Ti

2.18 Optical micrographs of Cu–Al–Ni alloys: (a) Cu–Al–Ni; (b) Cu–Al–Ni–0.2Ti; (c) Cu–Al–Ni–0.4Mn; (d) Cu–Al–Ni–0.2Zr

2.19 Variation in the (a) transition stress, (b) fracture strain, and (c) fracture stress versus grain size

2.20 Tensile fracture surfaces at room temperature for (a) Cu-13.4Al-3.8Ni SMA, (b) Cu-13.2Al-3.04Ni-0.36Ti SMA, (c) Cu-13.0Al-2.9Ni-0.36
Ti-0.22 Mn SMA and (d) Cu-13.4Al-3.05Ni-
0.24 Ti-0.63 Zr SMA

2.21 Recoverable strain vs. bend-relaxing time of Cu-
Al-Ni and Cu-Al-Ni-Be

2.22 Stress-strain curves of SMA samples at room
temperature (25°C)

2.23 Transformation temperatures of the alloy wires treated at different thermal treatment

2.24 DSC thermograms of (a) Cu–14.1Al–4.0Ni wt. % and (b) Cu–13.4Al–4.0 Ni wt. % at different conditions

2.25 Changes of transformation temperatures with various aging times in Cu-Al-Ni alloy

2.26 Optical micrographs of Cu–13.4Al–4.0Ni wt. % in the: (a) as-grown and (b) aged (523 K)
conditions

2.27 SEM micrographs of the aged Cu–14.1Al–4.0Ni wt. % at: (a) 473 K and (b) 573 K

2.28 Structures of biphasic cell germination after 10 min (a) and 20 min (b) at 400 °C

2.29 The schematic process of the precipitation of biphasic cell and nanoprecipitates at 400 °C, with zoom of α area

2.30 Morphologies of γ2 phase in longitudinal cross sections of the alloy wires treated at different heat treatment temperatures: (a) 700 °C, (b) 730 °C, (c) 750 °C, (d) 760 °C, (e) 770°C, and (f) 780 °C

2.31 Tensile stress–strain response of (a) Cu–14.1Al–4.0Ni wt. % and (b) Cu–13.4Al–4.0Ni wt. % in the as-quenched and aged (at 473 K for 24 h) conditions

2.32 Variation of compressive transformation stresses Cu-14.1Al-4.0Ni wt. % and Cu-13.4Al-4.0Ni wt.
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.33</td>
<td>Figure 2.33 σ-ε curves at room temperature for (a) aged and (b) un-aged samples</td>
</tr>
<tr>
<td>2.34</td>
<td>The variation of Vickers hardness for Cu-Al-Ni SMA with the holding time at room temperature a) aging at room temperature after quenching b) aging at room temperature after annealing at 330 °C for 30 mins</td>
</tr>
<tr>
<td>2.35</td>
<td>Variation of Vickers hardness with various aging times</td>
</tr>
<tr>
<td>2.36</td>
<td>The changes in hardness (a), electrical resistivity (b) and transformation temperatures (c) in Cu-11.88 wt.% Al -5.06 wt.% Ni - 1.65 wt.% Mn-0.96 wt.%Ti alloy after aging at 250°C and 300°C</td>
</tr>
<tr>
<td>2.37</td>
<td>The changes in hardness (a), electrical resistivity (b) and transformation temperatures (c) in Cu-11.88 wt.% Al-5.06 wt. % Ni- 1.65wt. % Mn-0.96 wt. %Ti alloy after aging at 350°C and 400°C</td>
</tr>
<tr>
<td>2.38</td>
<td>Scheme of a powder metallurgy method.</td>
</tr>
<tr>
<td>2.39</td>
<td>The scheme of a free jet melts spinner.</td>
</tr>
<tr>
<td>2.40</td>
<td>Operating temperature range for automobiles applications and the transformation temperatures for selected commercially available and developed SMAs</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart for the research methodology</td>
</tr>
<tr>
<td>3.2</td>
<td>Production of the cast materials (a) Schematic of the whole process, (b) Silicon carbide crucible, (c) Cast iron mold, (d) Cast ingot</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic of Differential scanning calorimeter curve showing critical transformation temperatures</td>
</tr>
</tbody>
</table>
3.4 a) Instron universal tensile testing machine, b) schematic of tensile specimen

3.5 Shape memory effect test; (a) Experimental; (b) Schematic includes (1) Un-deformed sample, (2) Deformed sample, (3) Preheating the deformed samples above A_f, (4) Sample after recovery.

3.6 Schematic diagram of the aging treatment

4.1 Microstructure of the Cu-Al-Ni SMA; a) Optical micrograph; b) Scanning electron micrograph.

4.2 SEM and EDS analysis of the Cu-Al-Ni (a) Micrograph of scanned area; (b) Spectrum 1; (c) Spectrum 2

4.3 Optical micrograph of Cu-Al-Ni SMA shows γ'_1 and β'_1 phase

4.4 X-ray diffraction patterns of Cu-Al-Ni SMA

4.5 TEM images corresponding with selected area diffraction patterns of Cu-Al-Ni SMA: (a) Bright field of TEM image, (b) HRTEM image, (c) Selected area diffraction patterns.

4.6 Differential Scanning Calorimetry (DSC) curves of the Cu-Al-Ni SMA.

4.7 Stress-strain curves of Cu-Al-Ni SMA obtained from the tensile test performed at room temperature.

4.8 Fracture surface of the Cu-Al-Ni SMA after tensile test (a) Low magnification, (b) High magnification

4.9 Shape memory effect curve of the Cu-Al-Ni SMA, ε_r is residual strain; ε_p is plastic strain

4.10 Micrographs showing the microstructures of the Cu-Al-Ni SMA with different concentration of Ti additions: a,d) Cu-Al-Ni-0.37 wt. % Ti SMA, b,e) Cu-Al-Ni-0.76 wt.% Ti SMA, c,f) Cu-Al-
Ni-0.99 wt.% Ti SMA.

4.11 EDS analysis of the Cu-Al-Ni-0.99 wt. % Ti SMA (a) Micrograph of scanned area; (b) Spectrum 1; (c) Spectrum 2.

4.12 X-ray diffraction patterns of a) Cu-Al-Ni-0.37 wt. % Ti, b) Cu-Al-Ni-0.76 wt. % Ti, c) Cu-Al-Ni-0.99 wt. % Ti.

4.13 TEM images corresponding with selected area diffraction patterns of Cu-Al-Ni-0.76 wt. % Ti SMA: a) Bright field of TEM image, b) HRTEM image, c) The selected area diffraction pattern.

4.14 An Elemental distribution map of Cu-Al-Ni-0.99 wt. % Ti SMA elemental, (a) Scanned area, (b) Aluminum, (c) Titanium, (d) Nickel, and (e) Copper distribution

4.15 Transformation temperature curves of the Cu-Al-Ni SMA with different percentage of Ti addition, (a) DSC curves, (b) Heating curve, and (c) Cooling curve

4.16 Tensile stress-strain curves of Cu-Al-Ni SMA with Ti addition

4.17 Fracture surfaces of the alloys: a) Cu-Al-Ni-0.37 wt. % Ti, b) Cu-Al-Ni-0.76 wt. % Ti, c) Cu-Al-Ni-0.99 wt. % Ti.

4.18 Shape memory effect curves of Cu-Al-Ni-XTi SM alloys

4.19 Micrographs showing the microstructures of the Cu-Al-Ni SMA with different concentration of Mn additions: a,d) Cu-Al-Ni-0.39 wt.% Mn, b,e) Cu-Al-Ni-0.71 wt.% Mn, c,f) Cu-Al-Ni-0.97 wt.% Mn.

4.20 EDS analysis of the Cu-Al-Ni-0.97 wt. % Mn, (a) Micrograph of scanned area; (b) Spectrum 1;
4.21 X-ray diffraction patterns of a) Cu-Al-Ni-0.39 wt. % Mn, b) Cu-Al-Ni-0.71 wt. % Mn, c) Cu-Al-Ni-0.97 wt. % Mn

4.22 An Elemental distribution map of Cu-Al-Ni-0.97 wt. % Mn SMA elemental, (a) Scanned area, (b) Copper, (c) Aluminium, (d) Nickel, and (e) Manganese distribution.

4.23 TEM images corresponding with selected area diffraction patterns of Cu-Al-Ni-0.71 wt.% Mn and Cu-Al-Ni-0.97 wt. % Mn: a) Bright field of TEM image of Cu-Al-Ni-0.71 Mn alloy, b) HRTEM image of the Cu-Al-Ni-0.71 wt.%Mn alloy, c) SADP of the Cu-Al-Ni-0.71 wt. %Mn alloy, d) Bright field of TEM image of Cu-Al-Ni-0.97 Mn alloy, e) HRTEM image of the Cu-Al-Ni-0.97 wt. %Mn alloy, f) SADP of the Cu-Al-Ni-0.97 wt. %Mn alloy.

4.24 Transformation temperature curves of the Cu-Al-Ni SMA with different percentage of Mn addition

4.25 Tensile stress-strain curves of Cu-Al-Ni SMA with Mn addition

4.26 Fracture surfaces of the alloys: a) Cu-Al-Ni-0.39 wt. % Mn, b) Cu-Al-Ni-0.71 wt. % Mn, c) Cu-Al-Ni-0.97 wt. % Mn.

4.27 Shape memory effect curves of the alloys at 373 K, then preheated to 676 K.

4.28 Micrographs showing the microstructure of Cu-Al-Ni SMA with different concentration of Co additions: a,d) Cu-Al-Ni-0.42 wt. % Co, b,e) Cu-Al-Ni-0.7 wt. % Co, c,f) Cu-Al-Ni-1.14 wt. % Co.
4.29 EDS analysis of Cu-Al-Ni-1.14 wt. % Co (a) Micrograph of scanned area; (b) Spectrum 1; (c) Spectrum 2.

4.30 Volume fraction and size of γ_2 precipitates of Cu-Al-Ni-XCo (0.42, 0.72, and 1.14 wt. %).

4.31 X-ray diffraction patterns of a) Cu-Al-Ni-0.42 wt. % Co, b) Cu-Al-Ni-0.72 wt. % Co, c) Cu-Al-Ni-1.14 wt.% Co.

4.32 TEM images the corresponding with selected area diffraction patterns of Cu-Al-Ni-0.72 wt. % Co and Cu-Al-Ni-1.14 wt. % Co: a) Bright field of TEM image of Cu-Al-Ni-0.72 wt. % Co alloy, b) HRTEM image of the Cu-Al-Ni-0.72 wt. % Co alloy, c) SADP of the Cu-Al-Ni-0.72 wt. % Co alloy, d) Bright field of TEM image of Cu-Al-Ni-1.14 wt. % Co alloy, e) HRTEM image of the Cu-Al-Ni-1.14 wt. % Co alloy, f) SADP of the Cu-Al-Ni-1.14 wt. % Co alloy.

4.33 An Elemental distribution map of Cu-Al-Ni-1.14 wt.% Co SMA elemental, (a) Scanned area, (b) Aluminium, (c) Cobalt, (d) Nickel, and (e) Copper distribution.

4.34 Transformation temperature curves of the Cu-Al-Ni SMA with different percentage of Co addition

4.35 Evaluation of the martensite-austenite transformation temperatures as a function of Co additions

4.36 Tensile stress-strain curves of Cu-Al-Ni SMA with Co addition

4.37 Fracture surface: a) Cu-Al-Ni SMA, b) Cu-Al-Ni-0.42 wt. % Co SMA, b) Cu-Al-Ni-0.72 wt. % Co SMA, c) Cu-Al-Ni-1.14 wt. % Co SMA
4.38 Shape memory effect curves of the Cu-Al-Ni-XCo alloys

4.39 FESEM micrographs shows the microstructures of the Cu-Al-Ni SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, a) 423 K for 24hr, b) 423 K for 48hr, a) 250 °C for 24hr, b) 250 °C for 48hr.

4.40 EDS analysis of the Cu-Al-Ni (a) Micrograph of scanned area; (b) Spectrum 1; (c) Spectrum 2; d) Spectrum 3.

4.41 X-ray diffraction patterns of Cu-Al-Ni SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.42 Transformation temperature curves on the heating and cooling cycle of the Cu-Al-Ni SMA aged at 423 K for 24 hr.

4.43 Tensile stress-strain curves for the aged Cu-Al-Ni SMA.

4.44 Fracture surface of Cu-Al-Ni SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.45 Shape memory effect curves of the aged Cu-Al-Ni SMA

4.46 FESEM micrographs show the microstructures of the Cu-Al-Ni-0.37 wt. % Ti SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.47 FESEM micrographs show the microstructures of the Cu-Al-Ni-0.76 wt.% Ti SMA under different aging conditions: a) 373 K for 24hr,
4.48 FESEM micrographs show the microstructures of the Cu-Al-Ni-0.99 wt.% Ti SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.49 X-ray diffraction patterns of Cu-Al-Ni-0.37 wt. % Ti SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.50 X-ray diffraction patterns of Cu-Al-Ni-0.76 wt.% Ti SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.51 X-ray diffraction patterns of Cu-Al-Ni-0.99 wt.% Ti SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.52 Transformation temperature curves of the Cu-Al-Ni-0.37 wt. % Ti SMA aged at 523 K for 24 hr.

4.53 DSC diagrams of the heating and cooling cycle of the Cu-Al-Ni-0.76 wt.% Ti SMA aged at 523 K for 24 hr.

4.54 DSC diagrams of the heating and cooling cycle of the Cu-Al-Ni-0.99 wt.% Ti SMA aged at 523 K for 24 hr.

4.55 Tensile stress-strain curves for SMA: a) Cu-Al-Ni-0.37 wt. % Ti; b) Cu-Al-Ni-0.76 wt. % Ti; c) Cu-Al-Ni-0.99 wt. % Ti.

4.56 Fracture surface of Cu-Al-Ni-0.37 wt. % Ti SMA at different aging conditions: a) 373 K for
Fracture surface of Cu-Al-Ni- 0.76 wt.% Ti SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

Fracture surface of Cu-Al-Ni- 0.99 wt.% Ti SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

SME curves of the aged Cu-Al-Ni-0.37 wt. % Ti SMA

SME curves of the aged Cu-Al-Ni-0.76 wt. % Ti SMA.

Shape memory effect curves of the aged Cu-Al-Ni-0.99 wt. % Ti SMA

FESEM micrographs showing the microstructures of the Cu-Al-Ni- 0.39wt. % Mn SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

FESEM micrographs showing the microstructures of the Cu-Al-Ni- 0.71 wt.% Mn SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

FESEM micrographs showing the microstructures of the Cu-Al-Ni- 0.97 wt.% Mn SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d)
X-ray diffraction patterns of aged Cu-Al-Ni-0.39wt. % Mn SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

X-ray diffraction patterns of aged Cu-Al-Ni-0.71 wt.% Mn SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

X-ray diffraction patterns of aged Cu-Al-Ni-0.97 wt.% Mn SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-0.39 wt. % Mn SMA aged at 523 K for 24hr.

DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-0.71 wt. % Mn SMA aged at 523 K for 24hr.

DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-0.97 wt. % Mn SMA aged at 523 K for 24hr.

Tensile stress-strain curves for SMA: a) Cu - Al-Ni-0.39 wt. % Mn; b) Cu-Al-Ni-0.71 wt.% Mn; c) Cu- Al-Ni -0.97 wt. % Mn.

Fracture surface of the aged Cu-Al-Ni-0.39wt. % Mn SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

Fracture surface of the aged Cu-Al-Ni-0.71 wt.% Mn SMA at different aging conditions: a) 373 K
Fracture surface of the aged Cu-Al-Ni-0.97 wt.% Mn SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

SME curves of the aged Cu-Al-Ni-0.39 wt.% Mn SMA

SME curves of the aged Cu-Al-Ni-0.71 wt.% Mn SMA

SME curves of the aged Cu-Al-Ni-0.97 wt.% Mn SMA

FESEM micrographs showing the microstructures of the Cu-Al-Ni-0.42 wt.% Co SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

FESEM micrographs showing the microstructures of the Cu-Al-Ni-0.72 wt.% Co SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

FESEM micrographs showing the microstructures of the Cu-Al-Ni-1.14 wt.% Co SMA under different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

X-ray diffraction patterns of Cu-Al-Ni-0.42 wt.
% Co SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.82 X-ray diffraction patterns of Cu-Al-Ni-0.72 wt.% Co SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.83 X-ray diffraction patterns of Cu-Al-Ni-1.14 wt.% Co SMA, a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.84 DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-0.42 wt.% Co SMA aged at 523 K for 24 hr.

4.85 DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-0.72 wt.% Co SMA aged at 523 K for 24 hr.

4.86 DSC diagrams on the heating and cooling cycle of the Cu-Al-Ni-1.14 wt.% Co SMA aged at 523 K for 24 hr.

4.87 Tensile stress-strain curves for SMA: a) Cu-Al-Ni-0.42 wt.% Co; b) Cu-Al-Ni-0.72 wt.% Co; c) Cu-Al-Ni-1.14 wt.% Co.

4.88 Fracture surface of Cu-Al-Ni-0.42 wt.% Co SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.89 Fracture surface of Cu-Al-Ni-0.72 wt.% Co SMA at different aging conditions: a) 373 K for 24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.90 Fracture surface of Cu-Al-Ni-1.14 wt.% Co SMA at different aging conditions: a) 373 K for
24hr, b) 373 K for 48hr, c) 423 K for 24hr, d) 423 K for 48hr, e) 523 K for 24hr, f) 523 K for 48hr.

4.91 SME curves of the aged Cu-Al-Ni-0.42 wt. % Co SMA.

4.92 SME curves of the aged Cu-Al-Ni-0.72 wt. % Co SMA.

4.93 SME curves of the aged Cu-Al-Ni-1.14 wt. % Co SMA.

4.94 DSC curves of the Cu-Al-Ni SMA with and without addition of alloying elements (a) heating and (b) cooling.

4.95 Shape memory effect curves of the modified and unmodified alloys before aging treatment.

4.96 Shape memory effect curves of the modified and unmodified alloys after aging treatment.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-Al-Ni</td>
<td>Copper Aluminum Nickel</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive spectroscopy</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High resolution transmission electron microscopy</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductive couple plasma- mass spectroscopy</td>
</tr>
<tr>
<td>OM</td>
<td>Optical microscope</td>
</tr>
<tr>
<td>SADP</td>
<td>Selected area diffraction pattern</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SMAs</td>
<td>Shape memory alloys</td>
</tr>
<tr>
<td>SME</td>
<td>Shape memory effect</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hkl)</td>
<td>Miller indices</td>
<td></td>
</tr>
<tr>
<td>$\Delta H^{M\rightarrow\gamma}$</td>
<td>Enthalpy of Martensite \rightarrow Austenite</td>
<td></td>
</tr>
<tr>
<td>$\Delta H^{\gamma\rightarrow M}$</td>
<td>Enthalpy of Austenite \rightarrow Martensite</td>
<td></td>
</tr>
<tr>
<td>$\Delta S^{M\rightarrow\gamma}$</td>
<td>Entropy of Martensite \rightarrow Austenite</td>
<td></td>
</tr>
<tr>
<td>$\Delta S^{\gamma\rightarrow M}$</td>
<td>Entropy of Austenite \rightarrow Martensite</td>
<td></td>
</tr>
<tr>
<td>ε^f</td>
<td>Fracture strain</td>
<td></td>
</tr>
<tr>
<td>ε_p</td>
<td>Strain after heating above A_f</td>
<td></td>
</tr>
<tr>
<td>ε_r</td>
<td>Residual strain</td>
<td></td>
</tr>
<tr>
<td>ε_{SME}</td>
<td>Strain recovery ratio by shape memory effect</td>
<td></td>
</tr>
<tr>
<td>σ^f</td>
<td>Fracture stress</td>
<td></td>
</tr>
<tr>
<td>a, b, and c</td>
<td>Lattice parameters</td>
<td></td>
</tr>
<tr>
<td>a.u.</td>
<td>arbitrary unit</td>
<td></td>
</tr>
<tr>
<td>A_f</td>
<td>Austenite finish temperature</td>
<td></td>
</tr>
<tr>
<td>A_s</td>
<td>Austenite start temperature</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Full width at half maximum</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Spacing distance</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gibbs free energy</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>Vicker’s hardness</td>
<td></td>
</tr>
<tr>
<td>K/min</td>
<td>Kelvin per minute</td>
<td></td>
</tr>
<tr>
<td>M_f</td>
<td>Martensite finish temperature</td>
<td></td>
</tr>
<tr>
<td>M_s</td>
<td>Martensite start temperature</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Centigrade degree</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>T_o</td>
<td>Equilibrium temperature</td>
<td></td>
</tr>
</tbody>
</table>
Wt.% - Weight percentage
α, β - Lattice angles
θ - Bragg’s angle
λ - Wavelength
G.B - Grain boundary
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DSC curves of the aged Cu-Al-Ni-Xy (X is Ti, Mn, and Co; y is weight percentage)</td>
<td>267</td>
</tr>
<tr>
<td>B</td>
<td>Publications</td>
<td>277</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Shape memory alloys (SMAs) and their associated thermoelastic martensitic transformation have been the subject of extensive studies for many years, since they have many technological applications utilizing the shape memory effect [1, 2]. Typical for shape memory material is a unique, unconventional correlation of temperature, stress and strain that crystallographic reversible thermo-elastic martensitic transformation forms its basis. Since technological applications impose reliability requirements on commercial SMAs, the MT (martensitic transformation) in particular need to be highly reproducible [3]. As a result, controlling the martensite type and the MT temperatures becomes a basic point for determining the SMA’s thermo-mechanical and hysteresis properties. Since extreme sensitivity is shown towards concentration changes by MT temperatures, controlling quaternary or ternary alloys’ concentration with a lot of precision is difficult as the composition of the alloy is very vital in the determination of the MT temperatures. Parameters such as structure ordering and grain size are depended upon by phase transformation temperatures but their importance can not be compared to that of the alloy composition. It is also worthy to note that the martensite type which is obtained is dependent of the intermetallic alloy’s degree of order [4] that also is independent of
the concentration of the alloy [5].

When compared to the many SMAs which are available, the most commercially attractive alloys which can be employed in applications which are practical are the Cu-based SMAs. That is because they exhibit reasonable shape memory effect, offer the possibility of being used at high temperatures, have better thermal stability and are not expensive. It should also be noted that the Cu-Al-Ni alloys’ applications have restrictions since they are associated with brittle inter-granular cracking and poor workability and thus used where very small shape changes are required [6]. Their grain size which is large (1-3 mm), high elastic anisotropy ratio (~14) and the high degree of order which they are associated with is responsible for the material failure through inter-granular fracture which they exhibit [7-9]. The difficulty of stress concentration is enhanced by these factors at the grain boundaries and as a result promoting fracture. Hence, poor mechanical properties are exhibited by these alloys (fracture strain 0.5% and fracture stress 150 MPa). It has been established by Husain [10] and Sugimoto et al [11] that within Cu-Al-Ni shape memory alloys with a basis on β when subjected to stress, the existent elastic anisotropy within the allows is responsible the polycrystalline samples’ stress concentration at the grain boundaries. High stress concentration can result due to the large grain size. The martensitic strain’s orientation dependence also determines the elastic anisotropy. The alloys’ stress relaxation properties can also be reduced by the spinodal transformation and the existent ordered phases [12, 13].

Research work pertaining to Cu-Al-Ni SMAs is of considerable significance since these alloys possess higher transformation temperatures [14] and higher damping capacity [15, 16], especially at high temperatures, compared with even Nitinol. That makes them to be well suited when being employed in engineering applications like actuators. They fit well in actuators that operate within high temperatures, bridges’ damping elements, buildings, oil well applications and other structures. It should be remembered that when Cu-Al-Ni alloys are subjected to very high temperature service conditions, they show some susceptibility to post-quench aging and as a result lead to a change in their mechanical properties, martensitic phases and transformation temperatures with the time of operation [17, 18].
The material’s deformation within the martensitic state (below \(M_f\)) is influenced by the shape memory effect. A number of effects can take place over the deformation which may lead the macroscopic shape change within Cu-Al-Ni SMAs. Usually, self-accommodating plate variants are contained within the thermoelastic martensitic structure. The variants rearrange and coalesce through the intervenient boundaries’ movement when the deformation takes place. Development of mechanical twins may take place during this process. As a result, in response to the stress which is applied, formation of the most favorably oriented martensite variants occur. Additionally, when responding to the deformation, martensite → martensite transformations which involve changes in the stacking sequence form: taking place of austenite → martensite transformations occurs[19, 20]. There have been wide studies regarding to the Cu-Al-Ni SMAs’ shape memory effect within the bending test [20-22] though not much has been done when studies these properties under the tensile test [23, 24].

A number of attempts have been made in improving mechanical properties. Ductility is the property within Cu–Al–Ni SMAs that has been put into consideration by using different techniques to do grain refining such as adding small amounts of quaternary elements, such as Zr, V and Ti and including aging treatment [22, 25-28]. Though properties like ductility and strength were improved after that, some mechanical properties still remained unsatisfactory to be used for some targeted commercial applications more so when a full shape recovery was necessary. A number of studies have been done on different aging aspects of the alloys and the influence they have on their shape memory properties [17]. The martensite stabilization phenomenon was given special attention since it is normally associated the reverse transformation temperatures (\(A_s\) and \(A_t\)’s increase once deformation has taken place. Though, not many studies were done on the aged alloys’ thermo-mechanical response [23, 29, 30]. Thus, this research aims to study the effect of alloying elements and aging treatments on the phase transformation behavior and properties of Cu-Al-Ni SMAs.
1.2 Problem Statement

Since Cu-Al-Ni shape memory alloy has many advantages, which has attracted more attention from the scientists and researchers, their applications are limited due to the low recovery strain and high brittleness. Their damaging properties may be improved by adding specific alloying elements followed by aging treatments. An investigation into the structure and property relationship is necessary to ensure the correct compositions of Cu-Al-Ni SMAs, which gives the optimum performance that can achieve 100% of the shape recovery.

1.3 Purpose of the Research

The purpose of this research is to find ways to improve the poor properties of Cu-Al-Ni SMA in terms of its low recovery strain (40-50%) and high brittleness (1-1.2% fracture strain). The research induces understanding the mechanisms and transformation behavior of the Cu-Al-Ni SMAs and identifies the influence of alloying elements on the structure and properties of the alloys. The output of this research is expected to improve the mechanical properties and reduce the limitation usage for many industrial applications, e.g., actuators and sensors that will be helpful to prevent the destruction of such structures as buildings and bridges. The effect of various alloying materials such as Mn, Co, and Ti with different additions amounts along with applying different aging conditions of 373 K, 423 K, and 523 K for 24 and 48 hr on the phase transformation behavior of Cu-Al-Ni SMAs are investigated using various material characterization techniques. This study is expected to provide the phase transformation characteristics of each alloy in accordance with their microstructural observations, transformation temperatures and mechanical properties such as tensile, shape memory effect, and hardness.
1.4 Objectives of the Research

The objectives of the research are as follows:

1. To determine the effect of different amounts of alloying elements (Ti, Mn, and Co) on the structure and properties of the Cu-Al-Ni shape memory alloys.
2. To investigate the effects of aging temperature and aging time on the structure and properties of Cu-Al-Ni shape memory alloys.
3. To establish the correlation between the phase transformation characteristics of Cu-Al-Ni SMA, with respect to the concentration of alloying elements and aging treatment.

1.5 Scopes of the Research

The scope of the research is as follows:

1. Preparation of the samples by casting commercially pure raw metals (Cu 99.999 %, Al 99.999, and Ni 99.995 %) with and without alloying elements e.g., Ti 99.99 %, Mn 99.99%, and Co 99.95% by using an induction furnace.
2. Analysis of the as-cast samples by using inductively coupled plasma mass spectrometry (ICP-MS) for composition analysis, differential scanning calorimetry (DSC) for phase transformation temperature, and Vicker’s test for hardness measurement.
3. Aging treatment of the as-cast samples under different condition of temperature and time.
4. Microstructural and phase analysis of the as-cast and aged samples using field emission scanning electron microscopy (FESEM), X-ray diffraction
(XRD), and energy dispersive spectroscopy (EDS).

5. Perform the tensile test on the as-cast and aged samples in order to determine the fracture stress and strain by using an Instron 5982-type universal testing machine.

6. Perform shape memory test on the as-cast and aged samples using specially designed tensile test machine.

7. Detailed analysis of selected samples after shape memory test by using transmission electron microscope (TEM).

1.6 Significance of the Research

The basic aim of this research is to provide significant information on the behavior of the Cu-Al-Ni SMAs with and without alloying addition and aging treatments. Thus, the results of this research will benefit the automotive, civil and aerospace industries using the shape memory alloys in terms of improved properties such as ductility and reduction in brittleness. However, it gives the allowance for these materials to be used for higher temperatures without losing its shape memory effect. In addition, the outcomes of this research will contribute to providing a sustainable material with better properties and extensive earthquake applications.
REFERENCES

22. Morris, M. A. and Lipe, T. Microstructural influence of Mn additions on

73. Saburi, T., Nenno, S., Nishimoto, Y. and Zeniya, M. Effects of Thermo-

97. Na, Wpływ Szybkości Obrotowej Bębna Chłodzącego, Formowanie Się Tekstury W. Stopach Na, and Bazie. Effect of wheel velocity on texture

118. K. Otsuka, C. M. W. Shape Memory Materials. Cambridge University Press,

257

142. Wang, Z., Liu, X. F. and Xie, J. X. Effect of γ2 phase evolution on

182. Tarhan, E. F. Aging Characteristics of Copper based Shape Memory Alloys. Middle East Technical University; 2004.

188. Yildirim Aydogdu, A. A., Osman Adiguzel Self-accommodating martensite

200. Tatar, C. Gamma irradiation-induced evolution of the transformation temperatures and thermodynamic parameters in a CuZnAl shape memory

213. Lee, JS and Wayman, CM. Grain Refinement of a Cu–Al–Ni Shape Memory

220. Saiji Matsuoka, M. H., Ryuichiro Oshima and Francisco Eiichi Fujita Improvement of Ductility of Melt Spun Cu-Al-Ni Shape Memory Alloy Ribbons by Addition of Ti or Zr

231. Tarhan, E. F. Aging Characteristics of Copper based Shape Memory Alloys. Middle East Technical University; 2004.

237. Ma, Y., Yang, S., Wang, C. and Liu, X. Tensile characteristics and shape memory effect of Ni56Mn21Co4Ga19 high-temperature shape memory alloy.

