LOW DENSITY POLYETHYLENE TAPIOCA STARCH DEGRADABLE BIOFILMS WITH PALM OIL BASED PROCESSING AID FOR BLOWN FILM EXTRUSION

ROSHAFIMA RASIT ALI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Polymer Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

MARCH 2015
This thesis is dedicated to my husband, Helmi Hj Haron, mama and abah, super cool siblings; Fina, Baby and Fiq and beloved children, Iman, Fathiyyah and Fayha
ACKNOWLEDGEMENTS

Alhamdulillah. This thesis represents not only my work on the keyboard; it is a milestone in more than a one decade of my journey in Universiti Teknologi Malaysia (UTM) starting as an undergraduate student back in 1996. Throughout these years I have learned and experienced a valuable living philosophy and principle that cannot be conducted and analyzed through experimental and data analysis. This thesis is also the result of many experiences and knowledge’s I have encountered at UTM from dozens of remarkable individuals who I wish to acknowledge each one of them.

First and foremost I would like to thank my supervisor, Associate Professor Dr Wan Aizan for her guidance, patience, support a tireless and encouragement along the journey of my study. She has given me support including literally assisting my research task, academically and emotionally through the rough road to finish this thesis. One simply could not wish for a better or friendlier supervisor.

I am most grateful to Mr Suhee Tan, Mr Nordin Ahmad and Ms Zainab Salleh; the most awesome lab technicians of Polymer Engineering Department, Faculty of Chemical Engineering, UTM; for their dedicated help, guidance and experience sharing during my experimental works. I have been blessed with a friendly and cheerful group of my fellow postgraduate mates; Dayang, Nurnadia, Shahrl Nizam, Mohd Zaini and Dr Lai Jau Choi. I really appreciate their kindness, help and accompany through all this years. I would like to acknowledge the financial support and study leave opportunity granted by Ministry of Higher Education, Malaysia and Universiti Teknologi Malaysia, encouragement from all staffs in Polymer Engineering Department; especially to my current head of department, Assoc. Prof. Dr Aznizam and not to forget, Assoc. Prof. Dr Shahrir Hashim as former head of department. A special dedication goes to my fellow colleagues; Kama, Zana, Ana, Ina, Yun, Niza, Umi and Ina Muis for their encouragement, guidance and years of fun in many ways along my journey.

Above all, my deepest dedication goes to the most important source of my life; parents, husband, siblings and children. Their continuous support and unconditional love have been the strongest pillars that carry me through all this trying years. They have cherished with me every great moment and always there whenever I needed it.
ABSTRACT

In this study, tapioca starch-based polyethylene biofilms with various starch contents, ranging from 5 to 40 wt%, were prepared with added plasticizers and polyethylene-grafted-maleic anhydride (PE-g-MA) as compatibilizer by a one-step process. The pellets of tapioca starch-based low density polyethylene (LDPE/TS) were first produced using a twin-screw extrusion process, followed by film blowing extrusion process to produce biofilm samples. Two types of plasticizers, commercial glycerol and palm oil based olein, were added to produce the best formulation for the film blowing process. Palm oil based olein influenced the processing of biocomposites by inducing lower viscosity, better dispersion and flowability. The biocomposites with addition of fixed amount of palm oil based olein displayed excellent film blowing ability compared to glycerol. Scanning electron micrograph of this biofilm with incorporation of starch up to 30 wt% showed good dispersion of starch granular in the polymer matrix. Adding compatibilizer increased the compatibility of the blends, and thus the mechanical properties of tapioca starch-based biofilms were improved. Optical properties, such as haze and gloss of biofilms, decreased as the starch contents increased, coinciding with the starch particle size in the polymer matrix. The barrier properties of tapioca starch-based biofilms, such as water uptake, moisture content and water vapour transmission rate were higher than pure LDPE, due to the hydrophilic characteristics of starch. Biofilms exposed to outdoor weathering, fungi, enzyme and controlled soil burial test demonstrated significant changes on weight loss and surface structure due to photodegradation by sunlight and microorganism activities. Biofilms with starch contents 10 to 40 wt% were determined safe to be used as food plastics packaging for aqueous, non-acidic and acidic foods, oils and processed dry food containing fat and alcoholic ingredients.
ABSTRAK

Dalam kajian ini, biofilm polietilena berasaskan kanji ubi kayu dengan pelbagai kandungan kanji, daripada 5 hingga 40 wt% telah disediakan dengan tambahan pemplastik dan polietilena-tercangguk-maleik anhidrida sebagai penserasi melalui proses satu-peringkat. Palet polietilena berketumpatan rendah berasaskan kanji ubi kayu (LDPE/TS) telah dihasilkan dengan menggunakan proses penyemperitan skru berkembar, dan kemudian diteruskan dengan proses penyemperitan tiupan filem untuk menghasilkan sampel biofilm. Dua jenis bahan pemplastik digunakan, iaitu gliserol dan minyak sawit berasaskan olein, telah ditambah untuk menghasilkan formulasi terbaik melalui proses penyemperitan tiupan filem. Minyak sawit berasaskan olein pengaruh pemprosesan biokomposit dengan mendorong kepada kelikatan yang lebih rendah, serakan dan keboleh aliran yang lebih baik. Biokomposit dengan tambahan minyak sawit berasaskan olein pada kadar tetap menunjukkan keupayaan yang baik untuk diproses melalui proses penyemperitan tiupan filem berbanding gliserol. Mikrograf imbasan elektron biofilm ini dengan kandungan kanji sebanyak 30 wt% menunjukkan penyebaran butiran kanji yang baik dalam matriks polimer. Tambahan penserasi dalam adunan telah meningkatkan keserasian adunan, dengan itu sifat-sifat mekanik biofilm berasaskan kanji bertambah baik. Ciri-ciri optik, seperti jerebu dan kekilatan biofilm menurun dengan peningkatan kandungan kanji, bertepatan dengan saiz partikel kanji dalam matriks polimer. Sifat rintangan biofilm berasaskan kanji ubi kayu mengandungi kandungan penyerapan air, kandungan kelembapan dan kadar penghantaran wap air yang lebih tinggi berbanding LDPE tulen, disebabkan oleh ciri-ciri hidrofilik kanji. Biofilm yang terdedah kepada luluahwa, kulat, enzim dan ujian tertanam di dalam tanah yang terkawal menunjukkan perubahan yang ketara kepada penurunan berat asal dan struktur permukaan yang disebabkan oleh aktiviti fotodegradasi oleh cahaya matahari dan aktiviti mikroorganisma. Biofilm dengan kandungan kanji sebanyak 10 hingga 40 wt% berat telah didapati selamat untuk digunakan sebagai pembungkusan plastik makanan bagi makanan jenis berair, makanan bukan berasid dan berasid, makanan berminyak dan makanan kering yang diproses yang mengandungi bahan lemak dan alkohol.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>Xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>Xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>Xxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction | 1
1.2 Problem Statement | 6
1.3 Objectives of the Study | 9
1.4 Scopes of the Study | 9
1.5 Significance of the Study | 11

2 LITERATURE REVIEW

2.1 Plastics and Environment | 12
2.2 Polymer Used in Packaging | 16
2.3 Development in Biodegradable Packaging Materials | 22
 2.3.1 Starch Based Biodegradable Polymers | 27
 2.3.2 Starch Based Low Density Polyethylene Biodegradable Polymers | 32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Tapioca starch-based Degradable Polymers</td>
<td>33</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Effect of Plasticizers and Compatibilizers on Starch-based Degradable Polymers</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Processing of Biodegradable Packaging Materials</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Properties of Biodegradable Packaging Materials</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Modification of Biodegradable Packaging Materials</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Others Starch Based Biodegradable Polymers</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Degradation of Plastics</td>
<td>49</td>
</tr>
<tr>
<td>2.9</td>
<td>Biodegradation of Plastics</td>
<td>51</td>
</tr>
<tr>
<td>2.10</td>
<td>Factors Affecting Biodegradation</td>
<td>55</td>
</tr>
<tr>
<td>2.11</td>
<td>Mechanism of Biodegradation</td>
<td>58</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Microbial Degradation</td>
<td>59</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Thermal Degradation</td>
<td>61</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Photodegradation</td>
<td>62</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Chemical Degradation</td>
<td>64</td>
</tr>
<tr>
<td>2.12</td>
<td>Starch</td>
<td>67</td>
</tr>
<tr>
<td>2.13</td>
<td>Antimicrobial Food Packaging Biofilm</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>76</td>
</tr>
<tr>
<td>3.1</td>
<td>Materials</td>
<td>76</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Low Density Polyethylene</td>
<td>76</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Tapioca Starch</td>
<td>77</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Plasticizers</td>
<td>77</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Compatibilizer</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of Tapioca Starch-based Polyethylene Biocomposites</td>
<td>79</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Pre-gelatinization of Tapioca During Mixing Process</td>
<td>79</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Compounding Process of Tapioca Starch-based Polyethylene by Extrusion Process</td>
<td>79</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Blown Film Extrusion Process of Tapioca Starch-based Biofilm</td>
<td>80</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Formulation Development of Tapioca Starch-</td>
<td></td>
</tr>
</tbody>
</table>

3 METHODOLOGY

3.1 Materials
3.1.1 Low Density Polyethylene
3.1.2 Tapioca Starch
3.1.3 Plasticizers
3.1.4 Compatibilizer
3.2 Preparation of Tapioca Starch-based Polyethylene Biocomposites
3.2.1 Pre-gelatinization of Tapioca During Mixing Process
3.2.2 Compounding Process of Tapioca Starch-based Polyethylene by Extrusion Process
3.2.3 Blown Film Extrusion Process of Tapioca Starch-based Biofilm
3.2.4 Formulation Development of Tapioca Starch-
based Polyethylene Biocomposites 81
3.2.4.1 Effect of Various Content of Tapioca Starch 81
3.2.4.2 Effect of Plasticizers on Tapioca Starch-based Polyethylene Biocomposites 82
3.2.4.3 Effect of PE-g-MA as Compatibilizer to the Tapioca Starch-based Polyethylene Biocomposites 83
3.3 Preparation of Tapioca Starch-based Polyethylene Antimicrobial Film 83
3.4 Melt Flow Index Analysis 84
3.5 Tapioca Starch-based Polyethylene Biofilm Characterization 84
3.5.1 Density Measurement 84
3.5.2 Fourier-transform Infrared Spectroscopy 85
3.6 Morphological Analysis of Tapioca Starch-based Polyethylene Biofilms 85
3.6.1 Optical Microscopy 85
3.6.2 Scanning Electron Microscopy 86
3.7 Optical Properties of Tapioca Starch-based Polyethylene Biofilms 86
3.7.1 Transparency Analysis 86
3.7.2 Gloss and Haze Film Analysis 86
3.8 Barrier Properties of Tapioca Starch-based Polyethylene Biofilms 87
3.8.1 Water Absorption Test 87
3.8.2 Moisture Content Analysis 88
3.8.3 Water Vapour Transmission Rate 88
3.8.4 Food Compatibility Analysis 89
3.9 Thermal Analysis 89
3.9.1 Thermogravimetry Analysis 89
3.9.2 Differential Scanning Calorimetry 90
3.10 Mechanical Testing
 3.10.1 Tensile Test
 3.10.2 Tear Strength
3.11 Biodegradability Studies
 3.11.1 Natural Weathering Test
 3.11.2 Enzyme Test
 3.11.3 Exposure to Fungi Environment
 3.11.4 Soil Burial Test
3.12 Antimicrobial Analysis of Tapioca Starch-based Polyethylene Biofilms

4 FORMULATION DEVELOPMENT OF TAPIoca STARCH-BASED POLYETHYLENE BIOFILMS
4.1 Preparation of Tapioca Starch-based Polyethylene Biocomposites
 4.1.1 Pre-gelatinization of Tapioca Starch During Mixing Process
 4.1.2 Gelatinization of Tapioca Starch During Extrusion Process
 4.1.3 Effect of Plasticizers on Tapioca Starch-based Polyethylene Biocomposite
 4.1.3.1 Effect of Glycerol as Plasticizers on Tapioca Starch-based Polyethylene Biocomposites
 4.1.3.2 Effect of Palm Oil Based Olein as Plasticizers on Tapioca Starch-based Polyethylene Biocomposites.
 4.1.4 Effect of Various Contents of Tapioca Starch in Biocomposites.
 4.1.5 Effect of Compatibilizer in Tapioca Starch-based Polyethylene Biocomposite
TAPIOCA STARCH-BASED POLYETHYLENE BIOFILMS

5.1 Introduction

5.2 Tapioca Starch-based Polyethylene Biofilm Characterization

- **5.2.1 Density Measurement**
- **5.2.2 Fourier-transform Infrared Spectroscopy**
- **5.2.3 Melt Flow Index Analysis**

5.3 Scanning Electron Microscopy Analysis of Tapioca Starch-based Polyethylene Biofilms

5.4 Biofilms Surface Morphology Analysis

5.5 Optical Properties of Tapioca Starch-based Polyethylene Biofilms

- **5.5.1 Transparency and Haze Analysis**
- **5.5.2 Gloss Film Analysis**

5.6 Barrier Properties of Tapioca Starch-based Polyethylene Biofilms

- **5.6.1 Water Absorption Test**
- **5.6.2 Moisture Content Analysis**
- **5.6.3 Water Vapour Transmission Rate**
- **5.6.4 Food Compatibility Analysis**

5.7 Thermal Properties of Tapioca Starch-based Polyethylene Biofilm

- **5.7.1 Differential Scanning Calorimetry Analysis**
- **5.7.2 Thermogravimetry Analysis of Tapioca Starch-based Polyethylene Biofilms**

5.8 Mechanical Properties

- **5.8.1 Tear Strength**
- **5.8.2 Tensile Strength and Elongation at Break**

5.9 Biodegradation Analysis of Tapioca Starch-based Polyethylene Biofilms

- **5.9.1 Exposure to Enzyme Activities**
- **5.9.2 Exposure to Fungi Environment**
5.9.3 Outdoor Weathering Test 172
5.9.4 Soil Burial Analysis 187
5.10 Antimicrobial Activity of Films against Food Spoilage Microorganisms 199

6 CONCLUSION 201
6.1 Conclusion 201
6.2 Recommendations for Future Study 203

REFERENCES 204
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Main plastics and their applications (Zheng and Yanful, 2005)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Functions of primary packaging (Hopewell et al., 2009)</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Common synthetic biodegradable plastics (Garthe and Kowal, 1994)</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Summarizes of various biodegradable polymers, along with their generic advantages, disadvantages and potential applications (Halley, 2005)</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Various Polymer Degradation Routes (Pospisil and Nesparek, 1997)</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Size, shape, and amylose content of some starch granules (Zhang et al., 2005)</td>
<td>69</td>
</tr>
<tr>
<td>2.6</td>
<td>Antimicrobials incorporated directly into polymers (Appendini and Hotchkiss, 2002; Suppakul et al., 2003)</td>
<td>74</td>
</tr>
<tr>
<td>3.1</td>
<td>Table 3.1: Representative properties of LDPE (Source: MSDS LDF 260GG, Titan Polyethylene (M) Sdn. Bhd.)</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of tapioca starch (Oladunmoye et al., 2014)</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Typical properties of glycerol (Source: MSDS Glycerol, Fisher Scientific)</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>Typical properties of palm oil based olein (Source: Malaysian Palm Oil Board)</td>
<td>78</td>
</tr>
<tr>
<td>3.5</td>
<td>Technical specifications of twin screw extruder</td>
<td>80</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.6</td>
<td>Technical specifications of blown film extrusion machine</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Formulations of tapioca starch-based polyethylene biocomposites</td>
<td>82</td>
</tr>
<tr>
<td>3.8</td>
<td>Formulations for the effect of glycerol as a plasticizer</td>
<td>82</td>
</tr>
<tr>
<td>3.9</td>
<td>Formulations for the effect of palm oil based olein as a plasticizer</td>
<td>83</td>
</tr>
<tr>
<td>3.10</td>
<td>Formulations for the effect of PE-g-MA as a compatibilizer</td>
<td>83</td>
</tr>
<tr>
<td>3.11</td>
<td>Reference of gloss level measurement</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of film blowing process and melt index of tapioca starch-based polyethylene</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Blow ability of tapioca starch-based polyethylene processed by film blowing technique</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of film blowing process and melt index of tapioca starch-based polyethylene</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Results of film blowing ability and melt index of various contents of tapioca starch in biofilms</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Film blowing ability of tapioca starch-based polyethylene</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Tapioca starch based polyethylene biofilms formulation</td>
<td>121</td>
</tr>
<tr>
<td>5.2</td>
<td>Density values of tapioca starch based polyethylene blends</td>
<td>122</td>
</tr>
<tr>
<td>5.3</td>
<td>Major FTIR bands and assignments</td>
<td>123</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage transmittance and haze of tapioca starch based biofilms</td>
<td>137</td>
</tr>
<tr>
<td>5.5</td>
<td>Percentage transmittances of all biofilms in different wavelengths</td>
<td>138</td>
</tr>
<tr>
<td>5.6</td>
<td>Gloss level of tapioca starch based polyethylene biofilms</td>
<td>139</td>
</tr>
<tr>
<td>5.7</td>
<td>WVTR values for LDPE and tapioca starch based biofilms with various contents of starch</td>
<td>145</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.8</td>
<td>The determination of migration in simulants</td>
<td>147</td>
</tr>
<tr>
<td>5.9</td>
<td>Classification of foods and selection of simulant</td>
<td>148</td>
</tr>
<tr>
<td>5.10</td>
<td>The glass transition temperature (T_g), crystallization temperature (T_c) and melting temperature (T_m) of LDPE and tapioca starch based polyethylene blends</td>
<td>149</td>
</tr>
<tr>
<td>5.11</td>
<td>Tensile strength and percent elongation of LDPE and tapioca starch based biofilms with various starch contents</td>
<td>160</td>
</tr>
<tr>
<td>5.12</td>
<td>Tensile strength and elongation of starch based polymer with various content of PE-g-MA as compatibilizer</td>
<td>162</td>
</tr>
<tr>
<td>5.13</td>
<td>Climatological Information of Johor Bahru</td>
<td>172</td>
</tr>
<tr>
<td>5.14</td>
<td>Diameter of the clear zone</td>
<td>199</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World plastic materials demand by resin types in 2010 (Plastics, 2011)</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>World Plastics Production 1950 - 2011 (Plastics, 2011)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>World Plastics Materials Production 2011 (Plastics, 2011)</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Plastics demand by segments 2011 (Plastics, 2011)</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Plastics demand by segments and resin types 2011 (Plastics, 2011)</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>General properties required for food packaging materials (Hawkins, 2013)</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Classifications of biodegradable polymers (Bordes et al., 2009)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>The carbon cycle, involving biopolymer degradation (Tharanathan, 2003)</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic representations of the phase transitions of starch during thermal processing and aging (Yu and Christie, 2005)</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>A schematic representation of starch processing by extrusion (Xie et al., 2012)</td>
<td>39</td>
</tr>
<tr>
<td>2.10</td>
<td>Tentative model for the degradation mechanism of LDPE: (a) via oxidation of both main chains and end groups; (b) via oxidation of exclusively main chain ends (Psomiadou et al., 1997)</td>
<td>44</td>
</tr>
</tbody>
</table>
2.11 Schematic diagram of polymer degradation under aerobic and anaerobic conditions (Gu, 2003) 53
2.12 General mechanisms of plastic biodegradation under aerobic conditions (Shah et al., 2008) 54
2.13 General mechanism of enzyme-catalyzed polymer degradation (Artham and Doble, 2008) 55
2.14 Parameters that affect the biodegradation of polymers (Artham and Doble, 2008) 56
2.15 Schematic representation of biofilm formation on a polymer surface (Flemming, 1998) 57
2.16 An intermolecular chain transfer in the polymer chain (El-Hadi et al., 2002) 63
2.17 PLA hydrolysis in alkaline conditions (De Jong et al., 2001) 66
2.18 PLA hydrolysis in acidic conditions (De Jong et al., 2001) 66
2.19 Chemical structures and physical schematic representation of (a) amylose starch (b) amylopectin starch (Moad, 2011) 68
2.20 An idealized structure for the starch granule (Gallant et al., 1997) 71
3.1 Test sample type for propagation tear resistance of plastic film and thin sheeting by pendulum method 91
4.1 LDPE pallets covered with tapioca starch with additional of plasticizers before compounding process via twin crew extrusion 97
4.2 Tapioca starch based polyethylene extrudates 98
4.3 Tapioca starch based polyethylene biocomposite resins 99
4.4 Melt Index of tapioca starch based PE with various content of glycerol 101
4.5 Film blowing of tapioca starch based PE with addition of 5 wt% of glycerol 104
4.6 Film blowing of tapioca starch based PE with addition of 20 wt% of glycerol

4.7 Melt Index of tapioca starch based PE with various content of glycerol

4.8 Melt Index of tapioca starch based PE with addition of glycerol (GLY) and palm oil based olein (PCO)

4.9 Tapioca starch based polyethylene film blowing with addition of 5% wt palm oil based olein

4.10 SEM micrographs of tapioca starch based polyethylene biofilms with 5 wt% palm oil based olein, (a) LDPE, and (b) LDPE/TS:90/10

4.11 SEM micrographs of tapioca starch based polyethylene biofilms with 5 wt% palm oil based olein, (a) LDPE/TS:80/20, (b) LDPE/TS:70/30, (c) LDPE/TS:60/40

4.12 SEM micrographs of tapioca starch based polyethylene biofilms with 20 wt% glycerol, (a) LDPE/TS:90/10, (b) LDPE/TS:80/20

4.13 SEM micrographs of tapioca starch based polyethylene biofilms with 20 wt% glycerol, (a) LDPE/TS:70/30, (b) LDPE/TS:60/40

5.1 Density values of tapioca starch-based polyethylene with various contents of starch

5.2 FTIR spectra for LDPE, tapioca starch and tapioca starch based polyethylene biofilms

5.3 Melt index of tapioca starch-based polyethylene with various starch contents

5.4 The SEM micrographs of (a) tapioca starch granules and (b) LDPE film

5.5 The SEM micrographs of (a) LDPE/TS:90/10 and (b) LDPE/TS:80/20 biofilms

5.6 The SEM micrographs of (a) LDPE/TS:70/30 and (b) LDPE/TS:60/40 biofilms
5.7 Surface microscopy images of biofilm (a) LDPE and (b) LDPE/TS:90/10
5.8 Surface microscopy images of biofilms (a) LDPE/TS:80/20, (b) LDPE/TS:70/30 and (c) LDPE/TS:60/40
5.9 Percentage transmittance of tapioca starch-based biofilms with different wavelengths
5.10 Illustrative images of tapioca starch based polyethylene biofilms with 30 wt% starch content in the blends (a) blown film extrusion sheet and (b) biofilms as food packaging.
5.11 Water absorption of LDPE and all tapioca starch based polyethylene biofilms.
5.12 Water absorption of biofilm with 30 wt% starch content with addition of 5, 10, 15 and 20 wt% of PE-g-MA as compatibilizer
5.13 Moisture content of LDPE and tapioca starch-based polyethylene biofilms with various starch contents
5.14 Moisture content of tapioca starch based polyethylene biofilms with various contents of PE-g-MA as compatibilizers
5.15 Migration values for tapioca starch based biofilms with different food simulants
5.16 DSC thermograms of LDPE film
5.17 DSC thermograms of (a) LDPE/TS:90/10 and (b) LDPE/TS:80/20
5.18 DSC thermograms of (a) LDPE/TS:70/30 and (b) LDPE/TS:60/40
5.19 DSC thermograms of LDPE and tapioca starch based polyethylene with 30% starch contents in blends with addition of PE-g-MA as compatibilizers (a) 5 wt% and (b) 10 wt%
5.20 DSC thermograms of LDPE and tapioca starch based
polyethylene with 30% starch contents in blends with addition of PE-g-MA as compatibilizers (a) 15 wt% and (b) 20 wt%

5.21 The thermogravimetric (TGA) curves of LDPE, tapioca starch and tapioca starch based polyethylene blends

5.22 The DTG curves of LDPE, tapioca starch, and tapioca starch-based polyethylene blends

5.23 Tear strength of LDPE and tapioca starch based biofilms with various contents of tapioca starch both in machine direction (MD) and transverse direction (TD).

5.24 Tear strength of tapioca starch based biofilms with 30% wt of starch content with addition of various content of PE-g-MA both in machine direction (MD) and transverse direction (TD)

5.25 Tensile strength of LDPE and tapioca starch based biofilms

5.26 Elongation at break of LDPE and tapioca starch based biofilms

5.27 Tensile strength of tapioca starch based polyethylene blends with various content of PE-g-MA as compatibilizer

5.28 Elongation of tapioca starch based starch based polyethylene blends with various content of PE-g-MA as compatibilizer

5.29 Proposed reaction of MA group from PE-g-MA with starch hydroxyl; hydrogen bonding of PE-g-MA and starch

5.30 Effect of varying starch contents on the percentage of degradation

5.31 Fungal growth of (a) LDPE film and (b) LDPE/TS:90/10 biofilm
5.32 Fungal growth of (a) LDPE/TS:90/10 biofilm and (b) LDPE/TS:90/10 biofilm

5.33 Evidence of fungi growth on surface of biofilm under microscopy magnification of 200X (a) LDPE film and (b) tapioca starch based polyethylene biofilm

5.34 Percentage of weight loss of tapioca starch biofilm after 28 days of analysis.

5.35 (a) and (b) The LDPE film and tapioca starch based biofilms exposed on a stationary rack for outdoor weathering test

5.36 Visual observation on (a) LDPE film and (b) LDPE/TS:90/10 biofilm before exposure and after exposure to outdoor weathering for 90 days

5.37 Visual observation on (a) LDPE/TS:80/20 film and (b) LDPE/TS:70/30 biofilm before exposure and after exposure to outdoor weathering for 90 days

5.38 Visual observation on LDPE/TS:60/40 biofilm before exposure and after exposure to outdoor weathering for 90 days

5.39 Weight loss of tapioca starch based biofilm after 90 days exposure to outdoor weathering

5.40 Surface microscopy image of LDPE film (a) before and (b) after exposure to outdoor weathering at magnification of 200x.

5.41 Surface microscopy image of LDPE/TS:90/10 biofilm (a) before and (b) after exposure to outdoor weathering at magnification of 200x.

5.42 Surface microscopy image of LDPE/TS:80/20 biofilm (a) before and (b) after exposure to outdoor weathering at magnification of 200x.

5.43 Surface microscopy image of LDPE/TS:70/30 biofilm (a) before and (b) after exposure to outdoor weathering at magnification of 200x.
5.44 Surface microscopy image of LDPE/TS:60/40 biofilm (a) before and (b) after exposure to outdoor weathering at magnification of 200x.

5.45 The FT-IR spectra of tapioca starch based polyethylene biofilm before and after exposure to outdoor weathering

5.46 Tensile strength of tapioca starch-based polyethylene biofilms before and after exposure to natural weathering were recorded after 90 days of exposure

5.47 Elongation of tapioca starch-based polyethylene biofilms before and after exposure to natural weathering were recorded after 90 days of exposure

5.48 Visual observation of biofilms undergoing the soil burial analysis (a) LDPE, (b) LDPE/TS:90/10 and (c) LDPE/TS:80/20

5.49 Visual observation of LDPE/TS:60/40 biofilms undergoing the soil burial analysis

5.50 Schematic illustrations of surface erosion and bulk erosion

5.51 Weight losses of tapioca starch based biofilm during soil burial analysis with various starch content

5.52 Micrographs of LDPE/TS:90/10 biofilm (a) before and (b) after soil burial analysis

5.53 Micrographs of LDPE/TS:80/20 biofilm (a) before and (b) after soil burial analysis

5.54 Micrographs of LDPE/TS:70/30 biofilm (a) before and (b) after soil burial analysis

5.55 Micrographs of LDPE/TS:60/40 biofilm (a) before and (b) after soil burial analysis

5.56 Suggested microorganisms and general degradation of biopolymer (Peanasky et al., 1991)

5.57 *E. coli* activities on LDPE/TS:70/30 biofilms (a) without antimicrobial agent and (b) with
antimicrobial agent.
LIST OF SYMBOLS

μm - Micrometer
\(d \) - Diameter
\(w \) - Weight fraction
\(x \) - Average thickness
\(P_a \) - Partial pressure
\(\alpha \)-Amylase - Alpha amylase
\(^\circ C \) - Celsius
\(^\circ F \) - Fahrenheit
\(T_g \) - Glass transition temperature
\(T_c \) - Crystallization temperature
\(T_m \) - Melting temperature
\(M \) - Mass of residue
\(A \) - Total surface area
\(g \)-force - Gram force
\(\text{nm} \) - Nanometer
\(\text{mg} \) - Milligram
\(\text{cm} \) - Centimeter
\(\text{dm} \) - Decimeter
\(\text{H}_2\text{O} \) - Water
\(\text{NH}_3 \) - Ammonia
\(\text{NaOH} \) - Sodium hydroxide
\(\text{CH}_4 \) - Methane
LIST OF ABBREVIATIONS

PE - Polyethylene
TPS - Thermoplastic starch
PHA - Polyhydroxylalkanoates
PHB - Polyhydroxybutyrate
PHBV - Polyhydroxybutyrate-co-hydroxyvalerate
PLA - Polylactic acid
PCL - Polycaprolactones
PEA - Polyesteramides
PBSA - Aliphatic-co-polyesters
PBAT - Aromatic-co-polyesters
PGA - Polyglycolic acid
PVOH - Poly(vinyl alcohol)
PVAC - Poly(vinyl acetate)
PEK - Polyethylketone
EAA - Poly(ethylene-co-acrylic acid)
PE-g-MA - Polyethylene-grafted-Maleic anhydride
SEM - Scanning electron micrograph
DSC - Differential scanning calorimetry
MB - Manganese stearate
STAc - Starch acetate
EVA - Ethylene vinyl acetate
KBr - Potassium bromide
WVTR - Water vapour transmission rate
TGA - Thermogravimetry analysis
FTIR - Fourier transform infrared spectroscopy
MI - Melt index
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR</td>
<td>Blown-up ratio</td>
</tr>
<tr>
<td>LDPE/TS</td>
<td>Tapioca starch-based polyethylene</td>
</tr>
<tr>
<td>MD</td>
<td>Machine direction</td>
</tr>
<tr>
<td>TD</td>
<td>Transverse direction</td>
</tr>
<tr>
<td>STMP</td>
<td>Sodium trimetaphosphate</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Plastics are man-made long chain polymeric molecules. Plastics have become an essential part of our everyday life. More than half a century ago, synthetic polymers began to be used as a substitute for natural materials in almost every application (Shah et al., 2008). The plastics industry has developed remarkably since the invention of various methods of production for synthetic polymers from petrochemical sources, which produce plastics that are valuable and desirable due to special characteristics. Plastics have been approved for use in a range of types and forms, including natural polymers, modified natural polymers, thermosetting plastics, thermoplastics, and more recently, biodegradable plastics (Andrady and Neal, 2009). Plastics have a range of unique properties used at a wide range of temperatures, are chemical and light resistant and durable, and can be easily processed and moulded at a lower cost relative to other materials, such as steel, glass, and paper.

Today plastics are almost completely derived from petrochemicals produced from fossil oil and gas, referred to as synthetic plastics. Synthetic plastics are extensively used in packaging food products, pharmaceuticals, cosmetics, detergents, chemicals, and in agricultural mulching film. This projected growth is mainly associated with an increasing public demand for plastics in many applications. Although hundreds of plastic materials are commercially available, only a few of these qualify as commodity thermoplastics in terms of their high volume and
relatively low price. This group of plastics consists of high-density polyethylene (HDPE), low-density polyethylene (LDPE), poly(vinyl chloride) (PVC), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) (Siracusa et al., 2008). Their partial consumptions on a global basis are displayed in Figure 1.1.

![Pie chart showing plastic demand by resin types in 2010](image)

Figure 1.1 World plastic materials demand by resin types in 2010 (Plastics, 2011)

Table 1.1 shows that thermoplastics are extensively used in packaging and fabrication of bottles and films. There are approximately 49.5 million tons of synthetic plastics produced worldwide. Polyethylene represents 29% of the produced synthetic plastics. Half of that quantity, which is 25 million tons, will accumulate in nature and the majority is from the packaging sector. Synthetic plastics that are petrochemical-based, such as polyolefin, polyesters, and polyamides have been increasingly used as packaging materials. These types of plastics were overused in industries due to their availability in large quantities at a low cost and their favourable functionality characteristics, such as excellent tear and tensile strength, good heat-seal ability, and excellent barrier properties against oxygen and aroma compounds (Tharanathan, 2003).

However, these plastics are made of petroleum-based materials that are not easily and readily biodegradable. Synthetic plastics such as polypropylene (PP) and
polyethylene (PE) have a very low water vapour transmission rate rendering these materials completely non-biodegradable. Therefore, these materials contribute to environmental pollution, which causes severe ecological problems. Polyolefins are not degraded by microorganisms in the environment, which prolongs their lifetime to hundreds of years. In order to overcome these problems, there has been an increased enthusiasm among researchers in enhancing the biodegradability of synthetic plastics by blending them with low-cost natural biopolymers.

Table 1.1: Main plastics and their applications (Zheng and Yanful, 2005)

<table>
<thead>
<tr>
<th>Plastics</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low density polyethylene (LDPE), linear low density polyethylene (LLDPE) Poly(vinyl chloride) (PVC)</td>
<td>Films, bags and packaging</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET), PVC, high density polyethylene (HDPE)</td>
<td>Bottles, tubes, pipes, insulation moulding</td>
</tr>
<tr>
<td>Polystyrene (PS) polypropylene (PP), PVC</td>
<td>Tanks, jugs, containers</td>
</tr>
<tr>
<td>Polyurethane (PUR)</td>
<td>Coating, insulation, paints, packing</td>
</tr>
</tbody>
</table>

Most lightweight synthetic plastic is used for a one-time utilization for packaging and is discontinued when its useful life is over, remaining in garbage deposits and landfills for decades (Volke-Sepulveda *et al.*, 1999). These materials are inactive and resistant to the existence of microorganisms, leading to a long duration of shelf life (Arvanitoyannis *et al.*, 1998). Even though there have been a lot of new technologies and methods for recycling and reducing plastics waste, the amount of accumulation of waste still increases every year. Replacing plastics with other packaging materials, such as paper, glass, and metals is a less attractive option due to economic factors and the material’s deficiencies as compared to plastic materials. Recycling products also has its limitations, such as the high cost of operation; moreover, recycling technology is still in development. Many packaging materials
are not suitable for recycling because of contamination; the cleaning that is necessary prior to recycling can be very expensive.

Biodegradable plastics are plastics that can permit a degradation process. They are defined as plastics with comparable properties to synthetic plastics, but they can be decomposed after disposal in the environment through the activity of microorganisms (Tharanathan, 2003; Raghavan, 1995). Biodegradable plastics can be particularized as plastics wastes that can be processed using thermoplastic processing methods and machineries and can be decomposed when disposed in landfills through the activity of microbes and fungi to produce CO₂ and H₂O (Tharanathan, 2003), microbial cellular components, and miscellaneous microorganism by-products (Raghavan, 1995). Microorganisms break down the polymer chains, molecules and consume the material through several methods, such as microbial degradation, thermo-degradation, chemical degradation, and photo-degradation. Biodegradable plastics provide an alternative option for reducing municipal solid waste through biological recycling in the ecosystem. They can replace conventional synthetic plastic products (Raghavan, 1995). In addition, it is enticing that these biodegradable polymers originate primarily from agricultural or other renewable resources for a sustainable environment.

Polyethylene (PE) is one of the mass-produced non-degradable polymers. Various types of PE are used in many applications including agricultural and packaging films. Among the polyolefins, low-density polyethylene (LDPE) is more susceptible to the attack of microorganisms in certain conditions (Ohtake et al., 1998). Biodegradable polymers are considerably more expensive than conventional non-biodegradable polymers. New mechanisms for production and processing of synthetic polymers and natural polymers from agriculture will be interesting alternatives to reduce the cost of biodegradable polymers in the market. Blending of low-density polyethylene with a low cost and abundant natural biopolymer such as starch will enhance the biodegradability of this material. Incorporating starch will expedite the attack of microorganisms on starch-based LDPE products. Starch is a good choice because it is an abundant and low cost material in the market, which will reduce the cost of production of a starch-based polyethylene biodegradable polymer.
Research on biodegradable plastics based on starch began in the 1970s and continues today at various laboratories all over the world. Starch satisfies the requirements of adequate thermal stability with minimum interference of melt properties and negligible disturbance of product quality; it has been considered a material candidate in certain thermoplastic applications (Shah et al., 1995; Mani and Bhattacharya, 1998). The excellent physical properties of polyolefin make them suitable as packaging and agricultural film materials. Polyethylene (PE) blended with starch is already a potential candidate to replace non-degradable thermoplastics in the areas of packaging and agricultural mulching films. Starch is a hydrophilic polymer, mainly due to the hydroxyls contained in the molecules; in contrast, polyethylene is a hydrophobic material. The blends of starch and polyethylene are immiscible because of this opposite character of the two polymers.

Blending starch with synthetic polymer, such as polyethylene with the addition of glycerol as a plasticizer will improve its immiscibility and also enhance the biodegradability of the blends. Low molecular weight plastic additives like plasticizers and fillers are ordinarily susceptible to microbial attack. This leads to physical embrittlement and fragmentation of the polymer resulting in a porous and mechanically weakened polymer (Sastry et al., 1998). The microbes release nonspecific oxidative enzymes that could attack starch-based polyethylene polymers. The addition of palm oil based olein can also function as a plasticizer to blend starch and LDPE, and it can reduce the cost of production. Films of starch-based polyethylene with and without vegetable oils as plasticizers were prepared using a blow film extrusion machine. The degradation of the films increased under thermo-oxidative treatment, ultraviolet light exposure, high temperature, high humidity, and natural ambience (soil burial). It can also be seen that vegetable oil as an additive has a dual role: as a plasticizer it improves the biofilm’s quality, and as a pro-oxidant it accelerates degradation of the biofilms (Sastry et al., 1998).

Starches are polymers that naturally occur in a variety of botanical sources and are a widely available renewable resource that can be obtained from residuals of harvesting and raw material industrialization. Tapioca starch is a promising starch that can be used in the development of biodegradable polymers. The incorporation of starch, as a naturally biodegradable polymer with synthetic polymers such as
polyethylene, will produce a biodegradable film with excellent mechanical properties that can be easily processed through conventional polymer processing techniques.

The addition of plasticizing agents, mainly glycols, will enhance the compatibility of starch-based polyethylene blend systems and will also typically increase their susceptibility to microbial attack (Mali et al., 2005). Plasticizers also reduce the brittleness of the film by interfering with hydrogen bonding between the lipid and hydrocolloid molecules, and by improving film flexibility due to their ability to weaken internal hydrogen bonding between polymer molecule chains while increasing molecular volume (Tharanathan, 2003; Mali et al., 2005).

1.2 Problem Statement

The use of plastic packaging is widespread and due to this there is a growing interest in the use of biodegradable polymers that can help minimize the environmental impacts of plastics. Lack of degradability of existing synthetic plastic materials and the shortage of landfill sites, as well as growing water and land pollution problems, have led to concerns about plastics (Shah et al., 2008). Synthetic plastics are used in packaging products like food, pharmaceuticals, cosmetics, detergents, chemicals, and agricultural mulching film. Approximately 30% of plastics are used worldwide for packaging applications. Most are short-duration applications where the plastic packaging is used one time before being discarded and disposed to a landfill. Increasing public concern over dwindling landfill space and the accumulation of surface litter has promoted the development of degradable plastics. Biodegradable plastics offer one solution to managing packaging waste.

In the last 20 to 30 years there has been an increased interest in the production and use of fully biodegradable polymers with the main goal being replacement of non-biodegradable plastics commercially, especially those used in packaging materials. However, although these polymers possess the required properties and can be used for the production of blown film, they are not widely used due to their high cost. Commercially available biodegradable polymers are estimated
to be four to six times more expensive than polyethylene and polypropylene, which are the most widely used plastics for packaging applications. Consequently, many researchers have focused on studies of biodegradable polymers based on the utilization of natural and abundant polymers such as starch, cellulose, lignin, and chitin. These materials are very cheap, abundant, and produced from renewable and natural resources (Bikiaris and Panayiotou, 1998). However, due to their deficiency in mechanical and thermal properties, these materials are not suitable for most uses in the plastics industry. Blending natural polymer with synthetic polymer will improve the mechanical properties of this material.

The incorporation of starch in polyethylene blends will increase the biodegradability of the biofilm, and at the same time enhance the mechanical properties of this material making this material suitable for the packaging industry. Many researchers have concentrated on blending corn, wheat, rice, and whey starches with low-density polyethylene to produce biodegradable polymers. Tapioca starch has been seen as potential natural polymer for the development of biodegradable polymers because of its fully biodegradable properties and low cost of production. Tapioca starch has been widely studied by many researchers in edible films and coatings used to protect food products (Flores et al., 2007; Fama et al., 2005).

The addition of starch to polyethylene results in a drastic decrease of its tensile strength and elongation at break (Willet, 1994). For processing starch, it is necessary to destruct starch granules under the gelatinization process, which involves high temperature and extensive shear stress conditions or the addition of plasticizers (Rodriguez-Gonzalez et al., 2004). This process results in a molten-like material called thermoplastic starch (TPS). TPS will behave like typical synthetic polymers that can be processed into various products by conventional polymer machinery processes such as extrusion, injection moulding, film blowing, compression moulding, and others.

To process starch, it is necessary to improve its process ability, which involves destroying the molecular order within the granules. The gelatinization process under shear stress will disrupt the granular structure of starch. The extrusion
process involves high shear and high-pressure conditions achieving gelatinization of the starch. During extrusion, starch granules will become progressively more mobile and eventually the crystalline region of the starch granule will melt. The starch would be expected to show the usual viscoelastic behaviour exhibited by thermoplastic melts (Liu et al., 2009). Plasticizers also usually have a large influence on the shear viscous properties of starch polymer melts. The addition of plasticizers to the blend would not only influence the granular transformation and macromolecular degradation during processing, which affects the viscosity, but also assists the movements between starch inter- and intra-molecular chains, which also reduces the viscosity.

The process of blown film extrusion can be used to produce biodegradable starch biofilm in a mass quantity production. During the extrusion, the disruption of starch granules yields a homogenous and fluid material. This material, when expanded by blowing into a tubular matrix form, produces rigid films. The addition of suitable plasticizers increases the flexibility of the films because its presence among the starch chains reduces their intermolecular interaction by separating them, which increases their mobility (Mali et al., 2005). Many other low molecular weight substances have been utilized as plasticizers for starch polyolefin blends. Palm oil based olein is a vegetable oil-based plasticizer. Adding palm oil based olein weakens the interaction of starch molecules and improves the plasticization of starch.

Palm oil based olein as plasticizer lead to more homogeneous biocomposites, which may lead to better properties than those produced with commercial glycerol. A plasticizer is a small molecule of volatility, that when added to polymeric materials, modifies the three-dimensional organization, decreases attractive intermolecular forces, and increases free volumes and chain mobility (Swain et al., 2004). This plasticizer also contributed to a higher expandability during the blowing process. High melt tenacity would allow palm oil based plasticizer to produce thinner film and also lead to higher production rates of biofilms produced by film blowing process. In this study, tapioca starch-based polyethylene biofilms with various starch content, were prepared with added palm oil based olein plasticizer and compatibilizer by a one-step twin-screw extrusion process. The biocomposites undergo the film blowing process to produce biofilms with the addition of a compatibilizer to enhance
its mechanical properties and were incorporated with antimicrobial agent to establish its smart packaging characteristics.

1.3 Objectives of the Study

The main objective of this study is to develop biodegradable tapioca starch-based polyethylene biofilm with enhancing mechanical properties via the film blowing extrusion process. This objective is divided into multiple aims:

- To develop a tapioca starch-based polyethylene biofilm formulation with addition of glycerol and palm oil based oil as plasticizers and compatibilizer;
- To characterize and analyse the physico-mechanical and thermal properties of tapioca starch-based polyethylene biofilm,
- To analyse the barrier properties, morphology, and optical properties of tapioca starch-based biofilm,
- To investigate the biodegradability of tapioca starch-based biofilm,
- To enhance the properties of biofilm as an antimicrobial packaging material.

1.4 Scope of the Study

The scope of this study includes:

- Formulation development of tapioca starch-based polyethylene biocomposites with various starch contents ranging from 10 to 40 wt% using a one-step process. A gelatinization of tapioca starch under shear stress conditions and a compounding process using twin-screw extrusion process was used to produce biocomposites, followed by production of the biofilms via the film blowing extrusion process. The addition of glycerol and palm oil
based olein was used to study the effect of plasticizers on blends, ranged from 5 to 20 wt%. The effect of compatibilizers to enhance the blends’ immiscibility was investigated by the incorporation of polyethylene-grafted-maleic anhydride at various contents, from 5 to 20 wt%.

- The characterization of tapioca starch biofilms was evaluated using Fourier transformed infrared spectroscopy and density measurement. Thermal properties and thermal degradation of biofilms were examined by differential scanning calorimetry and thermogravimetry analysis. The melt flow index of biofilms was determined to show their process ability. Mechanical properties of the biofilms, such as tensile and tearing strength, were investigated using tensile test and the Elmendorf tearing test, respectively.

- Barrier properties of tapioca starch-based polyethylene biofilms, such as the percentage of water absorption, moisture, water vapour, and food compatibility to acidic, alcoholic, and aqueous food types were analysed using water and moisture content analysis, water vapour transmission rate analysis, and food stimulants compatibility analysis, respectively. Morphology of tapioca starch-based polyethylene blends and the optical properties of the biofilms were examined by scanning electron microscopy and an optical microscope; and transparency, gloss, and haze meters respectively.

- The biodegradability of tapioca starch-based polyethylene biofilm was investigated by microbial degradation and photo-degradation. Biofilms were exposed to an enzyme-containing environment to study the effect of α-amylase enzymatic hydrolysis on the starch content in the film. Microbial degradation of biofilms was evaluated by exposure of biofilms to a fungal environment and soil burial analysis. Photo-degradation of tapioca starch-based biofilms was examined by exposure to natural weathering.
• The antimicrobial properties of tapioca starch-based polyethylene for packaging were investigated by the addition of an antimicrobial agent to the blends and antimicrobial analysis.

1.5 **Significance of the Study**

Plastics are used in our daily lives in a number of applications, from building and constructions, automotive, electrical and electronics, agricultural mulching to the packaging films, bags and containers. Majority of plastics used are discarded after one-short application especially the packaging materials and disposed to the landfills. Most plastic films used in packaging and agricultural mulching are not biodegradable; and in fact extremely durable and inert to the microorganisms. The significance of this study is to develop a formulation of biodegradable film suitable for plastics packaging and agricultural mulching films.

In this study, suitable plasticizer was added eased the process-ability and enhanced the immiscibility of starch and polyethylene. This study also focused on the production of tapioca starch-based biofilms via film blowing processing. A good formulation of tapioca starch-based blending improved the melt strength and bubble stability of the film blowing process. Hence, smooth and continuous biofilms with constant thickness along the bubble formation were produced. The tapioca starch-based polyethylene can be processed and produced using conventional plastic processing machineries.

The physic-mechanical and thermal properties of the tapioca starch-based biofilms were also important to established excellent materials for plastics packaging, as an alternative to the current non-biodegradable plastics. The properties of the biofilms must be acceptable or at comparable as the conventional synthetic polymers. Besides the excellent mechanical properties, the tapioca starch-based films prepared in this study proved to be biodegradable. Furthermore, addition of antimicrobial agent has prepared this biofilms to be a better material for food packaging.
REFERENCES

Innovative Food Science and Emerging Technologies. 3. 113-126.

