PHYSICAL AND SPECTROSCOPIC CHARACTERISATION OF SAMARIIUM DOPED MAGNESIUM TELLURITE GLASS EMBEDDED SILVER NANOPARTICLES

NURULHUDA BINTI MOHAMMAD YUSOFF

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST 2015
To my beloved father (Mohammad Yusoff bin Ismail) and mother (Wan Pah binti Wan Mahmud),
to my dearest older sister (Fadilah binti Zaini),
to my valued sibling (Nurul Suhaila, Nurul Aini,
Mohammad Nasaruddin, Nurul Asmira,
Mohammad Nazrie, Nurul Nadia,
Mohammad Yusrie and Mohammad Iman).
There is nothing in my life that makes me happier and cheerful than your love and care.
ACKNOWLEDGEMENTS

Alhamdulillah, all praise to ALLAH S.W.T, the Almighty, the All Merciful and the All Compassionate for giving me the strength, courage and patience to complete this project.

In preparing this thesis, I was in contact with academicians and researchers. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisor, Professor Dr. Md. Rahim Sahar for encouragement, guidance, critics and friendship. I am also very thankful to Assoc. Prof. Dr. Sib Krishna Ghoshal and Dr. Ramli for their guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Ministry of Education, Malaysia and Universiti Teknologi Malaysia (UTM) for funding my Ph.D. study. Lab assistance at Faculty of Science and Faculty of Mechanical, UTM, Universiti Sains Malaysia and Universiti Kebangsaan Malaysia also deserve special thanks for their assistance during the experiment.

I would like to show gratitude to my seniors, Dr. Raja Junaid Amjad, Dr. Reza Dousti, Dr. Asmahani, Dr. Fakhra Nawaz for the advice and helpful discussion contributing to my project. My fellow postgraduate students should also be recognised for their support, so my sincere appreciation extends to Siti Amlah, Ezza Syuhada, Puzi Anigrahawati, Amanina, Khamisah, Syarifah Faqshuhaizam, Siti Fatimah, Nur Aina Najihah, Siti Maisarah, Aina Mardhiah, Zahra Ashur and others who have provided assistance for my research project. Their views and tips are useful indeed. I am grateful to all my family members.
ABSTRACT

Three series of samarium doped magnesium tellurite glasses embedded with silver nanoparticles (Ag NPs) of composition (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl with 0 ≤ x ≤ 1.0 mol%, (89.6-x)TeO$_2$-10MgO-(x)Sm$_2$O$_3$-0.4AgCl with 0.2 ≤ x ≤ 1.2 mol% and 88.6TeO$_2$-10MgO-(x)Sm$_2$O$_3$-(1.4-x)AgCl with 0.2 ≤ x ≤ 1.0 mol% were prepared using melt quenching technique. It is found that the glass samples are yellowish in colour depending on their composition. The existence of broad hump in X-ray diffraction (XRD) pattern verifies the amorphous nature of glasses and the presence of silver nanoparticles with average diameter of 16.94 nm in the glass matrix is confirmed by transmission electron microscope (TEM) image. The glass density (ρ), molar volume (V_m) and ionic packing density (V_t) are in the range of (4.91-5.51) g cm$^{-3}$, (27.13-30.46) cm3 mol$^{-1}$ and (0.444-0.498), respectively. The samples exhibit glass stability up to 102°C which indicates the enhancement in ability of glass formation. The fourier transform infrared (FTIR) and Raman spectra reveal modification in network structures which is evident from the shifted vibrational wave-number of TeO$_4$ and TeO$_3$ structural units located around 600 cm$^{-1}$ and 700 cm$^{-1}$, respectively. Two surface plasmon resonance (SPR) peaks are detected at 550 nm for transverse oscillation and 578 nm for longitudinal oscillation from ultraviolet-visible (UV-Vis) absorption spectra. The optical energy band gap and Urbach energy are found in the range of (2.81-3.13) eV and (0.18-0.26) eV, respectively. Refractive index and electronic polarisability have also been calculated and found in the range of (2.35-2.45) and (6.68-7.51) Å3, respectively. The absorption measurement is complemented with determination of bonding characteristic of Sm$^{3+}$ and ligand via calculations of nephelauxetic ratio and Racah parameters. It is found that the addition of Sm$^{3+}$ and Ag0 alters the electron distribution which leads to the increase of the covalent bond between Sm and ligand. The glass samples are excited under 554 nm excitation wavelength and the emission spectra are found to consist of a single emission band corresponding to 4G$_{5/2}$→4H$_{11/2}$ transition. The intensity enhancement of such transition rises up to 3 times compare to glass without Ag NPs which is attributed to the local field effect and energy transfer from Ag0 to Sm$^{3+}$. The quality factor, Q is also obtained in the range of 19.20-24.25 which is due to the phonon loss during the non-radiative emission. Meanwhile, decay half-life is determined in the range of (1.4405-1.4459) µs depending on composition. The properties of this glass are very much dependent on the concentration of Sm$^{3+}$ and Ag NPs. This type of glass has a wide potential to be used as red laser medium and in various photonic applications.
ABSTRAK

Tiga siri kaca magnesium tellurite berdopkan samarium oksida yang tertanam zarah nano perak (Ag NPs) dengan komposisi \((89-x)\text{TeO}_2-10\text{MgO}-15\text{Sm}_2\text{O}_3-x\text{AgCl}\) \((0 \leq x \leq 1.0 \text{ mol\%})\), \((89.6-x)\text{TeO}_2-10\text{MgO}-(x)\text{Sm}_2\text{O}_3-0.4\text{AgCl}\) \((0.2 \leq x \leq 1.2 \text{ mol\%})\) dan \(88.6\text{TeO}_2-10\text{MgO}-(x)\text{Sm}_2\text{O}_3-(1.4-x)\text{AgCl}\) \((0.2 \leq x \leq 1.0 \text{ mol\%})\) disediakan melalui teknik pelindapan leburan. Kaca tersebut berwarna kekuningan bergantung kepada komposisinya. Kewujudan puncak yang lebar daripada corak pembelauan sinar-X (XRD) mengesahkan sifat amorfus kaca dan kehadiran zarah nano perak dengan purata diameter 16.94 nm di dalam matrik kaca disahkan melalui mikroskop elektron transmisi (TEM). Ketumpatan kaca \(\rho\), isipadu molar \(V_m\) dan ketumpatan padatan ioni \(V_t\) masing-masing dalam julat \((4.91-5.51) \text{ g cm}^{-3}\), \((27.13-30.46) \text{ cm}^3 \text{ mol}^{-1}\) dan \((0.444-0.498) \text{ Å}^3\). Sampel tersebut mempamerkan kestabilan kaca sehingga 102°C yang menunjukkan peningkatan dalam keupayaan membentuk kaca. Spektrum transformasi fourier infra merah (FTIR) dan Raman menunjukkan pengubahsuaian dalam struktur rangkaian dan dibuktikan melalui anjakan getaran nombor gelombang bagi struktur unit \text{TeO}_4 dan \text{TeO}_3 yang masing-masing terletak di sekitar 600 cm\(^{-1}\) dan 700 cm\(^{-1}\). Dua puncak resonans plasmon permukaan (SPR) dikesan pada 550 nm untuk ayunan melintang dan 578 nm untuk ayunan membujur daripada spektrum penyerapan ultra lembayung-boleh nampak (UV-Vis). Jurang tenaga optik dan tenaga Urbach ditemui mengalami peningkatan 3 kali ganda berbanding dengan kaca tanpa Ag NPs yang disebabkan oleh kesan medan setempat dan pemindahan tenaga dari \text{Ag}\(^0\) ke \text{Sm}\(^{3+}\). Faktor kualiti, \(Q\) juga diperoleh dalam julat 19.20-24.25 yang disebabkan oleh kehilangan fonon semasa berlakunya pancaran tak radiatif. Sementara itu, setengah hayat pereputan juga telah ditentukan dalam julat \((1.4405-1.4459) \mu\text{s}\). Kaca jenis ini mempunyai potensi yang luas untuk digunakan sebagai medium laser merah dan dalam pelbagai aplikasi fotonik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.0 Introduction 1
1.1 Problem Statement 4
1.2 Objectives 5
1.3 Scope of Study 6
1.4 Significant of Study 7
1.5 Chapter Organisation 8
2 LITERATURE REVIEW 9

2.0 Introduction 9
2.1 Background of Study 9
2.2 Plasmonic and Surface Plasmon Resonance (SPR) 13
2.3 Structural Morphology
 2.3.1 X-ray Diffraction 17
 2.3.2 Transmission Electron Microscopy and High Resolution Transmission Electron Microscopy 21
2.4 Physical Properties 26
 2.4.1 Density, Molar Volume, Ionic Packing Density 26
2.5 Thermal Parameter 28
 2.5.1 Differential Thermal Analysis 28
2.6 Structural Properties 31
 2.6.1 Fourier Transform Infrared Spectroscopy 31
 2.6.2 Raman Spectroscopy 36
2.7 UV-Visible Spectroscopy 39
 2.7.1 Absorption Coefficient 39
 2.7.2 Optical Energy Band Gap 41
 2.7.3 Urbach Energy 43
 2.7.4 Refractive Index and Electronic Polarisability 45
 2.7.5 Bonding Characteristic 48
 2.7.5.1 Nephelauxetic Ratio and Bonding Parameter 48
 2.8.5.2 Racah Parameter 50
2.8 Photoluminescence Spectroscopy 51
 2.8.1 Emission Process 51
 2.8.2 Energy Transfer 55
 2.8.3 Quality Factor 56
 2.8.4 PL Decay Lifetime 57
3 METHODOLOGY 60

3.0 Introduction 60
3.1 Glass Preparation 60
3.2 X-ray Diffraction (XRD) 64
3.3 Transmission Electron Microscopy (TEM) 65
3.4 Density 67
3.5 Energy Dispersive Analysis of X-ray (EDAX) 67
3.6 Differential Thermal Analysis (DTA) 68
3.7 Fourier Transform Infrared Spectroscopy (FTIR) 70
3.8 Raman Spectroscopy 71
3.9 UV-Vis Spectroscopy 72
3.10 Photoluminescence Spectroscopy 74

4 RESULT AND DISCUSSION 77

4.0 Introduction 77
4.1 Glass Formation 77
4.2 Structural Morphology 81
 4.2.1 X-ray Diffraction 81
 4.2.2 Transmission Electron Microscopy and High Resolution Transmission Electron Microscopy 83
 4.2.3 Energy Dispersive Analysis of X-ray 86
4.3 Physical Properties 87
 4.3.1 Density 87
 4.3.2 Molar Volume 91
 4.3.3 Ionic Packing Density 94
4.4 Thermal Parameter 97
 4.4.1 Differential Thermal Analysis 97
4.5 Structural properties 100
 4.5.1 Fourier Transform Infrared Spectroscopy 100
 4.5.2 Raman Spectroscopy 105
4.6 UV-Visible Spectroscopy 112
 4.6.1 Plasmon Absorption Spectrum 112
 4.6.2 Absorption Spectra 114
 4.6.3 Absorption Edge 116
 4.6.4 Optical Energy Band Gap 120
 4.6.5 Urbach Energy 126
 4.6.6 Refractive Index 131
 4.6.7 Electronic Polarisability 135
 4.6.8 Bonding Characteristics 138
 4.6.8.1 Nephelauxetic Ratio, β and Bonding Parameter, δ 138
 4.6.8.2 Racah Parameter 143
 4.7 Photoluminescence Spectroscopy 152

5 CONCLUSION AND RECOMMENDATION 164

 5.0 Introduction 164
 5.1 Conclusion 164
 5.2 Recommendation 167

REFERENCES 169

Appendices A-H 189-206
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The intense peak at 2θ of XRD pattern, hkl, lattice spacing and lattice constant of silver nanoparticles</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>The glass density, molar volume, ionic packing density of various tellurite glass systems</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>The glass transition temperature (T_g), Onset crystallisation temperature (T_x)/ crystallisation temperature (T_c), Thermal stability (T_x-T_g/T_c-T_g) and melting temperature (T_m) of various tellurite glass systems</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Type of molecular vibration in IR (IR active or IR inactive). The type of vibration for Raman spectroscopy is also inserted</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Peak position (in cm$^{-1}$) in FTIR spectra for various tellurite glass systems</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Raman band assignment (in cm$^{-1}$) of various tellurite glass systems</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>Indirect optical band gap of various tellurite glasses systems</td>
<td>43</td>
</tr>
</tbody>
</table>
2.8 Urbach energy, ΔE of various tellurite glass systems 45

2.9 Refractive index (n), electronic polarisability (α_m) and metallization parameter (M) of various samarium doped tellurite glass systems 48

2.10 The value of $\bar{\beta}$ and δ of various tellurite glass systems 50

2.11 Excitation and emission wavelength of Sm$^{3+}$ for different tellurite glass system 54

4.1 Nominal composition of magnesium tellurite glass system 79

4.2 Ratio of Sm$^{3+}$ to Ag NPs in Series 3 glass system 79

4.3 EDAX result of S1-S5 glass samples 86

4.4 Actual composition of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system 87

4.5 Density (ρ), Molar Volume (V_m), and Ionic Packing Density (V_t) of magnesium tellurite glass system. The calculation of ρ, V_m and V_t are shown in Appendix C 88

4.6 The value for T_g, T_x, T_x-T_g and T_m for magnesium tellurite glass system 98

4.7 IR absorption peak (in cm$^{-1}$) of magnesium tellurite glass system 105

4.8 Raman band assignment of magnesium tellurite glass system 107

4.9 The comparison of cut-off wavelength ($\lambda_{cut-off}$) between present glasses and other tellurite glasses systems 118
4.10 Indirect optical energy band gap of magnesium tellurite glass system 124

4.11 Urbach energy of magnesium tellurite glass system 128

4.12 Refractive index, molar refraction, electronic polarisability and metallization parameter of magnesium tellurite glass system 133

4.13 Average of nephelauxetic ratio, $\bar{\beta}$ and bonding parameter, δ of magnesium tellurite glass system 139

4.14 Comparison of average nephelauxetic ratio, $\bar{\beta}$ and bonding parameter, δ with different glasses hosts 143

4.15 Comparison of ligand field parameters and nephelauxetic function of magnesium tellurite glass system and other glasses hosts 145

4.16 Peak wavelength (λ_{em}) peak intensity (I_{em}), integrated intensity (I_i), full width at half maxima (FWHM) and decay half lifetime (τ) of magnesium tellurite glass system 155
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The TeO$_4$ tbp structural unit of tellurium oxide</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Model for the formation of metallic silver nanoparticles</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>The oscillation of electron conduction band of nanoparticles</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>SPR peak of nanoparticles for spherical shape</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>SPR peak at 522 nm for tellurite glass containing 1.0 mol% heat treated Ag NPs</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>SPR band for different concentration of AgCl nanoparticles</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>SPR peaks of Ag NPs in 0.5 mol% (A05H8) and 1.0 mol% (A10H8) Ag NPs in tellurite glass</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>The schematic of Bragg law</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>XRD pattern of Sm$^{3+}$ co-doped Yb$^{3+}$ in sodium tellurite glass showing a broad hump</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>XRD pattern of Ag NPs in Soda-lime glass matrix</td>
<td>20</td>
</tr>
</tbody>
</table>
2.10 XRD pattern of growth Ag NPs at different heat treatment time in tellurite glass

2.11 The black spot of TEM shows Ag NPs

2.12 Normal distribution (Bell curve shape) shows the average (mean) at the centre of the bell

2.13 (a) Aggregated and non-spherical Ag NPs (b) Gaussian distribution of Ag NPs

2.14 (a) Ag NPs image (b) Gaussian distribution (c) HRTEM image of lattice constant of Ag NPs

2.15 (a) TEM image of 58P2O5–40MgO–1.5AgCl–0.5Er2O3 Inset shows a selected area of electron diffraction pattern (SAED) of the glass. (b) Gaussian distribution with 37 nm average diameter size of Ag NPs (c) lattice spacing of Ag NPs at (200) plane detected by High Resolution Transmission Electron Microscope

2.16 (a) TEM image of Ag NPs in 74.5TeO2–25ZnO–0.5Eu2O3 with 0.3 mol% AgCl (b) Gaussian distribution with average diameter size is ~8nm (c) lattice spacing of (200) direction

2.17 Typical DTA curves of zinc tellurite glass

2.18 FTIR spectra of tellurite glass of Er3+ doped sodium tellurite glasses

2.19 Three lines of scattered light by a molecule. Stokes line appears more intense than anti-Stokes line

2.20 Polarisation of incident light of an isotropic molecule is scattered at an angle θ_s (scattered angle)
2.21 A typical Raman spectra of Er$^{3+}$ doped zinc tellurite glasses

2.22 Light absorption phenomenon in a sample with a thickness of d

2.23 Three regions of absorption coefficient versus photon energy

2.24 Tauc plot of indirect optical band gap ($\alpha h\nu$)$^{1/2}$ and direct optical band gap ($\alpha h\nu$)2 versus photon energy, $h\nu$ of TeO$_2$–TiO$_2$–Nd$_2$O$_3$–WO$_3$ glass system

2.25 Direct (E_{opt}^D) and indirect optical energy band gap (E_{opt}^I). Note that, direct gap occur at $k = 0$, while indirect gap occur at $k \neq 0$

2.26 Urbach tails of localized states in the band gap

2.27 Absorption and emission processes

2.28 Excitation and emission process in PL

2.29 Energy level of 1.0 mol% Sm$_2$O$_3$ doped Niobium Borotellurite glass at 401 nm excitation wavelength

2.30 Energy transfer from NPs to RE ion in (a) Down conversion emission (b) Up-conversion emission. R and NR are denoted as radiative and non-radiative, respectively

2.31 A schematic energy diagram of Sm$^{3+}$/Yb$^{3+}$: Ag tri-doped tellurite glass

2.32 Typical radiative decay curve of half-life

2.33 Decay profile of $^4G_{5/2} \rightarrow ^6H_{7/2}$ transition for Sm$^{3+}$ ion doped TZKC glass system
2.34 Decay curve of 1.0 mol% Sm$_2$O$_3$ doped TMZNB, TCZNB and TSZNB glass for 4G$_{5/2}$→6H$_{7/2}$ transition

3.1 Flow of sample preparation

3.2 The schematic diagram of sample preparation.
Note: the cooling rate after the furnace is switch off is arbitrary

3.3 Schematic diagram of X-ray diffractometer

3.4 Schematic diagram of transmission electron microscope showing the areas in which the electron is going through

3.5 EDAX schematic diagram

3.6 Schematic diagram of differential thermal analyser

3.7 Fourier Transform Infrared instrument setup

3.8 The setup of Raman spectrometer

3.9 A schematic diagram of UV-Vis spectroscopy

3.10 Schematic diagram of Photoluminescence experimental setup

4.1 Glass samples of (a) Series 1 (b) Series 2 (c) Series 3 and (d) glass without Sm$_2$O$_3$

4.2 Typical X-ray diffraction patterns of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system

4.3 Typical X-ray diffraction patterns of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system
4.4 Typical X-ray diffraction patterns of $88.6\text{TeO}_2-10\text{MgO-}$
xSm$_2$O$_3$-(1.4-x)AgCl glass system

4.5 (a) TEM image of Ag NPs in S3 (b) Gaussian Distribution
of Ag NPs particles size of S3

4.6 (a) Fast Fourier Transformation image of Ag NPs
(b) d-spacing of Ag NPs at (111) plane

4.7 A plot of density versus Ag NPs concentration

4.8 A plot of density versus Sm$_2$O$_3$ concentration

4.9 A plot of density versus Sm$^{3+}$: Ag NPs

4.10 Molar volume versus Ag NPs concentration

4.11 Molar volume versus Sm$_2$O$_3$ concentration

4.12 Molar volume versus Sm$^{3+}$: Ag NPs

4.13 Ionic packing density, V_t versus Ag NPs concentration

4.14 Ionic packing density, V_t versus Sm$_2$O$_3$ concentration

4.15 Ionic packing density, V_t versus Sm$^{3+}$: Ag NPs

4.16 A typical DTA curve for S1 of Series 1 glass system

4.17 Thermal parameter T_x, T_g and T_x-T_g versus Ag NPs
concentration

4.18 Thermal parameter T_x, T_g and T_x-T_g versus Sm$_2$O$_3$ concentration
4.19 Thermal parameter T_x, T_g and $T_x - T_g$ versus Sm^{3+}: Ag NPs

4.20 (a) IR spectra of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system
(b) TeO_4 tp group versus Ag NPs concentration

4.21 IR spectra of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system

4.22 IR spectra of 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl glass system

4.23 Raman spectra of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system

4.24 Raman spectra of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system

4.25 Raman spectra of 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl glass system

4.26 The wavenumber of TeO_4 tp and TeO_3 tp vibrations versus Ag NPs concentration

4.27 Intensity of Boson peak versus Ag NPs concentration

4.28 The wavenumber of TeO_4 tp and TeO_3 tp versus Sm$_2$O$_3$ concentration

4.29 The wavenumber of TeO_4 tp and TeO_3 tp versus Sm$^{3+}$: Ag NPs

4.30 The absorption spectrum of glass without Sm$^{3+}$ ion for S0.
There are two SPR bands, a transverse SPR located at 550 nm, and a longitudinal SPR located at 578 nm
4.31 The absorption spectra of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system

4.32 The absorption spectra of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system

4.33 The absorption spectra of 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl glass system

4.34 Cut-off wavelength, $\lambda_{cut-off}$ versus Ag NPs concentration

4.35 Cut-off wavelength, $\lambda_{cut-off}$ versus Sm$_2$O$_3$ concentration

4.36 Cut-off wavelength, $\lambda_{cut-off}$ versus Sm$^{3+}$:Ag NPs

4.37 Tauc plot of indirect optical energy band gap of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system

4.38 Tauc plot of indirect optical energy band gap of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system

4.39 Tauc plot of indirect optical energy band gap of 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl glass system

4.40 Indirect optical energy band gap, E_{opt}^I versus Ag NPs concentration

4.41 Indirect optical energy band gap, E_{opt}^I versus Sm$_2$O$_3$ concentration

4.42 Indirect optical energy band gap, E_{opt}^I versus Sm$^{3+}$:Ag NPs
4.43 \(\ln (\alpha) \) versus \(h\nu \) of \((89-x)\text{TeO}_2-10\text{MgO}-1\text{Sm}_2\text{O}_3-x\text{AgCl} \) glass system

4.44 \(\ln (\alpha) \) versus \(h\nu \) of \((89.6-x)\text{TeO}_2-10\text{MgO}-x\text{Sm}_2\text{O}_3-0.4\text{AgCl} \) glass system

4.45 \(\ln (\alpha) \) versus \(h\nu \) of \(88.6\text{TeO}_2-10\text{MgO}-x\text{Sm}_2\text{O}_3-(1.4-x)\text{AgCl} \) glass system

4.46 Urbach energy versus Ag NPs concentration

4.47 Urbach energy versus \(\text{Sm}_2\text{O}_3 \) concentration

4.48 Urbach energy versus \(\text{Sm}^{3+}: \text{Ag NPs} \)

4.49 Refractive index, \(n \) versus Ag NPs concentration

4.50 Refractive index, \(n \) versus \(\text{Sm}_2\text{O}_3 \) concentration

4.51 Refractive index, \(n \) versus \(\text{Sm}^{3+}: \text{Ag NPs} \)

4.52 Variation of electronic polarizability, \(\alpha_m \) versus Ag NPs concentration

4.53 Variation of electronic polarizability, \(\alpha_m \) versus \(\text{Sm}_2\text{O}_3 \) concentration

4.54 Variation of electronic polarizability, \(\alpha_m \) versus \(\text{Sm}^{3+}: \text{Ag NPs} \)

4.55 Bonding parameter, \(\delta \) versus Ag NPs concentration

4.56 Bonding parameter, \(\delta \) versus \(\text{Sm}_2\text{O}_3 \) concentration

4.57 Bonding parameter, \(\delta \) versus \(\text{Sm}^{3+}: \text{Ag NPs} \)
4.58 Plot of B and C Racah parameters versus Ag NPs concentration 146
4.59 Plot of Dq/B ratio versus Ag NPs concentration 146
4.60 Plot of nephelauxetic function, h versus Ag NPs concentration 147
4.61 Plot of B and C Racah parameters versus Sm$_2$O$_3$ concentration 148
4.62 Plot of Dq/B ratio versus Sm$_2$O$_3$ concentration 149
4.63 Plot of nephelauxetic function, h versus Sm$_2$O$_3$ concentration 149
4.64 Plot of B and C Racah parameters versus Sm$^{3+}$: Ag NPs 150
4.65 Plot of Dq/B ratio versus Sm$^{3+}$: Ag NPs 151
4.66 Plot of nephelauxetic function, h versus Sm$^{3+}$: Ag NPs 151
4.67 The visible down conversion luminescence spectra of (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl glass system 154
4.68 The visible down conversion luminescence spectra of (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl glass system 154
4.69 The visible down conversion luminescence spectra of 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl glass system 155
4.70 PL integrated intensity versus Ag NPs concentration 156
4.71 PL integrated intensity versus Sm$_2$O$_3$ concentration 156
4.72 PL integrated intensity versus Sm$^{3+}$: Ag NPs 157
4.73 Partial energy diagram of magnesium tellurite glass system 158
4.74 Plot of Quality factor versus Ag NPs concentration 159

4.75 Plot of Quality factor versus Sm$_2$O$_3$ concentration 159

4.76 Plot of Quality factor versus Sm$^{3+}$: Ag NPs 160

4.77 Normalised number of photons versus a decay time for S1 161

4.78 Decay half-life versus Ag NPs concentration 162

4.79 Decay half-life versus Sm$_2$O$_3$ concentration 162

4.80 Decay half-life versus Sm$^{3+}$: Ag NPs 163
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>arithmetic mean</td>
</tr>
<tr>
<td>(\rho)</td>
<td>glass density</td>
</tr>
<tr>
<td>(V_m)</td>
<td>molar volume</td>
</tr>
<tr>
<td>(V_t)</td>
<td>ionic packing density</td>
</tr>
<tr>
<td>(V_i)</td>
<td>packing density parameter</td>
</tr>
<tr>
<td>(T_g)</td>
<td>transition glass temperature</td>
</tr>
<tr>
<td>(T_c)</td>
<td>crystallisation temperature</td>
</tr>
<tr>
<td>(T_x)</td>
<td>onset crystallization temperature</td>
</tr>
<tr>
<td>(T_m)</td>
<td>melting temperature</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>thermal stability</td>
</tr>
<tr>
<td>(\nu)</td>
<td>vibrational frequency</td>
</tr>
<tr>
<td>(\mu)</td>
<td>reduced mass</td>
</tr>
<tr>
<td>(I)</td>
<td>intensity of transmitted light</td>
</tr>
<tr>
<td>(a)</td>
<td>absorption coefficient</td>
</tr>
<tr>
<td>(E_{opt})</td>
<td>optical energy band gap</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>Urbach energy</td>
</tr>
<tr>
<td>(h\nu)</td>
<td>photon energy</td>
</tr>
<tr>
<td>(n)</td>
<td>refractive index</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>F</td>
<td>field strength</td>
</tr>
<tr>
<td>R_m</td>
<td>molar refraction</td>
</tr>
<tr>
<td>M</td>
<td>metallization parameter</td>
</tr>
<tr>
<td>α_m</td>
<td>electronic polarisability</td>
</tr>
<tr>
<td>β</td>
<td>nephelauxetic ratio</td>
</tr>
<tr>
<td>δ</td>
<td>bonding parameter</td>
</tr>
<tr>
<td>$\bar{\beta}$</td>
<td>average nephelauxetic ratio</td>
</tr>
<tr>
<td>h</td>
<td>nephelauxetic function</td>
</tr>
<tr>
<td>k_{ion}</td>
<td>central metal ion</td>
</tr>
<tr>
<td>τ</td>
<td>half-life</td>
</tr>
<tr>
<td>Q</td>
<td>quality factor</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>TMO</td>
<td>transition metal oxide</td>
</tr>
<tr>
<td>tbp</td>
<td>trigonal bipyramidal</td>
</tr>
<tr>
<td>tp</td>
<td>trigonal pyramidal</td>
</tr>
<tr>
<td>Oeq</td>
<td>equatorial oxygens</td>
</tr>
<tr>
<td>Oax</td>
<td>axial oxygens</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>RE</td>
<td>Rare earth</td>
</tr>
<tr>
<td>BO</td>
<td>Bridging oxygens</td>
</tr>
<tr>
<td>NBO</td>
<td>Non-bridging oxygens</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface plasmon resonance</td>
</tr>
<tr>
<td>ET</td>
<td>Energy transfer</td>
</tr>
<tr>
<td>CCD</td>
<td>charge couple device</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Full width at half maxima</td>
<td>189</td>
</tr>
<tr>
<td>B</td>
<td>Batch calculation</td>
<td>190</td>
</tr>
<tr>
<td>C</td>
<td>Density, molar volume, ionic packing density</td>
<td>192</td>
</tr>
<tr>
<td>D</td>
<td>EDAX spectrum</td>
<td>196</td>
</tr>
<tr>
<td>E</td>
<td>Calculation of Racah parameter</td>
<td>199</td>
</tr>
<tr>
<td>F</td>
<td>Calculation of Quality factor</td>
<td>202</td>
</tr>
<tr>
<td>G</td>
<td>Plot of decay curve</td>
<td>203</td>
</tr>
<tr>
<td>H</td>
<td>List of publications</td>
<td>206</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Introduction

Glass can be defined as an amorphous solid which is stand for absences of long-range order or structureless solid. There is no regularity in the arrangement of its molecular constituent. Morey [1] defines glass as an inorganic substance in which its behaviour is analogous to the liquid state of that substance. According to American Society for Testing and Materials (ASTM), glass is defined as an inorganic product of fusion which has cooled to a rigid condition without crystallizing. Meanwhile, Secrist and Mackenzie [2] define a glass as a non-crystalline solid. The historical of glass definitions obviously refers and reflects to the evolution of glass development regarding to the technological interest and commercially important. Glasses are easily produced from a melt by rapid cooling to a sufficiently low temperature which is well known as melt quenching technique. The fast cooling rate generally in the order of 10^7 degrees per second may avoid the crystallisation to occur in the glassy phase. Of course, there are many other technique for preparing glass [3]. However, the melt quenching technique has been used in this study since it is the cheapest and the shortest time consuming. Glasses can be fabricated into a variety of shapes and sizes with an appropriate composition [4]. Glass features are essentially depending on its composition [5].
The number of materials to form glasses is rapidly increases [6]. Among the most motivated studies of glassy materials, tellurite based glasses draw much interest because of their unique properties such as high dielectric constant and excellent transmission in the visible as well as IR wavelength regions, good mechanical strength and chemical durability [7-10]. These glasses also possess higher refractive index which is approximately in the range of 2.0 to 2.5 [11-14] and their low melting temperature (about 800°C) contributes to the high possibility of stable glass forming using a conventional melt quenching method [10]. Although, pure tellurium oxide cannot form glass by itself but needs another element known as glass modifier such as alkali metal, alkaline earth metal oxide and transition metal oxide (TMO) to improve the network connectivity then produce a stable tellurite glass [15-16] with increasing non-bridging oxygen [15]. Thus, reduce the rigidity of TeO₂ structure and easily produce disorder structure. TeO₂ glassy and crystalline states are built by co-ordination of Te⁴⁺ ions in TeO₄ groups as trigonal bipyramidal (tbp) form with bridging oxygen [17]. In TeO₄ tbp linkage, two oxygen atoms are located in the axial site, while the other two and the lone electron pair of tellurium are located in the three equatorial sites. Kim [18] acknowledged that the equatorial Te-O bonds are slightly shorter than the axial bonds. Damas et al. [19] reported that the two equatorial oxygens (Oₑq) possessed a distance of 1.9Å from the Te atom, while the two axial oxygens (Oₐx) possesses a distance of 2.1Å from Te atom. Trigonal bipyramids are linked by each other by sharing their vertices which form a continuous three-dimensional structure [20] as shown in Figure 1.1. The basic structure of TeO₂ glass network often changes from TeO₄ to TeO₃⁺₁ and/or TeO₃ in the presence of network modifier. The substitution of network modifier such as MgO and ZnO would produce the stable tellurite glass [21-22]. The addition of such modifiers would modify and increase non-bridging oxygen, consequently open up the glass structure. In this case, the Te-O-Te linkages in TeO₄ will break into TeO₃⁺₁ or TeO₃ structural unit. In addition, it is reported that the alkaline earth metals are good network modifiers for tellurite glass [23-24].
Te-O bonds can also be easily broken and accommodate heavy metal oxides or rare earth (RE) precisely called as dopant. Nelson et al. [25] have proposed two important effects of dopant ions in terms of their local environment. Firstly, each of the dopant ions can occupy an individual site which is determined by the configuration of the structural unit in the melt. Secondly, dopant can modify the spatial geometry of the nearby glass network to outfit their own bonding requirement. Moreover, dopants can also act as network modifiers and thus promote the formation of high number of non-bridging oxygen (NBO) [26]. TeO₂ based glass is good for hosting rare earth ion since they provide low phonon energy (~750 nm), which minimizes non-radiative losses [27-28]. RE doped glass has long held tradition of facilitating lasing character inside the glass matrix. Samarium is one of the important active ion in rare earth family which exhibits strong orange-red luminescence in the visible region and very useful in high density optical storage, under water communication, colour displays and visible solid state lasers. The luminescence properties either down or up conversion phenomena has widely been

Figure 1.1: The TeO₄ tbp structural unit of tellurium oxide. The distances of Te-O bond are also shown [19].
studied in various based glass. These studies show that the emission intensities are strongly dependent of Sm$^{3+}$ concentration and glass composition [29].

It is worth to notice that RE doped glasses may exhibit some unwanted effects such as concentration quenching due to the energy-transfer to neighbouring ions. So in order to enhance the luminescence efficiency and remove this drawback, several methods can be adopted. The embedding of metallic nanoparticles (NPs) inside the glass host thus changing the environment felt by the RE ions is introduced a successful strategy [30-34]. Recently, Sm$^{3+}$ ion is verified as a dopant while Au or Ag NPs are demonstrated as stimulating agents for the enhancements of absorption and emission properties [35]. The metallic NPs assisted strong modifications in the rare earth transition probabilities caused by local field effect and energy transfer are easily detected from emission measurements. The composition, shape and size of NPs play significant roles towards their interaction with external radiation [36].

1.1 Problem Statement

The nano era revolution demands the synthesis of new nanostructured materials, if possible by a simple technique but with remarkable properties and versatile applications [37]. Previous study of nanoglass has been focused on embedding of metallic nanoparticles in glass containing rare earth ions only [36, 38-41]. In order to pursue this area, a well-designed new glass composition should be developed and presented. Rare doped tellurite glass embedded nanoparticles has been reported to improve luminescence intensity due to energy transfer and local field effect [36, 38-41]. The enhancement of luminescence intensity and the avoidance of quenching effect is a challenge effort. Up to date, most of study focused on the embedment of Au NPs in Er$^{3+}$/Yb$^{3+}$ co-doped tellurite glass [42], Er$^{3+}$ doped tellurite glass [43], meanwhile the embedment of Ag NPs on Er$^{3+}$ doped tellurite glass [40], Dy$^{3+}$ doped tellurite glass [41], Sm$^{3+}$:Yb$^{3+}$ co-doped tellurite glass [37]. In sequence,
the embedment of Ag NPs with an optimum concentration into tellurite glass containing single rare earth especially Sm$^{3+}$ is important to be emphasised. Additionally, since there is a lack of report on these glasses, it is of particular important to study these glasses in order to give more information on the influence of Ag NPs and Sm$^{3+}$ ion on the glass. It is therefore, the aim of this work to characterise the glass by means of their physical, thermal, structural, absorption features and the quality of the emission intensity.

1.2 Objectives

In order to solve the problem as stated in Section 1.1, several objectives have been outlined as follows,

1) To prepare glass samples containing Ag NPs and Sm$^{3+}$ ion by melt quenching technique in three glass series of composition,

 a. Series 1: (89-x)TeO$_2$-10MgO-1Sm$_2$O$_3$-xAgCl, where 0≤x≤1.0 in mol%
 b. Series 2: (89.6-x)TeO$_2$-10MgO-xSm$_2$O$_3$-0.4AgCl where 0.2≤x≤1.2 in mol%
 c. Series 3: 88.6TeO$_2$-10MgO-xSm$_2$O$_3$-(1.4-x)AgCl where 0.2≤x≤1.0 in mol%.

2) To determine the influence of substituted Ag NPs and Sm$^{3+}$ ion in the glass on physical and thermal properties by calculating density, molar volume, ionic packing density and thermal parameters, respectively.
3) To investigate the role of Ag NPs and Sm$^{3+}$ ion on structural properties of the glass by measuring the change of band position in Infrared and Raman spectroscopy.

4) To investigate the role of Ag NPs and Sm$^{3+}$ ion on the absorption features of the glass by measuring optical energy band gap, Urbach energy, refractive index, and electronic polarizability up to bonding parameter accomplished from UV-Visible spectroscopy.

5) To explore the effect of Ag NPs and Sm$^{3+}$ ion on luminescence enhancement or quenching effect, spectroscopic quality factor and decay half lifetime of the glass accomplished from Photoluminescence Spectroscopy.

1.3 Scope of Study

This study attempted to identify the characteristic of bulk glass samples in three different compositions prepared by a conventional melt quenching technique. The glass densities are measured by Archimedes method since the glass samples have an irregular shape. The measured densities are very useful to determine the molar volume and ionic packing density. Thermal parameters such as glass transition temperature (T_g), onset crystallisation temperature (T_x) and melting temperature (T_m) are also determined by thermogram curve obtained from Differential Thermal Analyser (DTA). In term of structural modification, the research will focus on the change of band position in Infrared spectra and Raman spectra obtained from IR spectrometer and Raman spectrometer, respectively. In this respect, the discussion will only be focus on the change of wavenumber for TeO$_4$ trigonal bipyramidal, TeO$_{3+1}$ tetrahedral and TeO$_3$ trigonal pyramidal. Meanwhile, the study on the absorption feature obtained from UV-Vis spectrophotometer will covers optical
energy band gap, Urbach energy, refractive index and electronic polarizability up to calculation of Racah parameters of bonding characteristic only. Then the enhancement factor, quality factor and decay lifetime will be accomplished from Photoluminescence spectrometer.

1.4 Significant of Study

Study of metallic silver nanoparticles substituted at TeO$_2$ host site provides useful information on the advancement of the glass knowledge. By knowing the amplitude of enhancement factor of luminescence characteristic, the effectiveness of Ag NPs will become clearer. This study also will contribute to a better understanding on bonding and structural characteristic in order to get an optimum amount of Ag NPs which could explain the enhancement phenomena in luminescence. Furthermore, the fundamental phenomenon on the optical characteristic is no exception to be discussed in this study. According to this, the relationship between optical characteristic, glass structural modification and luminescence enhancement can be well explained. This research is very important in view that the required level of luminescence intensity of samarium ion for multipurpose of usage and very significant in the development of nanoscience. Moreover, the optimize method for controlling the Ag NPs and Sm$^{3+}$ ions in improving the structural and optical characteristics of magnesium tellurite glasses may constitute a basis for their large scale synthesis useful for sundry of applications.
1.5 Thesis organisation

This thesis is made up by five main chapters namely introduction, literature review, methodology, results and discussions, and conclusion and recommendation. In the Chapter 1 (Introduction), a briefly explanation about tellurite glass, problem statement, objective, scope of study, significant of study and thesis organisation are provided. In Chapter 2 (Literature review), the basic theoretical of physical, thermal, structural, absorption and luminescence related to the previous research works are described. In Chapter 3 (Methodology), the glass preparation, method of measurement for each characterisation and principle work of each instrument as well as the characterisation framework are provided. In Chapter 4 (Results and Discussions), the obtained data are analysed by plotting graphs and presenting in table. The analysed data well discussed by comparing to the previous results in past research works. In Chapter 5 (Conclusion and Recommendation), the finding are concluded and summarised. Some recommendations for future works toward the prepared glass sample are listed.
REFERENCES

[142] Carnall, W. T., Fields, P. R., Rajnak, K. (1968). Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr$^{3+}$, Nd$^{3+}$, Pm$^{3+}$, Sm$^{3+}$, Dy$^{3+}$, Ho$^{3+}$, Er$^{3+}$, and Tm$^{3+}$. The Journal of Chemical Physics. 49 (10): 4424

[196] Mattarelli, M., Chiappini, A., Montagna, M., Martucci, A., Ribaudo, A., Guglielmi, M., Ferrari, M., Chiasera, A. (2005). Optical spectroscopy of TeO\textsubscript{2}-GeO\textsubscript{2} glasses activated with Er3+ and Tm3+ ions. *Journal of Non-Crystalline Solids*. 351: 1759-1763

[199] El-Hagary, M., Emam-Ismail, M., Shaaban, E. R., Shaltout, I. (2009). Optical Properties of Glasses (TeO\textsubscript{2}-GeO\textsubscript{2}-K\textsubscript{2}O) Thin Films co-doped with Rare Earth Oxides Sm\textsubscript{2}O\textsubscript{3}/Yb\textsubscript{2}O\textsubscript{3}. *Journal of Alloys and Compounds*. 485: 519-523

Seshadri, M., Barbosa, L.C., Cordieiro, C.M.B., Radha, M., Sigoli, F.A., Ratnakaram, Y.C. (2015). Study of Optical Absorption, Visible Emission and NIR-Vis Luminescence Spectra of Tm$^{3+}$/Yb$^{3+}$, Ho$^{3+}$/Yb$^{3+}$ and Tm$^{3+}$/Ho$^{3+}$/Yb$^{3+}$ doped tellurite Glasses. Journal of Luminescence. 166: 8 - 16