THEORETICAL INVESTIGATION OF FULLERENE NANOCAGE CAPACITY FOR HYDROGEN STORAGE

ALIREZA ZEINALINEZHAD

A thesis submitted in fulfilment of the requirements for the award of the degree of
Doctor of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

NOVEMBER 2014
Dedicated to my beloved family
ACKNOWLEDGEMENT

I heartily express my gratefulness to Allah s.w.t. for His blessing and strength during the completion of this research.

My sincere thanks go to my supervisor Associate Professor Dr. Riadh Sahnoun for his guidance, continuous motivation, constant advice, encouragement and support from the beginning to the completion of my studies. Furthermore, I would like to thank my co–supervisor Professor Dr. Madzlan Bin Aziz for his support in realizing my research work.

I am ever grateful to my family, especially my wife, for their continuous support in term of encouragement and motivation.

This research work has been financially supported by UTM’s International Doctoral Fellowship (IDF). I am also grateful for PhD scholarship from the Islamic Azad University.
ABSTRACT

Fullerenes are nanocage compounds that can be used for hydrogen storage. Hydrogen is believed to be a potential alternative energy source, as the energy produced is clean. One of the most important issues in hydrogen–filled fullerene molecules is the determination of the number of hydrogen molecules that can be encapsulated inside the fullerene cage. In this study, the maximum number of hydrogen molecules that can be encapsulated inside C_{50}, C_{60}, C_{70} and C_{78} fullerenes was investigated by means of theoretical methods. Various density functional theory (DFT) functionals, together with Hartree–Fock (HF) and post Hartree–Fock methods were used in the computation for this study. Taking into consideration the basis set superposition error (BSSE) correction, it was found that second order Møller–Plesset perturbation theory (MP2) and dispersion corrected semiempirical hybrid density functional theory with perturbative second–order correlation (B2PLYPD), in conjunction with the triple zeta Pople–style 6–311G(d,p) basis set, provide the most reliable results in predicting the stability of nH_{2}@C_{k} complexes. On the basis of complexation energy calculations, it was confirmed that encapsulation of numerous hydrogen molecules inside C_{k} (k = 50, 60, 70 and 78) fullerenes is unrealistic. In agreement with results of experimental works, only one hydrogen molecule can be accommodated inside C_{50} and C_{60}, two inside C_{70} and three inside C_{78}. Geometrical considerations of encapsulation of H_{2} molecule(s), host–guest interaction forces, strain energies, dispersion energies, maximum expansion of the fullerene cages that can be reached before breaking some of the C–C bonds and the bond dissociation energies (BDEs) of the cages are all in line with the calculated complexation energies.
ABSTRAK

Fulerena adalah sebatian sangkar bersaiz nano yang boleh digunakan dalam penyimpanan hidrogen. Hidrogen dipercayai mempunyai potensi untuk menjadi sumber tenaga alternatif kerana tenaga yang dijana daripadanya adalah bersih. Salah satu isu penting dalam fulerena berisi dengan molekul hidrogen adalah penentuan bilangan molekul hidrogen yang boleh terkandung dalam memenuhi ruang sangkar fulerena tersebut. Dalam kajian ini, bilangan maksimum molekul hidrogen yang boleh terkandung di dalam fulerena C\textsubscript{50}, C\textsubscript{60}, C\textsubscript{70} dan C\textsubscript{78} telah dikaji melalui kaedah teori. Pelbagai fungsi teori fungsi ketumpatan (DFT), bersama-sama dengan kaedah teori Hartree-Fock (HF) dan pasca Hartree-Fock telah digunakan dalam pengiraan untuk kajian ini. Dengan mengambil kira pembetulan set asas ralat tindihan (BSSE), ianya didapati bahawa teori gangguan Møller-Plesset tertib kedua (MP2) dan teori hibrid separa empirikal fungsi ketumpatan penyerasakan diperbetulkan dengan korelasi gangguan tertib kedua (B2PLYPD), bersama dengan set asas zeta tiga kali ganda jenis Pople 6–311G(d,p), memberikan keputusan yang paling sesuai dalam meramal kestabilan kompleks nH\textsubscript{2}@C\textsubscript{k}. Pengiraan tenaga pengkompleksan mengesahkan bahawa pengkapsulan molekul hidrogen yang banyak di dalam fulerena C\textsubscript{k} (k = 50, 60, 70 dan 78) adalah tidak realistik. Hasil eksperimen bersetuju hanya satu molekul hidrogen boleh terkandung di dalam C\textsubscript{50} dan C\textsubscript{60}, dua di dalam C\textsubscript{70} dan tiga di dalam C\textsubscript{78}. Pertimbangan geometri dalam pengkapsulan molekul H\textsubscript{2}, kuasa–kuasa interaksi perumah–tetamu, daya, tenaga terikan, tenaga penyerasakan, pengembangan maksimum dalam interaksi yang berlaku di dalam sangkar fulerena yang boleh dicapai sebelum memecah beberapa ikatan C–C dan tenaga penceraian ikatan (BDEs) di dalam sangkar. Semuanya adalah selaras dengan tenaga pengkompleksan yang dikira.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SCHEMES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background of the Problem</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The Problem Statement</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Purpose of the Research</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Objectives of the Research</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Significance of the Research</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope of the Research</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Organization of this Thesis</td>
<td>9</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW

2.1 Introduction
2.2 Endohedral Fullerenes
 2.2.1 Endohedral Metallofullerenes
 2.2.2 Hydrogen Encapsulated Inside the Fullerenes
 2.2.2.1 Experimental Approaches
 2.2.2.2 Modeling Endohedral Hydrogen Fullerene Complexes

2.5 Summary

3 RESEARCH METHODOLOGY

Part I: Theoretical Methods

3.1 Theory
 3.1.1 Quantum Mechanics and Schrödinger Equation
 3.1.2 Computational Methods in Quantum Chemistry
 3.1.2.1 Molecular Mechanics Methods
 3.1.2.2 Semi Empirical Methods
 3.1.2.3 Ab initio Quantum Chemistry Methods
 A Electron Correlation and Post–SCF Methods
 B Density Functional Theory Based Methods
 3.1.3 Basis Function and Basis Set

Part II: Computational Techniques

3.2 Computational Details and Methods Used
 3.2.1 Computational Details
 3.2.2 Complexation Energy
 3.2.3 Host–Guest Interaction
 3.2.4 Cage Expansion
 3.2.5 Bond Dissociation Energy
4 Results and Discussion

4.1 Encapsulation of H\(_2\) and 2H\(_2\) inside C\(_{50}\) Fullerene Cage

4.1.1 Computational Details

4.1.2 Energetics

4.1.3 Geometrics

4.1.4 Host–Guest Interaction

4.1.5 C\(_{50}\) Expansion

4.1.6 Bond Dissociation Energy

4.2 Encapsulation of H\(_2\) and 2H\(_2\) inside C\(_{60}\) Fullerene Cage

4.2.1 Computational Details

4.2.2 Energetics

4.2.3 Geometrics

4.2.4 Host–Guest Interaction

4.2.5 Bond Dissociation Energy

4.3 Encapsulation of H\(_2\), 2H\(_2\), 3H\(_2\) and 4H\(_2\) inside C\(_{70}\) Fullerene Cage

4.3.1 Computational Details

4.3.2 Energetics

4.3.3 Geometrics

4.3.4 Host–Guest Interaction

4.3.5 C\(_{70}\) Expansion

4.3.6 Bond Dissociation Energy

4.4 Encapsulation of H\(_2\), 2H\(_2\), 3H\(_2\) and 4H\(_2\) inside C\(_{78}\) Fullerene Cage

4.4.1 Computational Details

4.4.2 Energetics

4.4.3 Geometrics

4.4.4 Host–Guest Interaction

4.4.5 C\(_{78}\) Expansion

4.4.6 Bond Dissociation Energy

5 CONCLUSION AND FUTURE WORKS

5.1 Research Summary
5.2 Research Contributions 149
5.3 Limitation of the Study 150
5.4 Direction of Future Researches 151

REFERENCES 152

Appendices A–E 176–198
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Periodical table showing elements that can be encapsulated inside fullerenes creating observable endofullerene complexes</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Computed small molecules, X, encapsulated inside C_k fullerenes</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Calculated capacity limit of hydrogen molecules encapsulated inside C_{60} and C_{70} fullerene reported by different groups</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Calculated complexation energies for H_{2}@C_{50} and 2H_{2}@C_{50} at different level of theories and selected basis sets</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Important geometrical parameters for C_{50} fullerene optimized using MP2 and selected DFT functionals at different basis sets. All distances are given in Å</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Important geometrical parameters for H_{2}@C_{50} complex optimized using MP2 and selected DFT functionals at different basis sets. All distances are given in Å</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Important geometrical parameters for 2H_{2}@C_{50} complex optimized using MP2 and selected DFT functionals at different basis sets. All distances are given in Å</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>SVWN5, PBEPBE, B3LYP, B2PLYP, B2PLYPD and MP2 total natural charges on H_{2} (\textit{TNC}nH{2}) and 2H_{2}</td>
<td></td>
</tr>
</tbody>
</table>
\((TNC_{2H_2})\) inside the \(C_{50}\) cage and total coulomb attraction forces \((f(nH_2 \cdots C_{50})_{\text{att.}})\) and total coulomb repulsion forces \((f(nH_2 \cdots C_{50})_{\text{rep.}})\) between the hydrogen molecule and \(C_{50}\) cage calculated using 6–311G(d,p) basis set

4.6 SVWN5, PBEPBE, B3LYP, B2PLYP, B2PLYPD and MP2 total coulomb attraction energies \((U(nH_2 \cdots C_{50})_{\text{att.}})\) and total coulomb repulsion energies \((U(nH_2 \cdots C_{50})_{\text{rep.}})\) between the hydrogen molecule(s) and the \(C_{50}\) cage and the total coulomb energies between hydrogen atoms \((U(H \cdots H))\) encapsulated inside fullerenes and total coulomb energies \((U_{\text{Total}})\) (in kcal mol\(^{-1}\)) calculated using 6–311G(d,p) basis set

4.7 SVWN5, PBEPBE, B3LYP, B2PLYP, B2PLYPD and MP2 complexation energies \((\Delta E)\), \(\Delta E_{\text{sp}}\) and dispersion energy \((\text{SE})\) of \(nH_2@C_{50}\) calculated using 6–311G(d,p) basis set

4.8 Computed dispersion energies (DEs)\(^a\) for \(H_2@C_{50}\) and \(2H_2@C_{50}\) calculated using 6–311G(d,p) basis set taking into consideration the BSSE

4.9 Complexation energies of \(H_2@C_{60}\) and \(2H_2@C_{60}\) (in kcal mol\(^{-1}\)) calculated using different methods and basis sets

4.10 Selected geometrical parameters for \(C_{60}\), \(H_2@C_{60}\) and \(2H_2@C_{60}\) optimized at selected DFT (SVWN5, PBEPBE and BHandHLYP) using 6–311G(d,p) basis sets. All distances are given in Å

4.11 Selected geometrical parameters for \(C_{60}\), \(H_2@C_{60}\) and \(2H_2@C_{60}\) optimized at MP2(fc)/3–21G(d,p), MP2(fc)/lp–31G(d,p) and MP2(fc)/6–311G(d,p) levels of theory. All distances are given in Å
4.12 MP2, B2PLYPD, PBEPBE and BHandHLYP total natural charges on H$_2$ (TNC_{H_2}) and 2H$_2$ (TNC_{2H_2}) inside the C$_{60}$ and total coulomb attraction forces ($f(nH_2 \cdots C_{60})_{att}$) and total coulomb repulsion forces ($f(nH_2 \cdots C_{60})_{rep}$) between the hydrogen molecule and the C$_{60}$ calculated using 6–311G(d,p) basis set.

4.13 MP2, B2PLYPD and PBEPBE total coulomb attraction energies ($U(nH_2 \cdots C_{60})_{att}$) and total coulomb repulsion energies ($U(nH_2 \cdots C_{60})_{rep}$) between the hydrogen molecule(s) and the C$_{60}$ cage and the total coulomb energies between hydrogen atoms ($U(H \cdots H)$) encapsulated inside fullerenes and total coulomb energies (U_{Total}) (in kcal mol$^{-1}$) between the hydrogen molecule and C$_{60}$ calculated using 6–311G(d,p) basis set.

4.14 MP2, B2PLYP, B2PLYPD and PBEPBE complexation energies, ΔE, $\Delta E_{sp-complex}$ and SE of nH$_2$@C$_{60}$ calculated using 6–311G(d,p) basis set.

4.15 Computed dispersion energies for H$_2$@C$_{60}$ and 2H$_2$@C$_{60}$ using 6–311G(d,p) basis set.

4.16 Calculated complexation energies (in kcal mol$^{-1}$) for H$_2$@C$_{70}$, 2H$_2$@C$_{70}$ and 3H$_2$@C$_{70}$ at different level of theories and selected basis sets.

4.17 Selected geometrical parameters for C$_{70}$, H$_2$@C$_{70}$, 2H$_2$@C$_{70}$ and 3H$_2$@C$_{70}$ optimized at PBEPBE and BHandHLYP both using 6–311G(d,p) basis set. All distances are given in Å.

4.18 Selected geometrical parameters for C$_{70}$, H$_2$@C$_{70}$, 2H$_2$@C$_{70}$ and 3H$_2$@C$_{70}$ optimized at MP2(fc)/6–31G(d,p) and MP2(fc)/6–311G(d) levels.

4.19 MP2, B2PLYPD, PBEPBE and BHandHLYP total natural charges on H$_2$ (TNC_{H_2}), 2H$_2$ (TNC_{2H_2}) and 3H$_2$
(TNC$_{3H_2}$) inside the C$_{70}$ and total coulomb attraction forces ($f(nH_2 \cdots C_{70})_{att}$) and total coulomb repulsion forces ($f(nH_2 \cdots C_{70})_{rep}$) between the hydrogen molecule and the C$_{70}$ calculated using 6–311G(d,p) basis set

4.20 MP2, B2PLYPD, PBEPBE and BHHandHLYP total coulomb attraction energies ($U(nH_2 \cdots C_{70})_{att}$) and total coulomb repulsion energies ($U(nH_2 \cdots C_{70})_{rep}$) between the hydrogen molecule and the C$_{70}$ cage and the total coulomb energies between hydrogen atoms ($U(H \cdots H)$) encapsulated inside fullerenes and total coulomb energies (U_{Total}) (in kcal mol$^{-1}$) calculated using 6–311G(d,p) basis set

4.21 MP2, B2PLYPD, BHHandHLYP and PBEPBE complexation energies, ΔE, $\Delta E_{sp-complex}$ (ΔE_{sp-e}) and SE of nH$_2$@C$_{70}$ calculated using 6–311G(d,p) basis sets

4.22 Computed dispersion energies for H$_2$@C$_{70}$, 2H$_2$@C$_{70}$ and 3H$_2$@C$_{70}$ using 6–311G(d,p) basis set

4.23 Complexation energies (in kcal mol$^{-1}$) for H$_2$@C$_{78}$ and 2H$_2$@C$_{78}$ calculated using selected DFT functionals, HF and MP2 and employing different basis sets

4.24 Complexation energies (in kcal mol$^{-1}$) for 3H$_2$@C$_{78}$ and 4H$_2$@C$_{78}$ calculated using selected DFT functionals, HF and MP2 and employing different basis sets

4.25 Selected geometrical parameters for C$_{78}$, H$_2$@C$_{78}$, 2H$_2$@C$_{78}$, 3H$_2$@C$_{78}$ and 4H$_2$@C$_{78}$ optimized at PBEPBE/6–311(d,p) level of theory. All distances are given in Å

4.26 Selected geometrical parameters for C$_{78}$, H$_2$@C$_{78}$, 2H$_2$@C$_{78}$, 3H$_2$@C$_{78}$ and 4H$_2$@C$_{78}$ optimized at
MP2(fc)/6–311G(d,p). All distances are given in Å.

4.27 MP2 and B2PLYPD total coulomb attraction forces \(f(nH_2 \cdots C_{78})_{\text{att}} \) and total coulomb repulsion forces \(f(nH_2 \cdots C_{70})_{\text{rep}} \) between the hydrogen molecule and the \(C_{78} \) calculated using 6–311G(d,p) basis sets.

4.28 MP2 and B2PLYPD total coulomb attraction energies \(U(nH_2 \cdots C_{78})_{\text{att}} \) and total coulomb repulsion energies \(U(nH_2 \cdots C_{70})_{\text{rep}} \) between the hydrogen molecule and the \(C_{78} \) cage and the total coulomb energies between hydrogen atoms \(U(H \cdots H) \) encapsulated inside fullerenes and total coulomb energies \(U_{\text{Total}} \) (in kcal mol\(^{-1}\)) calculated using 6–311G(d,p) basis set.

4.29 MP2, B2PLYPD, BHandHLYP and PBEPBE complexation energies, \(\Delta E \), \(\Delta E_{sp-complex} \) and SE of nH\(_2@C_{78}\) calculated using 6–311G(d,p) basis set.

4.30 Computed dispersion energies for H\(_2@C_{78}\), 2H\(_2@C_{78}\), 3H\(_2@C_{78}\) and 4H\(_2@C_{78}\) using 6–311G(d,p) basis set.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World energy consumption by fuel, 1990–2035 (a Quad BTU = 1.055×10^{18} joules = 1.055 EJ)</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Quantum computational chemistry methods</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>The logical process of MO calculations using \textit{ab initio} methods</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Flowchart of research methodology</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Customized high performance computing cluster in Riadh Sahnoun’s Laboratory</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimized structures of C_{50}, H_{2}@C_{50} and 2H_{2}@C_{50} calculated at MP2(fc)/6–311G(d,p) level of theory. Selected bond lengths are displayed and are given in Å. Symmetries are shown in parenthesis</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Calculated forces $f_{c_k-c_l}$ between the four types of carbons in C_{50} using natural charges versus relative cage expansion ε calculated at MP2(fc)/6–311G(d) level. Results are given in 10^{-12} N</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>(a) The shortest (r_{C1-C2}), longest ($r_{C4-C4'}$) and average (r_{average}) C–C bond lengths and (b) the major and minor axes lengths and average radius of C_{50} fullerene versus relative cage expansion, ε</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>The average C–C BDE per bond of C_{50} calculated at</td>
<td></td>
</tr>
</tbody>
</table>
4.5 Optimized structures of C₆₀, H₂@C₆₀ and 2H₂@C₆₀ calculated at MP2(fc)/6–311G(d,p) level of theory. Symmetries are shown in parenthesis

4.6 The average C–C BDE per bond of C₆₀ calculated at PBEPBE/6–311G(d) and BHandHLYP/6–311G(d) levels of DFT plotted as a function of expansion (ε)

4.7 Optimized structures of C₇₀, H₂@C₇₀, 2H₂@C₇₀ and 3H₂@C₇₀ calculated at MP2(fc)/6–311G(d,p) level of theory. Selected bond lengths are displayed and are given in Å. Symmetries are shown in parenthesis

4.8 The forces, \(f_{C_k-C_l} \), between C₁, C'_₁, C₂ and C₂' (The forces along the longest C–C bond length (C₁–C'_₁) and two other bonds (C₁–C₂ and C₂–C₂') for comparative purpose) in C₇₀ using Mulliken charges versus relative cage expansion, ε, calculated at MP2(fc)/6–31(d) level. Results are given in 10⁻¹² N

4.9 (a) The shortest (r₃–₃') and longest (r₁–₁') and (b) the major and minor axes lengths and average radius of C₇₀ fullerene versus relative cage expansion, ε, calculated at MP2(fc)/6–31(d) level

4.10 The average C–C BDE per bond of C₇₀ calculated at PBEPBE/6–311G(d), SVWN5/6–311G(d) and B3LYP/6–311G(d) levels of DFT plotted as a function of expansion (ε)

4.11 Optimized structures of C₇₈, H₂@C₇₈, 2H₂@C₇₈, 3H₂@C₇₈ and 4H₂@C₇₈ calculated at MP2(fc)/6–311G(d,p) level of theory. Selected bond lengths are displayed and are given in Å. Symmetries are shown in
The forces, \(f_{C_3-C_3'} \), between \(C_3 \) and \(C_3' \) (longest C–C bond longest) in \(C_{78} \) using Mulliken and natural charges versus relative cage expansion, \(\varepsilon \), calculated at MP2(fc)/6–31(d) level. Results are given in \(10^{-12} \) N.

(a) The shortest (\(r_{C_1-C_1'} \)) and longest (\(r_{C_3-C_3'} \)) and (b) the major and minor axes lengths and average radius of \(C_{78} \) fullerene versus relative cage expansion, \(\varepsilon \) calculated at MP2(fc)/6–31(d) level.

The average C–C BDE per bond of \(C_{78} \) calculated at BHandHLYP/6–311G(d) and PBEPBE/6–311G(d) levels of theory plotted as a function of expansion (\(\varepsilon \)).

Encapsulation of one and two \(H_2 \) molecules inside \(C_{50} \) fullerene. Symmetries are shown in parenthesis.

Encapsulation of one and two \(H_2 \) molecules inside \(C_{60} \) fullerene. Symmetries are shown in parenthesis.

Encapsulation of one, two and three \(H_2 \) molecules inside \(C_{70} \) fullerene. Symmetries are shown in parenthesis.

Encapsulation of one, two, three and four \(H_2 \) molecules inside \(C_{78} \) fullerene. Symmetries are shown in parenthesis.
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>SCHEME NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Schematic structure of (a) (\text{H}2\text{C}{50}) and (b) (2\text{H}2\text{C}{50}). Selected distances calculated at MP2(fc)/6–311G(d,p) level of theory are displayed. The numbers in parentheses are calculated distances using the van der Waals radii of H and sp(^2) C atoms</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic structure of (a) (\text{H}2\text{C}{60}) and (b)(2\text{H}2\text{C}{60}). Selected distances calculated at PBEPBE/6–311G(d,p) level of theory are displayed. The numbers in parentheses are calculated distances using the van der Waals radii of H and sp(^2) C atoms</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic structure of (a) (2\text{H}2\text{C}{60}) and (b) (3\text{H}2\text{C}{70}). Selected distances calculated at MP2(fc)/6–311G(d,p) level of theory are displayed. The numbers in parentheses are calculated distances using the van der Waals radii of H and sp(^2) C atoms</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNTs</td>
<td>Single–Walled Carbon Nanotubes</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>Multi–Walled Carbon Nanotubes</td>
</tr>
<tr>
<td>M</td>
<td>Metal</td>
</tr>
<tr>
<td>MF</td>
<td>Metal–Containing Fullerene</td>
</tr>
<tr>
<td>EMFs</td>
<td>Endohedral Metallofullerenes</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>EPR</td>
<td>Electron Paramagnetic Resonance</td>
</tr>
<tr>
<td>XAFS</td>
<td>Extended X-Ray Absorption Fine Structure</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared Spectroscopy</td>
</tr>
<tr>
<td>Raman</td>
<td>Raman Spectroscopy</td>
</tr>
<tr>
<td>DMA</td>
<td>9,10–Dimethylanthracene</td>
</tr>
<tr>
<td>MM</td>
<td>Molecular Mechanics</td>
</tr>
<tr>
<td>CFF</td>
<td>Consistent Force Field</td>
</tr>
<tr>
<td>ESFF</td>
<td>Extensible Systematic Force Field</td>
</tr>
<tr>
<td>CFF</td>
<td>Constrained Force Fields</td>
</tr>
<tr>
<td>CVFF</td>
<td>Consistent–Valence Force field</td>
</tr>
<tr>
<td>EFF</td>
<td>Empirical Force Fields</td>
</tr>
<tr>
<td>AMBER</td>
<td>Assisted Model Building With Energy Refinement</td>
</tr>
<tr>
<td>CHARMM</td>
<td>Chemistry At Harvard Macromolecular Mechanics</td>
</tr>
<tr>
<td>GROMOS</td>
<td>Molecular Dynamics Simulation Developed at the University of Groningen</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AM1</td>
<td>Austin Model 1</td>
</tr>
<tr>
<td>PM3</td>
<td>Parameterized Model Number 3</td>
</tr>
<tr>
<td>MNDO</td>
<td>Modified Neglect of Differential Overlap</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular Orbital</td>
</tr>
<tr>
<td>STO's</td>
<td>Slater Type Orbitals</td>
</tr>
<tr>
<td>GTOs</td>
<td>Gaussian Type Orbitals</td>
</tr>
<tr>
<td>LCAO–MO</td>
<td>Linear Combination of Atomic Orbitals–Molecular Orbitals</td>
</tr>
<tr>
<td>SV</td>
<td>Split Valence</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree–Fock</td>
</tr>
<tr>
<td>SCF</td>
<td>Self–Consistent Field</td>
</tr>
<tr>
<td>Post–SCF</td>
<td>Post–Hartree–Fock</td>
</tr>
<tr>
<td>EC</td>
<td>Electron Correlation</td>
</tr>
<tr>
<td>MPn</td>
<td>Møller Plesset Perturbation Theory at the n^{th} Order</td>
</tr>
<tr>
<td>MP2</td>
<td>Second–Order Møller–Plesset Perturbation Theory</td>
</tr>
<tr>
<td>SCS–MP2</td>
<td>Spin–Component Scaled MP2</td>
</tr>
<tr>
<td>SAPT</td>
<td>Symmetry–Adapted Perturbation Theory</td>
</tr>
<tr>
<td>MP4</td>
<td>Fourth–Order Møller–Plesset Perturbation Theory</td>
</tr>
<tr>
<td>QCI</td>
<td>Quadratic Configuration Interaction Methods</td>
</tr>
<tr>
<td>CISD</td>
<td>Single and Double Excitation CI Methods</td>
</tr>
<tr>
<td>QCISD</td>
<td>Quadratic CI with Single and Double Excitation</td>
</tr>
<tr>
<td>CC</td>
<td>Coupled Cluster Methods</td>
</tr>
<tr>
<td>DFT</td>
<td>Density–Functional Theory</td>
</tr>
<tr>
<td>LDA</td>
<td>Local Density Approximation</td>
</tr>
<tr>
<td>LSDA</td>
<td>Local Spin Density Approximation</td>
</tr>
<tr>
<td>B</td>
<td>Becke88</td>
</tr>
<tr>
<td>PW91</td>
<td>Perdew–Wang 91</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MPW</td>
<td>Modified Perdew–Wang by Barone and Adamo</td>
</tr>
<tr>
<td>G96</td>
<td>Gill96</td>
</tr>
<tr>
<td>LYP</td>
<td>LYP by Lee, Yang, and Parr</td>
</tr>
<tr>
<td>B3LYP</td>
<td>Becke, 3–Parameter, Lee–Yang–Parr</td>
</tr>
<tr>
<td>MPWB1K</td>
<td>Modified Perdew–Wang, Becke Functional</td>
</tr>
<tr>
<td>SVWN5</td>
<td>Slater Exchange plus Vosko, Wilk, Nusair Correlation Functional</td>
</tr>
<tr>
<td>GGA</td>
<td>Generalized Gradient Approximation</td>
</tr>
<tr>
<td>PBE</td>
<td>Perdew, Burke and Ernzerhof</td>
</tr>
<tr>
<td>BP86</td>
<td>Becke 1988 Exchange Functional and the Perdew 86 Correlation Functional</td>
</tr>
<tr>
<td>LC–wPBE</td>
<td>Long Range–Corrected Version of wPBE</td>
</tr>
<tr>
<td>CAM–B3LYP</td>
<td>Long Range Corrected Version of B3LYP Using the Coulomb–Attenuating Method</td>
</tr>
<tr>
<td>B2PLYP</td>
<td>Semiempirical Hybrid DFT (Becke (B), Lee, Yang, and Parr (LYP)) with Perturbative Second–Order Correlation</td>
</tr>
<tr>
<td>B2PLYPD</td>
<td>B2PLYP with Empirical Dispersion</td>
</tr>
<tr>
<td>PES</td>
<td>Potential Energy Surface</td>
</tr>
<tr>
<td>BSSE</td>
<td>Basis Set Superposition Error</td>
</tr>
<tr>
<td>SE</td>
<td>Strain Energy</td>
</tr>
<tr>
<td>$E(C_k)_{sp-\text{complex}}$</td>
<td>Single Point Energy calculations of C_k Cage</td>
</tr>
<tr>
<td>$E(nH_2)_{sp-\text{complex}}$</td>
<td>Single Point Energy calculations of H_2</td>
</tr>
<tr>
<td>$E(C_k)_{opt}$</td>
<td>Fully Optimized Energies of the Isolated Fullerene</td>
</tr>
<tr>
<td>$E(H_2)_{opt}$</td>
<td>Fully Optimized Energies of the Isolated H_2 Molecules</td>
</tr>
<tr>
<td>DE</td>
<td>Dispersion Energy</td>
</tr>
<tr>
<td>BDE</td>
<td>Bond Dissociation Energy</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>ZPE</td>
<td>Zero Point Energy Correction</td>
</tr>
<tr>
<td>PV</td>
<td>Pressure–Volume</td>
</tr>
<tr>
<td>H_{C_k}</td>
<td>Enthalpy of Formation for the Optimized C_k</td>
</tr>
<tr>
<td>H_C</td>
<td>Enthalpy of Formation of the Carbon Atom</td>
</tr>
<tr>
<td>TNC_{H_2}</td>
<td>Total Natural Charges on H_2</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad BTU</td>
<td>Quadrillion BTU (British Thermal Unit)</td>
</tr>
<tr>
<td>C_k</td>
<td>Fullerene</td>
</tr>
<tr>
<td>@</td>
<td>Is Used to Indicate that Atom(s) or Molecule(s)</td>
</tr>
<tr>
<td></td>
<td>Listed to the Left of the “@” Symbol Are</td>
</tr>
<tr>
<td></td>
<td>Encapsulated in the Fullerenes (Right Side)</td>
</tr>
<tr>
<td>nH₂</td>
<td>Number of Hydrogen Molecule</td>
</tr>
<tr>
<td>nH₂@C_k</td>
<td>Endohedral Hydrogen Fullerenes</td>
</tr>
<tr>
<td>(\hat{H})</td>
<td>Hamiltonian Operator</td>
</tr>
<tr>
<td>E</td>
<td>Numerical Value of the Energy</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>Wavefunction</td>
</tr>
<tr>
<td>(\hat{T})</td>
<td>Kinetic Energy Operator</td>
</tr>
<tr>
<td>(\hat{V})</td>
<td>Potential Energy Operator</td>
</tr>
<tr>
<td>(m_i)</td>
<td>Mass of Particle (i)</td>
</tr>
<tr>
<td>(e_i)</td>
<td>Electric Charge of Particle (i)</td>
</tr>
<tr>
<td>(h)</td>
<td>Planck’s Constant</td>
</tr>
<tr>
<td>(\nabla_i^2)</td>
<td>Laplacian Operator</td>
</tr>
<tr>
<td>(\Psi^{\text{elec}})</td>
<td>Electronic Wavefunction</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Spin Coordinates</td>
</tr>
<tr>
<td>(\alpha(\xi)) and (\beta(\xi))</td>
<td>Spin Wavefunctions</td>
</tr>
<tr>
<td>(\chi(x, y, z, \xi))</td>
<td>Spin orbital Wavefunction</td>
</tr>
<tr>
<td>(C_{\mu i})</td>
<td>Coefficients of Linear Combination</td>
</tr>
<tr>
<td>(\Psi_i)</td>
<td>(i)-th Molecular Orbital</td>
</tr>
<tr>
<td>(\phi_\mu)</td>
<td>(\mu)-th Atomic Orbital</td>
</tr>
<tr>
<td>(ij) or (ijk)</td>
<td>Number of Primitives for Contractions in the Valence Shell</td>
</tr>
</tbody>
</table>
“+” - Signifies the Diffuse Functions
“*” - Presence of Polarization Functions
ΔE - Complexation Energy
ε_0 - Vacuum Permittivity
q_m - Electric Charge of Particle m
ε - Relative Expansion of the C_k Cage
R - Radii of the Expanded Fullerene
R_0 - Radii of the Relaxed Fullerene
$f_{C_k-C_1}$ - Force Between Two Adjacent C Atoms of Fullerene Cage
$f(nH_2 \cdots C_k)$ - Total Force Between the Hydrogen Molecule and All C Atoms of the C_k Cage
$U(nH_2 \cdots C_k)$ - Total Coulomb Energies Between the Hydrogen Molecule(S) and C_k Cage
r_{kl} - Bond Length of $C_K - C_L$
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>179</td>
</tr>
<tr>
<td>B</td>
<td>B2PLYPD calculated energy, $E(\text{B2PLYPD})$, counterpoise BSSE energy, full point group and Cartesian coordinates and Mulliken and natural charges on C and H atoms for C\textsubscript{50}, H\textsubscript{2}@C\textsubscript{50} and 2H\textsubscript{2}@C\textsubscript{50} using 6–311G(d,p) basis set.</td>
<td>180</td>
</tr>
<tr>
<td>C</td>
<td>B2PLYPD calculated energy, $E(\text{B2PLYPD})$, counterpoise BSSE energy, full point group and Cartesian coordinates and Mulliken and natural charges on C and H atoms for C\textsubscript{60}, H\textsubscript{2}@C\textsubscript{60} and 2H\textsubscript{2}@C\textsubscript{60} using 6–311G(d,p) basis set.</td>
<td>184</td>
</tr>
<tr>
<td>D</td>
<td>B2PLYPD calculated energy, $E(\text{B2PLYPD})$, counterpoise BSSE energy, full point group and Cartesian coordinates and Mulliken and natural charges on C and H atoms for C\textsubscript{70}, H\textsubscript{2}@C\textsubscript{70}, 2H\textsubscript{2}@C\textsubscript{70} and 3H\textsubscript{2}@C\textsubscript{70} using 6–311G(d,p) basis set.</td>
<td>188</td>
</tr>
<tr>
<td>E</td>
<td>B2PLYPD calculated energy, $E(\text{B2PLYPD})$, counterpoise BSSE energy, full point group and Cartesian coordinates and Mulliken and natural charges on C and H atoms for C\textsubscript{78}, H\textsubscript{2}@C\textsubscript{78}, 2H\textsubscript{2}@C\textsubscript{78}, 3H\textsubscript{2}@C\textsubscript{78} and 4H\textsubscript{2}@C\textsubscript{78} using 6–311G(d,p) basis set.</td>
<td>194</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

It is well known that, energy is the one of the most important factors in agriculture, manufacturing, mining, transportation, and technology and plays the main role in economic growth. Soon after the industrial revolution in 1750s, fossil fuels (coal, petroleum and natural gas) became the most important energy carrier, and currently we still gain most of our energy from this non–renewable energy sources (Figure1.1). There are two main important reasons that prompt the scientists to find out alternative fossil fuels: First, the rise in world population, which caused the demand for energy and fossil fuel resources to deplete rapidly. Second, the environmental issues which can be attributed to the increase in the consumption of fossil fuels. Examples are greenhouse gas accumulation, climate change, acidification, ozone layer depletion, air pollution, water pollution, oil spills, damage to land surface and etc.

Some famous advanced fuels include biodiesel, bioalcohol, chemically stored electricity, hydrogen, non–fossil methane, non–fossil natural gas, vegetable oil, and other biomass sources. In finding out the alternative energy source, hydrogen is often put at the top list of candidates. It can be produced by reforming natural gas or another fossil fuel, biomass and even by electrolyzing water. Other advantages of hydrogen is that it can be easily produced, suitable fuel for transportation, has ability
to convert easily to other energy forms, high consumption efficiency and environmentally friendly properties (Cheng et al., 2001). Therefore, hydrogen has been recognized as an ideal energy carrier and serves as an ideal energy source to replace fossil fuels.

![World energy consumption by fuel, 1990–2035](image)

Figure 1.1 World energy consumption by fuel, 1990–2035 (1 Quad BTU = 1.055×10^{18} joules = 1.055 EJ) (U.S. Energy information administration, 2011)

If hydrogen is used in perfect conditions, hydrogen can produce the cleanest form of energy since the only product of its burning is H$_2$O. However, to widen its use, developing safe, reliable, compact, and cost-effective hydrogen storage technology is one of the most technically challenging barriers. Ideal hydrogen storage medium (hydrogen carriers) should have high gravimetric and volumetric density, fast kinetics, and favorable thermodynamics. Up to now, there are four major techniques under investigation and in use to store hydrogen. These methods include physical storage via compressed gas or liquefaction, chemical storage in hydrogen carriers (e.g. methanol, ammonia), metal hydrides, and gas–on–solid
adsorption (physical and chemical) (Türker and Erkoç, 2003). Particular interest has been devoted to metal hydrides, nanotubes (Ye et al., 1999), fullerenes, nanofibers (Chambers et al., 1998; Park et al., 1999) and activated carbons (Noh et al., 1987; Hynek et al., 1997; Bénard and Chahine, 2001).

In view of the above arguments, particular attention has been paid to hydrogen containers. Within the current discussion of hydrogen storage, carbon nanostructures as possible alternative for encapsulating hydrogen, such as endohedral fullerenes or nanotubes containing hydrogen molecules are specially promising (Dresselhaus et al., 1996a). In such composites, a fullerene or nanotube plays the role of nanocage whose inner cavity is filled with hydrogen molecules (Monthioux, 2002). After the first theoretical prediction of endohedral fullerenes with a single hydrogen molecule inside C$_{60}$ fullerene in 1991, as the first idea of storing hydrogen inside a fullerene cage (Cioslowski, 1991), numerous investigations have been carried out on the interaction of C$_k$ with hydrogen atoms and molecules both experimentally and theoretically (Ren et al., 2006).

Depending on their sizes, fullerenes have limited capacity to encapsulate a certain number of hydrogen molecules. Finding the maximum fullerenes nanocage capacity for hydrogen storage and utilization of fullerenes and carbon nanotubes as hydrogen storage devices are among the hottest research topics nowadays (Dolgonos, 2005; Helena, 2006; Türker and Erkoç, 2006; Dodziuk, 2007; Grygoriy, 2008; Riahi et al., 2009; Dolgonos and Peslherbe, 2011). In this work, the physical and chemical properties of endohedral hydrogen fullerenes and maximum capacity of selected fullerenes to encapsulate hydrogen molecule(s) will be theoretically investigated.

1.2 Background of the Problem

According to the definition of a nanomaterial, which was adopted by the European Commission on 18 October 2011 (European Commission, 2011): “A nanomaterial is a natural, incidental or manufactured material containing particles, in
an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm–100 nm”. There are many types of intentionally produced nanomaterials such as Carbon Based Materials, Metal Based Materials, Dendrimers (Zhang and Hu, 2007; Zhou et al., 2009) and Composites while a variety of others are expected to appear in the near future.

Among the various types of C nanostructures, fullerenes are attractive for possible applications. A fullerene is a molecule which is formed only of carbon atoms, in the form of a hollow sphere or ellipsoid. Spherical fullerenes are also called buckyballs. Carbon nanotube or buckytube is the name of cylindrical ones. From a structural viewpoint, fullerenes are similar to graphite, which is made of graphene sheets of linked hexagonal rings; they can also contain pentagonal or even heptagonal rings.

After the first discovery of C$_{60}$ fullerene in 1985 (Kroto et al., 1985), and carbon nanotube by Iijima in 1991 (Iijima, 1991), various carbon–based nanocage structures have been studied for various possible applications. Examples are fullerene clusters (Kratschmer et al., 1990; Diederich and Whetten, 1992; Smalley, 1992; Hunter et al., 1993; Piskoti et al., 1998), single–walled nanotubes (Bethune et al., 1993; Iijima and Ichihashi, 1993), multi–walled nanotubes (Iijima, 1991), nanocapsules (Ruoff et al., 1993; Saito et al., 1993a), nanopolyhedra (Oku et al., 2000), cones (Klaus, 1995; Krishnan et al., 1997), cubes (Saito and Matsumoto, 1998), polyhedral (Ruoff et al., 1993), spheres (Saito et al., 1993b), and carbon onions (Ugarte, 1992).

Fullerenes as hollow clusters are one of the intriguing nanocage structures that can be used in medicine (Cagle et al., 1999; Bakry R, 2007; Bolskar, 2008), in photovoltaic devices (Ross et al., 2009; Clarke and Durrant, 2010), and in electronics (Kobayashi et al., 2003; Shibata et al., 2004), and in particular as single–molecule transistors for quantum computing (Meyer et al., 2002; Twamley, 2003; Garelli and Kusmartsev, 2005). Of special interest are the so–called peapods formed by carbon
nanotubes filled with endohedral fullerene complexes such as N@C_{60} (Twamley, 2003) or P@C_{60} (Whitener et al., 2008) which are considered as promising elements of quantum–processing architecture (Korona and Dodziuk, 2011).

Among the various interesting properties of fullerenes, the possibility to synthesize endohedral fullerenes including different atoms and molecules is attractive for various possible applications (Dresselhaus et al., 1996a). In such compounds, a fullerene or nanotube plays the role of nanocage whose inside cavity is filled with foreign atoms or molecules (Monthioux, 2002). In particular, the possibility of filling a fullerene cage with atomic, ionic, or molecular guests was proposed rapidly after the discovery of C_{60}.

The first theoretically prediction of endohedral fullerenes with a hydrogen molecule inside by Cioslowski in 1991 (Cioslowski, 1991) was an intriguing challenge to synthesize endohedral fullerenes. Experimentally, using "molecular surgery" approach, endohedral C_{60} fullerene containing one H_{2} molecule and C_{70} fullerene containing one and two H_{2} molecules can be synthesized. To produce H_{2}@C_{60} and H_{2}@C_{70} using this method, a series of organic reactions is needed, where an orifice is opened in the fullerene cage and H_{2} molecule is inserted through the orifice, which is then closed leaving H_{2} trapped inside (Rubin et al., 2001; Murata et al., 2003; Komatsu et al., 2005; Murata et al., 2008c).

During the last two decades, calculations based on molecular mechanics, semiempirical, or density functional theory (DFT) have been carried out in order to investigate the stability and properties of endohedral fullerenes, in particular endohedral C_{60} and C_{70} fullerenes encapsulating H_{2} molecule(s). One of the most important issues in hydrogen–filled fullerene molecules is that, how many hydrogen molecules can be encapsulated in fullerene cage?

Nevertheless, there is still an increasing debate on the number of hydrogen molecules encapsulated inside the fullerene C_{60}, where, for example, some groups predicted a number of up to 29 molecules of H_{2} that can be encapsulated inside C_{60}
(Barajas–Barraza and Guirado–López, 2002; Türker and Erkoç, 2003; Koi and Oku, 2004; Türker and Erkoç, 2006; Chih–Kai, 2007; Pupysheva et al., 2007; Soullard et al., 2008). This number is far from experimental realization, to the best of our knowledge.

1.3 The Problem Statement

Two most important problems have been reported by researchers when investigating endohedral complexes of fullerenes with hydrogen molecules. First, the height of the energy barrier estimation for insertion a guest inside the fullerene cage, and second, the capacity limit of H₂ molecules that can be encapsulated. The issue of the energy barrier estimation, which will not be discussed here, especially for the hydrogen molecule entering the C₆₀ fullerene cage has been reported in several papers (Koi and Oku, 2004; Seifert, 2004; Ramachandran et al., 2008). The second important issue in hydrogen–filled fullerene molecules is that, how many hydrogen molecules can be encapsulated inside a fullerene cage.

The stability of complexes of hydrogen molecule(s) encapsulated inside the C₆₀ cage has been studied by various approaches, from molecular mechanics (MM), through semiempirical and density–functional theory (DFT), to ab initio quantum chemical methods (Korona et al., 2009). Finding the fullerene nanocage capacity for hydrogen storage is the challenge of the most of these reports and the results appear contradictory. Indeed, there is no agreement on the amount of hydrogen encapsulated inside a C₆₀ fullerene. On the one hand, one group stated that there is not enough space for more than one hydrogen molecule that can be encapsulated inside C₆₀ while, on the other hand, the other group claimed that theoretically C₆₀ can encapsulate more than one hydrogen molecule (see literature review, Table 2.3).

By means of theoretical methods these two groups have calculated the formation energy of nH₂@C₆₀ complexes. However, while the first group have concluded that only H₂@C₆₀ complex is stable based on some general geometric
considerations, particularly van der Waals radius of an H and sp² hybridization of the carbon atom, the second group using only the calculation results, have concluded that more than one hydrogen molecule can be encapsulated inside the C₆₀ (see literature review, Table 2.3).

To the best of our knowledge, the two groups have neglected several important physical and chemical properties of fullerenes such as charge transfer, coulomb energy, bond dissociation energy, C–C coulomb force, and strain and dispersion energies.

In this study, by means of \textit{ab initio} calculations, we are going to investigate the geometrical parameters and energies of a series of selected isolated fullerenes (such as C₆₀ and C₇₀) as well as their corresponding endohedral hydrogen fullerenes (nH₂@Cₖ) and finally, we will provide the capacity limit of the H₂ molecule encapsulated fullerenes, based on the above mentioned criteria.

1.4 Purpose of the Research

The purpose of this research is to investigate the physical and chemical properties of H₂ molecule encapsulated inside Cₖ (k ≥ 50) by means of theoretical methods. This includes the complexation energies, geometrical structures, host–guest interactions, cage expansion and bond dissociation energy that have been ignored in the previous works. We also aim to provide the capacity limit of H₂ molecule encapsulated inside the selected fullerenes. The third purpose is to figure out the theoretical method (or methods) appropriate to such problems.

1.5 Objective of the Research

Owing to the lack of information on the physical and chemical properties stated above, the aims of this research are:
i. To investigate the geometrical parameters and energies of a series of selected isolated fullerenes (C\textsubscript{50}, C\textsubscript{60}, C\textsubscript{70} and C\textsubscript{78}) as well as their corresponding endohedral hydrogen fullerenes (nH\textsubscript{2}@C\textsubscript{k}, k = 50, 60, 70 and 78) upon encapsulation of one or more H\textsubscript{2} molecule by means of theoretical methods.

ii. To find out the capacity limit of the H\textsubscript{2} molecule encapsulated inside selected fullerenes.

iii. To figure out the most appropriate method(s) that give(s) reasonable and acceptable answers for the encapsulation of H\textsubscript{2} molecule inside fullerene and, which agree(s) with the experimental findings (when available).

1.6 Significance of Research

According to the introduction, clean hydrogen energy is an important fuel and carbon nanostructures always play a major role in contemporary discussions of hydrogen storage media. In such composites, endohedral C\textsubscript{k} fullerene containing hydrogen molecule (H\textsubscript{2}@C\textsubscript{k}) has become an attractive species for these purposes.

Nevertheless, the findings of this research will help the scientists to choose the appropriate fullerene as well as monitoring the mechanism to produce an endohedral fullerene with higher hydrogen storage. In view of the above, the significance of this research can be summarized in the followings:

i. To provide guidance to theoretical scientists to choose the most appropriate theoretical method for investigating endohedral fullerenes.

ii. To provide guidance to experimental scientists to choose the suitable fullerene(s) for encapsulating hydrogen inside the cage(s).

iii. To avoid the trial–and–error in experiments.
1.7 Scope of the Research

C₆₀ molecule, in view of its technological availability, is the most abundant and most stable form of fullerenes. For this reason, over the last two decades, it has been chosen by researchers as a model to conduct studies on the physical and chemical properties of this type of materials. Recently C₇₀ and a few other higher fullerenes were also used.

In this research, by means of theoretical methods we investigated the physical and chemical properties of a series of isolated fullerenes (C₅₀, C₆₀, C₇₀, and C₇₈) as well as their corresponding endohedral hydrogen fullerenes (nH₂@C_k, k = 50, 60, 70 and 78). For each fullerene we provided the capacity limit of H₂ molecule encapsulation.

1.8 Organization of this Thesis

In this thesis, *ab initio* molecular orbital (MO), density functional theory (DFT) and double–hybrid density functionals comparative studies of fullerene nanocage capacity for hydrogen storage have been carried out. This thesis is organized as follows. In chapter two, literatures on previous works on endohedral fullerenes are reviewed. Chapter three is broadly divided into two parts. The first part deals with the theoretical methods. The quantum theory related to molecular mechanics, semi–empirical methods and *ab initio* quantum chemistry are highlighted. The second part describes in detail the simulation methodology, including the complexion energy, geometrical parameters, cage expansion, coulomb energy, strain energy, dispersion energy and bond dissociation energy. Results of *ab initio* MO and DFT calculations for endohedral hydrogen fullerenes (nH₂@C_k, k = 50, 60, 70 and 78) and analysis of results are presented in chapter four. Finally, chapter five concludes this thesis.
In the case of endohedral hydrogen fullerenes, whose stability is mainly due to London dispersion interactions, the situation is much more complicated. Semiempirical methods are known to give unreliable results. Furthermore, it was found that the several DFT functionals tend to underestimate the stabilization energy in endohedral hydrogen fullerenes while MP2 method tend to overestimate it. Most importantly, the more sophisticated and computationally demanding quantum chemistry methods that take into account electron correlation are still impractical in fullerene research since their scaling of computational cost with respect to basis set size is too steep.

5.4 Direction of Future Researches

Many aspects of the physics and chemistry of fullerenes are understood by now but many others still constitute an open question. An example of this is the subject of this study. Indeed, determination of the number of hydrogen molecules that can be hosted by a fullerene C_k cage continues to be debatable. In view of the results presented in this thesis, the proposed future works can be summarized in the following:

i. Extend the study to other fullerenes by using theoretical methods.

ii. Find out the appropriate theoretical method or methods that can handle such problems.

iii. Carry out experiments on the theoretically predicted endohedral hydrogen fullerenes.
REFERENCES

Campanera, J. M., Bo, C., Olmstead, M. M., Balch, A. L. and Poblet, J. M. (2002). Bonding within the Endohedral Fullerenes Sc$_3$N@C$_{78}$ and Sc$_3$N@C$_{80}$ as Determined by Density Functional Calculations and Reexamination of the Crystal Structure of {Sc$_3$N@C$_{78}$}\cdotCo(OEP)\cdot1.5(C$_6$H$_6$)\cdot0.3(CHCl$_3$). *The Journal of Physical Chemistry A.* 106(51), 12356–12364.

Cardona, C. M., Kitaygorodskiy, A., Ortiz, A., Herranz, M. Á. and Echegoyen, L. (2005). The First Fulleropyrrolidine Derivative of Sc$_3$N@C$_{80}$: Pronounced

Dolgonos, G. A. (2005). How many hydrogen molecules can be inserted into C_{60}? Comments on the paper ‘AM1 treatment of endohedrally hydrogen doped fullerene, nH_{2}@C_{60}’ by L. Türker and Ş. Erkoç [J. Mol. Struct. (Theochem)

Khong, A., Cross, R. J. and Saunders, M. (2000). From 3He@C\textsubscript{60} to 3H@C\textsubscript{60}: Hot–Atom Incorporation of Tritium in C\textsubscript{60}. *The Journal of Physical Chemistry A*. 104(17), 3940–3943.

Occupancy, And Comparison with C_{60}. Journal of the American Chemical Society. 132(28), 9826–9832.

Shustova, N. B., Kuvychko, I. V., Bolskar, R. D., Seppelt, K., Strauss, S. H., Popov, A. A. and Boltalina, O. V. (2006). Trifluoromethyl Derivatives of Insoluble Small–HOMO–LUMO–Gap Hollow Higher Fullerenes. NMR and DFT Structure Elucidation of C_2–$(C_{74}–D_{3h})(CF_3)_{12}$, Cs–$(C_{76}–Td(2))(CF_3)_{12}$, C_2–$(C_{78}–D_{3h}(5))(CF_3)_{12}$, Cs–$(C_{80}–C_{2h}(5))(CF_3)_{12}$, and C_2–$(C_{82}–C_{2}(5))(CF_3)_{12}$. Journal of the American Chemical Society. 128(49), 15793–15798.

Internal Magnetic Field in C_{60}^{6-} and C_{70}^{6-}. *Journal of the American Chemical Society*. 124(30), 8786–8787.

Tan, K. and Lu, X. (2005). $Ti_{2}C_{80}$ is more likely a titanium carbide endohedral metallofullerene $(Ti_{2}C_{2})@C_{78}$. *Chemical Communications*. (35), 4444–4446.

Tb$_3$N@C$_{88}$ and Tb$_3$N@C$_{86}$ as well as the I_h and D_{5h} Isomers of Tb$_3$N@C$_{80}$.

Journal of the American Chemical Society. 129(7), 2035–2043.