NUMERICAL SIMULATION OF AXIALLY LOADED CONCRETE FILLED HOLLOW STEEL SECTION COLUMNS AT ELEVATED TEMPERATURES

AHMAD NURFAIDHI RIZALMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2016
I dedicated with love and gratitude
to my father and mother for being
with me till the very end of my thesis completion.
ACKNOWLEDGEMENT

I thank Allah for all the blessings.

First and foremost, I would like to express my deepest appreciation to my supervisor, Professor Ir. Dr. Mahmood Md. Tahir for his support, guidance, criticism and continuous encouragement throughout the project. His continuous inspiration helped to make this project possible.

I would like to thank Public Service Department of Malaysia, Universiti Malaysia Sabah and Ministry of Higher Education of Malaysia for providing me with financial support.

Last but not least, I would like to convey my heartfelt gratitude and sincere appreciation to my family, relatives, STC (Steel Technology Centre)/ Construction Research Centre (CRC) members, PhD colleagues, friends and ESPECIALLY to Abah and Mama (Rizalman Abdullah and Zubaidah Rusnin). Thank you for always providing me with an opportunity to success in life, not only educationally, but also emotionally, mentally, financially, and spiritually. Also, thank you to all my brother and sisters for their support and understanding.

Sincerely,

Ahmad Nurfaidhi Rizalman
Concrete filled hollow steel section columns exhibit various advantages over other materials for similar applications. These include improvement in the structural behaviour with high load bearing capacity for smaller cross-section, better appearance, rapid construction, and high fire resistance without external protection. The study of the thermal-structural behaviour of concrete filled hollow section columns has seen a gradual transition to numerical simulations over an expensive and time consuming physical tests. At present, most of the numerical tools developed in Malaysia for predicting the behaviour of structure in fire is carried out using finite difference method which can be tedious, complicated and very sensitive to numerical errors. Thus, a three-dimensional finite element model, ABAQUS, is proposed to study thermal-structural behaviour of axially loaded concrete filled hollow steel section slender columns for circular and square cross-sections at elevated temperatures. The outer diameter of the circular columns ranged from 141.3 mm to 478 mm and the steel thickness varied from 4.78 mm to 12.79 mm. The outside width of the square columns ranged from 152.4 mm to 350 mm, while the thickness of the steel wall varied from 5.3 mm to 7.7 mm. The proposed numerical models are also ranged based on types of concrete (plain and bar-reinforced concrete), steel yield strength (284 MPa to 350 MPa), concrete compressive strength (18.7 MPa to 58.3 MPa), and thickness of external protection (7 mm to 17 mm). The parameters input used in the model are results of an extensive sensitivity analysis. The accuracy of the proposed numerical model was verified against 21 experimental results and 12 existing models carried out by other researchers as well as with the predictions of the Eurocode 4 simplified calculation model. The verified model was used for a series of parametric studies on the effect of various factors affecting the fire resistance of the columns. The proposed numerical model has proved to produce a better estimation of the fire resistance of the concrete filled hollow steel section columns than the Eurocode 4 simplified model when compared with the fire tests. Based on the analysis and comparison of typical parameters, the effect of sectional shapes, concrete types and thickness of external protection on temperature distribution and structural fire behaviour of the columns are analysed. The result shows that concrete filled hollow section column with circular cross-section has higher fire resistance than square sections.
ABSTRAK

Tiang keluli berongga berisi konkrit mempunyai pelbagai kelebihan berbanding dengan material lain untuk aplikasi yang sama. Ini termasuk peningkatan dalam tingkah laku struktur dengan beban galas berkapasiti tinggi untuk keratan rentas yang lebih kecil, penampilan yang lebih baik, kaedah pembinaan yang pesat, dan ketahanan api yang tinggi tanpa perlindungan luaran. Kajian mengenai tiang keluli berongga berisi konkrit telah menunjukkan peralihan daripada ujian fizikal yang mahal dan memakan masa kepada simulasi berangka. Pada masa ini, kebanyakkan alat berangka yang dibangunkan di Malaysia untuk meramal kelakuan struktur dalam api dijalankan dengan menggunakan kaedah perbezaan terhingga yang mana kaedah tersebut adalah lambat, rumit dan sangat sensitif kepada kesilapan berangka. Oleh itu, model unsur terhingga tiga dimensi yang dibangunkan dengan ABAQUS dicadangkan untuk mengkaji tingkah laku struktur dan haba tiang keluli langsing berongga berisi konkrit pada suhu tinggi untuk keratan rentas bulat dan persegi. Diameter luar untuk tiang keluli berongga bulat adalah di antara 141.3 mm hingga 478 mm dan ketebalan dinding keluli adalah di antara 4.78 mm hingga 12.79 mm. Manakala lebar tiang keluli berongga persegi adalah di antara 152.4 mm hingga 350 mm, dan ketebalan dinding keluli berubah daripada 5.3 mm hingga 7.7 mm. Model berangka yang dicadangkan juga berkisar kepada jenis konkrit (konkrit biasa dan konkrit yang diperkuatkan dengan bar), kekuatan alah keluli (284 MPa hingga 350 MPa), kekuatan mampatan konkrit (18.7 MPa hingga 58.3 MPa), dan ketebalan perlindungan luaran (7 mm hingga 17 mm). Nilai yang digunakan di dalam model ini adalah hasil daripada analisis sensitiviti yang luas. Ketepatan model berangka yang dicadangkan disahkan dengan 21 keputusan eksperimen dan 12 model berangka yang dijalankan oleh penyelidik lain dan juga ramalan model pengiraan Eurocode 4 yang dipermudahkan. Model yang disahkan digunakan untuk menjalankan satu siri kajian parametri mengenai kesan faktor-faktor yang mempengaruhi ketahan api tiang. Model berangka yang dicadangkan telah terbukti menghasilkan anggaran yang lebih baik daripada model pengiran Eurocode 4 yang dipermudahkan apabila dibandingkan dengan keputusan ujian kebakaran. Berdasarkan analisa dan perbandingan parameter tipikal, kesan bentuk keratan, jenis konkrit dan ketebalan perlindungan luaran terhadap penganggihan suhu dan tingkah laku kebakaran struktuk kebakaran tiang dibincangkan. Hasil kajian menunjukkan tiang keluli berongga berisi konkrit yang berbentuk bulat mempunyai ketahanan api yang lebih tinggi daripada yang berbentuk persegi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION STATEMENT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General

1.1.1 Advantages and Disadvantages of CFHSS Columns

1.1.2 Practical Applications of CFHSS Columns in Buildings

1.2 Problem Statements

1.3 Aim and Objectives

1.4 Research Methodology

1.5 Scope and Limitation

1.6 Significance of Research

1.7 Thesis Layout

2 LITERATURE REVIEW

2.1 General
2.2 Previous Experimental Studies 13
 2.2.1 Fire Behaviour of CFHSS Columns 18
 2.2.2 Summary 21
2.3 Previous Analytical Studies 27
 2.3.1 Summary 29
2.4 Previous Numerical Studies 34
 2.4.1 3D Advanced Numerical Models 40
 2.4.1.1 Fire Dynamic Analysis 40
 2.4.1.2 Heat Transfer Analysis 43
 2.4.1.3 Structural Analysis 46
 2.4.2 Summary 46
2.5 Previous Simple Calculation Model 53
 2.5.1 Summary 58
2.6 Summary and Discussion of the Previous Works 63

3 RESEARCH METHODOLOGY 65
 3.1 General 65
 3.2 Development of Numerical Model with ABAQUS 66
 3.2.1 Geometry and Finite Element Mesh of the Model 67
 3.2.2 Boundary Conditions and Load Application 68
 3.3.3 Material Properties 69
 3.3.3.1 Thermal Properties 69
 3.3.3.2 Mechanical Properties 75
 3.3.4 Analysis Procedure 79
 3.3.4.1 Determination of Imperfection of the Column 81
 3.3.4.2 Thermal Analysis 81
 3.3.4.3 Structural Analysis 83
 3.3 Development of EC4 Simplified Calculation Model 87
 3.3.1 Principle of Simple Calculation Model of Annex H EN 1994-1-2 87
 3.3.2 Principle of General Calculation Method in Clause 4.3.5.1 of EN 1994-1-2 89
 3.3.3 Principle of the Proposed Simple Calculation
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>VERIFICATION OF NUMERICAL MODELS</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Sensitivity Analysis</td>
<td>102</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Poisson’s Ratio of Concrete</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Thermal Conductance at Steel-Concrete Interface</td>
<td>104</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Friction Coefficient at Steel-Concrete Interface</td>
<td>107</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Gravity Load in the Structural Model</td>
<td>109</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Imperfection Buckling</td>
<td>111</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Concrete Plasticity Model</td>
<td>112</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Material Mechanical Models at Elevated Temperatures</td>
<td>115</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Findings from Sensitivity Analysis</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>Verification of the Numerical Model</td>
<td>123</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Verification of Thermal Analysis</td>
<td>123</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Verification of Structural Analysis</td>
<td>128</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Structural Response Comparison for Circular CFHSS Columns</td>
<td>128</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Structural Response Comparison for Square CFHSS Columns</td>
<td>136</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison with the Existing Numerical Models</td>
<td>144</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Comparison with Espinos’s Numerical Models</td>
<td>144</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Comparison with Hong & Varma’s Numerical Models</td>
<td>145</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison with the EC4 Simplified Calculation Model</td>
<td>146</td>
</tr>
</tbody>
</table>
4.5.1 Comparison of EC4 Simple Calculation Models on Circular Columns 147
4.5.2 Comparison of EC4 Simple Calculation Models on Square Columns 148
4.5.3 Discrepancies between Numerical Predictions and EC4 Predictions 149

4.6 Conclusion 150

5 PARAMETRIC STUDIES 152
5.1 General 152
5.2 Material Properties at Elevated Temperatures 152
5.3 Description of Selected CFHSS Columns 154
5.3.2 Case A: Columns with Equal Compressive Strengths, N_y at Room Temperature 156
5.3.3 Case B: Columns with Equal Cross-sectional Area of Steel, A_s 157
5.3.4 Case C: Columns with Equal Cross-Sectional Area of Concrete, A_c 158
5.3.5 Case D: Columns with Different Types of Infills 159
5.3.6 Case E: Columns with Different Thickness of Fire Protection 160
5.4 Effects at Elevated Temperature 161
5.4.1 Thermal Analysis Procedure and Verification 161
5.4.2 Comparison of Temperature Distributions of CFHSS Columns 164
5.5 Effects at Elevated Temperature Subjected to Axial Compressive Load 171
5.5.1 Structural Analysis Procedure 171
5.5.2 Comparison of Fire Resistance and Critical Temperature of CFHSS Columns 173
5.5.2.1 Column with Equal Compressive Strength at Room Temperature 175
5.5.2.2 Column with Equal Cross-Sectional
Area of Steel 176

5.2.2.3 Columns with Equal Cross-Sectional Area of Concrete 177

5.2.2.4 Columns with Different Types of Infill 179

5.2.2.5 Column with Different Thickness of Fire Protection 180

5.5.3 Structural Response of CFHSS column at Elevated Temperature Subjected to Axial Load 184

5.6 Design Equation for Evaluating Fire Resistance of Concrete Filled Steel Hollow Section Column 187

5.6 Conclusion 191

6 CONCLUSIONS 194

6.1 General 194

6.2 Summary 194

6.3 Conclusions 196

 6.3.1 Development of the Numerical Model 196
 6.3.2 Validation of the Numerical Model 198
 6.3.3 Comparison with the EC4 Simplified Calculation Model 199
 6.3.4 Parametric Studies 200
 6.3.5 Summary of the Conclusion 201

6.4 Recommendation of Future Work 202

REFERENCES 204

Appendices A - F 214 - 232
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Types of CFHSS columns</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>SEG Plaza (Shenzen, China)</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Fleet Place House (London, UK)</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Column test furnace at the NRCC</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>General view of test arrangement at Tianjin, China</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical axial displacement-time response of CFHSS column</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Failure modes of columns after test</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Fire resistance using different types of concrete filling in CFHSS column</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Arrangement of elements in quarter section of CFHSS column</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>3D finite element model for square CFHSS columns by Hong & Varma</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>3D finite element model for circular CFHSS columns by Espinos</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Typical stages of fire</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of various fire curves</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>A half model for circular CFHSS column</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>A quarter model for square CFHSS column</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Thermal conductivity of steel at elevated temperature</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Specific heat of steel at elevated temperature</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Thermal conductivity of concrete at elevated temperature</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Specific heat of concrete at elevated temperature</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>General stress-strain relationship of steel</td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>EC3 stress-strain model for a S350 steel at elevated temperature</td>
<td>77</td>
</tr>
</tbody>
</table>
3.9 Lie’s stress-strain model for 30 MPa concrete at elevated temperature 78
3.10 Schematic diagram of general analysis procedure 80
3.11 Standard fire curves of ASTM E-119 and ISO-834 81
3.12 Flow chart for determining the imperfection of the column 84
3.13 Flow chart for thermal analysis 85
3.14 Flow chart for structural analysis 86
3.15 Design resistance of columns with concrete-filled section using Annex H of EN 1994-1-2 88
3.16 Calculation process of the temperature field using inverse search algorithm on MATLAB 94
3.17 Calculation process for design resistance of columns using inverse search algorithm on EC4 model on MATLAB 97
3.18 Schematic diagram of EC4 calculation for CFHSS column filled with plain concrete in MATLAB 98
4.1 Comparison of experimentally measured and numerically predicted axial displacement with different Poisson's Ratio of concrete for C01 103
4.2 Comparison of experimentally measured and numerically predicted axial displacement with different Poisson’s Ratio of concrete for S01 104
4.3 Location of measurement points for circular and square sections 105
4.4 Comparison of experimentally measured and numerically predicted temperature elevation with different heat transfer conductance values for Column C01 (Point 1 and 3) 105
4.5 Comparison of experimentally measured and numerically predicted temperature elevation with different heat transfer conductance values for Column C01 (Point 2 and 4) 106
4.6 Comparison of experimentally measured and numerically predicted temperature elevation with different heat transfer conductance values for Column S01 (Point 1 and 3) 106
4.7 Comparison of experimentally measured and numerically
predicted temperature elevation with different heat transfer
conductance values for Column S01 (Point 2 and 4) 107

4.8 Comparisons of experimentally measured and numerically
predicted axial displacement with different friction
coefficient for C01 108

4.9 Comparisons of experimentally measured and numerically
predicted axial displacement with different friction
coefficient for S01 109

4.10 Comparison of experimentally measured and numerically
predicted axial displacement with different gravity factor
for C01 110

4.11 Comparison of experimentally measured and numerically
predicted axial displacement with different gravity factor
for S01 110

4.12 Comparisons of experimentally measured and numerically
predicted axial displacement with different buckling
imperfection values for C01 111

4.13 Comparison of experimentally measured and numerically
predicted axial displacement with different buckling
imperfection values for S01 112

4.14 Comparison of experimentally measured and numerically
predicted axial displacement with Drucker-Prager and
Concrete Plasticity mode for S03 114

4.15 Final result of axial stress in concrete 114

4.16 EC3 stress-strain model for a S350 steel at elevated
temperature 116

4.17 Lie’s stress-strain model for a S350 steel at elevated
temperature 116

4.18 Yin’s stress-strain model for a S350 steel at elevated
temperature 117

4.19 Comparison of axial deformation for applying different
steel model for C01 118

4.20 Comparison of axial deformation for applying different
steel model for S01 118
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21</td>
<td>EC2 stress-strain model for a 30 MPa concrete at elevated temperature</td>
</tr>
<tr>
<td>4.22</td>
<td>Lie’s stress-strain model for a 30 MPa concrete at elevated temperature</td>
</tr>
<tr>
<td>4.23</td>
<td>Yin’s stress-strain model for a 30 MPa concrete at elevated temperature</td>
</tr>
<tr>
<td>4.24</td>
<td>Comparison of axial deformation for applying different concrete model for C01</td>
</tr>
<tr>
<td>4.25</td>
<td>Comparison of axial deformation for applying different concrete model for S01</td>
</tr>
<tr>
<td>4.26</td>
<td>Temperature contours for circular columns</td>
</tr>
<tr>
<td>4.27</td>
<td>Temperature contours for square columns</td>
</tr>
<tr>
<td>4.28</td>
<td>Comparison of experimentally measured and simulated temperature distribution for column C01</td>
</tr>
<tr>
<td>4.29</td>
<td>Comparison of experimentally measured and simulated temperature distribution for column S01</td>
</tr>
<tr>
<td>4.30</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C01</td>
</tr>
<tr>
<td>4.31</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C02</td>
</tr>
<tr>
<td>4.32</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C03</td>
</tr>
<tr>
<td>4.33</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C04</td>
</tr>
<tr>
<td>4.34</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C05</td>
</tr>
<tr>
<td>4.35</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C06</td>
</tr>
<tr>
<td>4.36</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C07</td>
</tr>
<tr>
<td>4.37</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C08</td>
</tr>
<tr>
<td>4.38</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C09</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>4.39</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column C10</td>
</tr>
<tr>
<td>4.40</td>
<td>Comparison of experimentally measured and numerically predicted failure times for circular CFHSS columns</td>
</tr>
<tr>
<td>4.41</td>
<td>Column C01 after exposed to standard fire ASTM-E119</td>
</tr>
<tr>
<td>4.42</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S01</td>
</tr>
<tr>
<td>4.43</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S02</td>
</tr>
<tr>
<td>4.44</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S03</td>
</tr>
<tr>
<td>4.45</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S04</td>
</tr>
<tr>
<td>4.46</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S05</td>
</tr>
<tr>
<td>4.47</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S06</td>
</tr>
<tr>
<td>4.48</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S07</td>
</tr>
<tr>
<td>4.49</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S08</td>
</tr>
<tr>
<td>4.50</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S09</td>
</tr>
<tr>
<td>4.51</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S10</td>
</tr>
<tr>
<td>4.52</td>
<td>Comparison of experimentally measured and numerically predicted axial displacement for Column S11</td>
</tr>
<tr>
<td>4.53</td>
<td>Comparison of experimentally measured and numerically predicted failure times for circular CFHSS columns</td>
</tr>
<tr>
<td>4.54</td>
<td>Column S01 after exposed to standard fire ASTM-E119</td>
</tr>
<tr>
<td>5.1</td>
<td>Stress-strain relationship of steel by EN 1993-1-2</td>
</tr>
<tr>
<td>5.2</td>
<td>Stress-strain relationship of concrete by EN 1992-1-2</td>
</tr>
<tr>
<td>5.3</td>
<td>3D finite element model of circular CFHSS column</td>
</tr>
<tr>
<td>5.4</td>
<td>3D finite element model of square CFHSS column</td>
</tr>
</tbody>
</table>
5.5 Comparison of temperature development between numerical prediction and experimental results for circular column C01 163
5.6 Comparison of temperature development between numerical prediction and experimental results for square column S01 163
5.7 Location of the measurement point 164
5.8 Temperature development of the steel tube and concrete core for Case A in 120 minutes fire exposure 165
5.9 Temperature development of the steel tube and concrete core for Case B in 120 minutes fire exposure 165
5.10 Temperature development of the steel tube and concrete core for Case C in 120 minutes fire exposure 166
5.11 Temperature development of the steel tube and concrete core for Case D in 120 minutes fire exposure 166
5.12 Temperature development of the steel tube and concrete core for Case E in 120 minutes fire exposure 167
5.13 Maximum temperature of protected and unprotected CFHSS column in Case E 168
5.14 Maximum temperature differences around steel tube perimeters 169
5.15 Temperatures in circular sections with diameter 168 mm and square sections with width 150 m 171
5.16 Representative deformed shape for circular CFHSS columns 173
5.17 Representative deformed shape for square CFHSS columns 173
5.18 Relationship of load ratio to fire resistance and critical temperature in Case A 176
5.19 Relationship of load ratio to fire resistance and critical temperature in Case B 177
5.20 Relationship of load ratio to fire resistance and critical temperature in Case C 178
5.21 Relationship of load ratio to fire resistance and critical
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.22</td>
<td>Relationship of load ratio to fire resistance and critical temperature in Case E</td>
<td>180</td>
</tr>
<tr>
<td>5.23</td>
<td>Typical axial displacement-time curves of axial loaded CFHSS column under fire exposure</td>
<td>181</td>
</tr>
<tr>
<td>5.24</td>
<td>Stages of fire exposure</td>
<td>185</td>
</tr>
<tr>
<td>5.25</td>
<td>Relationship between load level ratio and fire resistance time (R)</td>
<td>186</td>
</tr>
<tr>
<td>5.26</td>
<td>Relationship between factor of fire resistance (β) and width of steel tube (Dₜ)</td>
<td>188</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Previous experimental studies on fire resistance of CFHSS column</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Previous analytical studies on fire resistance of CFHSS column</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Previous numerical studies on fire resistance of CFHSS column</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>Previous simple calculation model studies on fire resistance of CFHSS columns</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Boundary condition for column specimen</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Mathematical formulations of stress-strain relationship of steel at elevated temperatures</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Input parameters for convection and radiation heat transfer</td>
<td>82</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters for stress-strain relationship of normal-weight concrete (NC) and lightweight concrete (LC) at elevated temperature</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Values of correction factor $\phi_{a,\theta}$ for columns with low slenderness ratio $I_\theta / D \leq 12$</td>
<td>96</td>
</tr>
<tr>
<td>4.1</td>
<td>List of experimental test for CFHSS column for circular cross-section</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>List of experimental test for CFHSS column for square cross-section</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Test results and numerical predictions for circular CFHSS columns</td>
<td>134</td>
</tr>
<tr>
<td>4.4</td>
<td>Test results and numerical predictions for square CFHSS columns</td>
<td>142</td>
</tr>
</tbody>
</table>
4.5 Experimental results, Numerical Predictions and Espinos’s Results 145
4.6 Experimental results, Numerical Predictions and Hong’s Results 146
4.7 Comparison of numerical model and EC4 simplified model with experiments for circular hollow section columns 148
4.8 Comparison of numerical and EC4 simplified model with experiments for square hollow section columns 149
5.1 Comparison of geometrical and mechanical characteristics of CFHSS columns with equal section strengths at room temperature 157
5.2 Comparison of geometrical and mechanical characteristics of CFHSS columns with equal cross-sectional area of steel 158
5.3 Comparison of geometrical and mechanical characteristics of CFHSS columns with equal cross-sectional area of concrete 159
5.4 Comparison of geometrical and mechanical characteristics of CFHSS columns with different types of infill 160
5.5 Comparison of geometrical and mechanical characteristics of CFHSS columns with different thickness of fire protection 161
5.6 Summary of fire resistance and critical temperatures of selected CFHSS column 173
5.7 Summary of fire resistance and critical temperature for Case A 175
5.8 Summary of fire resistance and critical temperature for Case B 177
5.9 Summary of fire resistance and critical temperature for Case C 178
5.10 Summary of fire resistance and critical temperature for Case D 179
5.11 Summary of fire resistance and critical temperature for Case E 181
5.12 Summary of findings from parametric studies 182
5.12 Limitations of the applicability of the variables in Equation (5.3) 188

5.13 Comparison of fire resistance obtained from numerical models and proposed design equation for circular hollow section columns 190

5.14 Comparison of fire resistance obtained from numerical models and proposed design equation for square hollow section columns 190

5.15 Limitations of the applicability of the variables in Equation (5.5) and Equation (5.6) 191

6.1 Summary of recommendations for optimal input parameters 197
LIST OF ABBREVIATION

AFNOR - Association Française de Normalisation
AIDICO - Instituto Technologico de la Construccion
AIJ - Architectural Institute of Japan
AISC - American Institute of Steel Construction
ASTM - American Society for Testing and Materials
CFD - Computational fluid dynamics
CFT - Concrete-filled tube
CFHSS - Concrete-filled hollow steel section
CHS - Circular hollow section
EC1 - Eurocode 1
EC2 - Eurocode 2
EC3 - Eurocode 3
EC4 - Eurocode 4
FC - Steel fibres reinforced concrete
FCHSC - Fibre-reinforced high strength concrete
FDM - Finite difference method
FDNY - Fire Department of the City of New York
FDS - Fire Dynamic Simulator
FEA - Finite element analysis
FEMA - Federal Emergency Management Agency
HSC - High strength concrete
HSS - Hollow steel section
ISO - International Organization for Standardization
JIS - Japanese Industrial Standards
NIST - National Institute of Standards and Technology
NRCC - National Research Council of Canada
PC - Plain concrete
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Reinforced concrete</td>
</tr>
<tr>
<td>SCC</td>
<td>Self-compacting concrete</td>
</tr>
<tr>
<td>CHS</td>
<td>Circular hollow section</td>
</tr>
<tr>
<td>SHS</td>
<td>Square hollow section</td>
</tr>
<tr>
<td>SEG</td>
<td>Shenzhen Electronics Group</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_g</td>
<td>Compartment gas temperature</td>
</tr>
<tr>
<td>t</td>
<td>Fire exposure time</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>c</td>
<td>Specific heat</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux vector per unit time</td>
</tr>
<tr>
<td>Q</td>
<td>Internal heat generation per unit volume</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity of the material</td>
</tr>
<tr>
<td>h_{net}</td>
<td>Net heat flux</td>
</tr>
<tr>
<td>h_{conv}</td>
<td>Convection heat flux</td>
</tr>
<tr>
<td>h_{rad}</td>
<td>Radiation heat flux</td>
</tr>
<tr>
<td>h_c</td>
<td>Convective heat transfer coefficient</td>
</tr>
<tr>
<td>h_g</td>
<td>Conductance for the gap consisting of air</td>
</tr>
<tr>
<td>T_g</td>
<td>Temperature of the gas near the column</td>
</tr>
<tr>
<td>T_s</td>
<td>Temperature of the column surface</td>
</tr>
<tr>
<td>φ</td>
<td>Configuration factor</td>
</tr>
<tr>
<td>ε_m</td>
<td>Emissivity of the column member</td>
</tr>
<tr>
<td>ε_f</td>
<td>Emissivity of the fire</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzman</td>
</tr>
<tr>
<td>T_r</td>
<td>Temperature of effective radiation</td>
</tr>
<tr>
<td>T_m</td>
<td>Surface temperature of the column membe</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>B</td>
<td>Width</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
</tbody>
</table>
\(\lambda_u \) - Thermal conductivity of steel

\(c_u \) - Specific heat capacity of steel

\(\theta_u \) - Temperature of steel

\(\lambda_c \) - Thermal conductivity of concrete

\(c_p \) - Specific heat capacity of concrete

\(\theta_c \) - Temperature of concrete

\(\varepsilon \) - Strain

\(\sigma \) - Stress

\(E \) - Elastic modulus

\(f_{y,\theta} \) - Effective yield strength;

\(f_{p,\theta} \) - Proportional limit;

\(E_{u,\theta} \) - Slope of the linear elastic range;

\(\varepsilon_{p,\theta} \) - Strain at the proportional limit;

\(\varepsilon_{y,\theta} \) - Yield strain;

\(\varepsilon_{l,\theta} \) - Limiting strain for yield strength;

\(\varepsilon_{u,\theta} \) - Ultimate strain.

\(\sigma_{true} \) - True stress

\(\varepsilon_{true} \) - True strain

\(\sigma_{nominul} \) - Normal stress

\(\varepsilon_{nominul} \) - Normal strain

\(\varepsilon_{plastic} \) - Plastic strain

\(\varepsilon_{elastic} \) - Elastic strain

\(f_c \) - Cylinder strength of concrete at temperature

\(f_{co} \) - Cylinder strength of concrete at room temperature

\(\varepsilon_{max} \) - Maximum strain of concrete

\(\nu \) - Poisson’s ratio

\(\beta \) - Angle of friction

\(K \) - The ratio of flow stress in tri-axial tension to compression

\(\varepsilon_c \) - Total strain;
\(\varepsilon_{th}\) - Free thermal strain

\(\varepsilon_{\sigma}\) - Instantaneous stress-related strain

\(\varepsilon_{cr}\) - Classical creep strain

\(\varepsilon_{tr}\) - Transient strain (stress and temperature dependent)

\(\varepsilon_{th}\) - Free thermal strain

\(\theta_{c0}\) - The initial temperature of concrete

\(\theta_m\) - Surface temperature of the member

\(\theta_r\) - Effective radiation temperature of the fire environment

\(A_{\text{contact}}\) - Nominal contact area

\(\Delta T\) - Additional temperature drop due to the presence of imperfect contact

\(N_{f_i,Rd}(\varepsilon)\) - Design value of the fire resistance of the column in axial compression

\(N_{f_i,cs}(\varepsilon)\) - Euler buckling load of the composite column at elevated temperature

\(N_{f_i,pl,Rd}(\varepsilon)\) - Design value of the plastic resistance to axial compression of the cross-section subjected to fire

\(\lambda\) - Relative slenderness at room temperature

\(l_\theta\) - Buckling length of column in fire

\(R\) - Standard fire resistance

\((EI)_{f_i,eff}\) - Cross-section effective flexural stiffness

\(A\) - Area of cross-section

\(f_{\phi}\) - Design strength of material at a certain temperature

\(\gamma_M\) - Partial safety factor in fire condition

\(a\) - Steel

\(c\) - Concrete

\(s\) - Reinforcing steel

\(E_{sec,\theta}\) - Secant modulus at a certain temperature

\(f_{c,\theta}\) - Design compression strength of concrete
\(\varepsilon_{c1,\theta} \) - Corresponding strain at peak stress

\(\lambda_g \) - Relative slenderness of the column at elevated temperature

\(N_{fi,pl,R} \) - The value of \(N_{fi,pl,Rd} \) when the material partial safety factors are taken as unity

\(\chi \) - Reduction coefficient from buckling curve “c”

\(A_{eq}/V \) - Section factor

\(\theta_{a,eq} \) - Equivalent temperature for the steel tube

\(\lambda_p \) - Thermal conductivity of the fire protection system

\(A_p/V \) - Section factor for steel members insulated by fire protection material

\(A_p \) - The appropriate area of fire protection material per unit length of the material

\(V \) - Volume of the member per unit length

\(d_p \) - Thickness of the fire protection material

\(\rho_a \) - Unit mass of steel

\(\theta_{a,t} \) - Ambient gas temperature at time \(t \)

\(\theta_{a,t} \) - Steel temperature at time \(t \)

\(c_p \) - Temperature independent specific heat of the fire protection material

\(\rho_p \) - Unit mass of the fire protection material

\(\theta_{c,eq} \) - Equivalent temperature of the concrete core

\(\varphi_{a,\theta} \) - Correction factor

\(B \) - Factor of fire resistance time

\(D_s \) - Width of steel tube
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MATLAB codes for circular CFHSS columns with plain concrete (Column C01)</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB codes for square CFHSS columns with plain concrete (Column S02)</td>
<td>205</td>
</tr>
<tr>
<td>C</td>
<td>Stress-strain relationship for steel elevated temperatures according to Lie</td>
<td>211</td>
</tr>
<tr>
<td>D</td>
<td>Stress-strain relationship for steel at elevated temperatures according to Yin</td>
<td>212</td>
</tr>
<tr>
<td>E</td>
<td>Stress-strain relationship for concrete at elevated temperatures according to EC2</td>
<td>214</td>
</tr>
<tr>
<td>F</td>
<td>Stress-strain relationship for concrete at elevated temperatures according to Yin</td>
<td>216</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

Over the past few decades, fire research in steel and steel-concrete composite structures has evolved tremendously from experimental measurements to computational methods (Cote, 2003). The research is driven by the need for a better understanding in the fire behaviour of building structures so that structural and economical design for fire safety can be improved. One way of measuring the fire performance of a structure is by its ability to withstand the exposure of a standard fire for a period of time without losing its structural stability and integrity. This is referred to as “fire resistance” by most building codes and material standards (Franssen & Kodur, 2009). Therefore, it is extremely important to design a building considering the fire resistances of the various building elements used in the assembly.

In construction industry, structural redundancy is the essence of high-rise building structures as it allows for the loss of one primary structural member without collapsing the entire structure. According to John Kenlon, the FDNY Chief of Department in the early 1900s, the fire induced collapse of a steel framed structure is mainly caused by the failure in columns (Hill, 2012). Moreover, the evidence from the World Trade Centre collapse indicated that the weakened columns as the impact result of aircraft fires attributed to the progressive collapse of the towers (FEMA, 2002, 2005). The brief background brought most attention to the researcher hence
launched the study in the performance of concrete-filled hollow steel section (CFHSS) columns in fire condition.

1.1.1 Advantages and Disadvantages of CFHSS Columns

Fire has destructive effect on structures as its strength and stiffness deteriorate at high temperature, consequently affecting the stability of a building. These effects dependent on the thermal and mechanical properties of the materials comprising the structural elements. Among all the elements, columns appears to be the most critical components as its failure could lead to partial or complete collapse of a building.

The basic forms of CFHSS columns can be introduced in three forms – circular, square and rectangular, as illustrated in Figure 1.1. They have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The marriage of these two building materials, viz concrete and steel, is practically intended complement the deficiency of both structural steel columns and conventional reinforced concrete. For instance, the composite column is designed in such a way that concrete is utilized to resist compression while steel in tension. Overall, the advantages of CFHSS columns can be viewed in four perspectives – structural, architectural, construction, and economical, which can be explained as follows: (Bergmann, Matsui, & Meinsma, 1995; Twilt, Hass, Klingsch, Edwards, & Dutta, 1996; Wardenier, 2001; Zhao, Han, & Lu, 2010).
From a structural aspect, the concrete core promotes a higher rigidity and load bearing capacity to the tubular section where high load is able to sustain by the slender columns without increasing the size of the cross-section. Moreover, the concrete infill also restrains any possible inward local buckling of the steel section thus increases the flexural stiffness and ultimate strength of the column in a frame. On the other hand, the steel shell provides confinement to the concrete core to prevent excessive spalling under loading condition (Jacobs & Goverdhan, 2008; Y.C. Wang, 2002). It also increases strength and ductility of the column as well as its energy-absorption capacity which makes it feasible for seismic design.

In architectural design standpoint, because extra load capacity is obtained for CFHSS columns for the same dimension column steel and column reinforced concrete section, larger usable floor space within a building is achieved due to the reduction in the required size of the cross-section. This will enhance the use of CFHSS especially in the lower storeys of tall buildings and parking garages where the columns experiences higher forces than those in storeys above. In addition, the exposed hollow sections are preferred by most architects because of aesthetic value and robustness of these columns in structural design.
In terms of construction, formwork for CFHSS column is not required because steel hollow sections provides an integral support for concrete as it hardened subsequently. This method of construction allows for much efficient in construction process as the erection of structural steel components into a steel frame can be done before or simultaneously with the casting of concrete. Also, with the inclusion of concrete in the void area of steel section, smaller columns and rapid construction are achieved, hence leads to the reduction in manpower and time of the project.

Even though the cost production of hollow sections is higher than those for conventional open sections, they offer economic benefits in other areas including those mentioned in the previous paragraphs. In addition, its lower surface area reduces painting and corrosion protection costs, thus reduces the total expenditure on construction (Wardenier, 2001).

Although CFHSS columns possess a numerous advantages as mentioned above, however, short of knowledge about the construction methods and fire dynamic design limits its application (Capilla, 2012). Although few design procedures and calculation methods have been proposed, these methods show inaccurate results at an elevated temperature (Capilla, 2012). Therefore, more studies are needed to understand the construction method and to develop design procedures for CFHSS columns.

1.1.2 Practical Applications of CFHSS Columns in Buildings

As mentioned above, CFHSS columns have high load bearing capacity and improved fire performance as compared to tubular steel sections. These advantages have led to its wide use in practical applications. Among many applications, most prominent are the high-rise buildings and bridges. Most of these bridges and buildings are located in China, Japan, USA, England and Canada as described in various publications (Capilla, 2012; Wardenier, 2001; Zhao et al., 2010). SEG Plaza in Shenzen and Wuhan international securities buildings are the examples of CFHSS column based high-rise buildings in China (Zhao et al., 2010). SEG plaza, as shown
in Figure 1.2, is 64-storey office building which employs circular shaped CFHSS columns. Further, more than 100 bridges have been built in CHINA using CFHSS columns (Zhao et al., 2010). Ikeda and Ohmiya (Ikeda & Ohmiya, 2009) reported various design applications of CFHSS columns without external fire protection in buildings of Japan during 1993 to 2004. Some of the examples are Mitsui Soko Hokozaki Building (Tokyo) and ENICOM computer centre (Tokyo). Kodur and Mackinnon (2000) presented a review of various applications of CFHSS columns in USA and Canada. Museum of flight at King Country Airport (Washington, USA) and St. Thomas elementary school (Ontario, Canada) used CFT columns to achieve high fire resistance. Some examples of used of CFHSS column buildings of London (United Kingdom) include fleet palace house and Peckham library (Hicks & Newman, 2002) as illustrated in Figure 1.3. Further, other examples of CFHSS columns in building design include Technocent building (Finland), Amsterdam mees lease building (Netherlands), and Riverside office building (Australia) (Twilt et al., 1996).
Figure 1.2 SEG Plaza (Shenzen, China)

Figure 1.3 Fleet Place House (London, UK)
1.2 Problem Statements

Structural fire design has seen a gradual transformation from prescriptive-based to performance-based approach in many places around the world including the US, UK, Spain, Australia and China (Espinós, Romero, & Hospitaler, 2010; Hong & Varma, 2009; Lu, Zhao, & Han, 2009; Zha, 2003). The prescriptive-based approach relies heavily on the results interpretation of the attained from standard fire tests. Thus, this approach is restricted to architectural and aesthetic requirements. Meanwhile, the performance-based approach requires knowledge in the principle of fire science, heat transfer, and structural mechanics to develop a numerical tool to identify the performance of a structure on fire occurrence. In that way, a through understanding in the behaviour of CFHSS columns under extreme loading and fire conditions can be attained, hence fire safety can be improved without jeopardising the design flexibility and cost for fire protection.

At present, most of the numerical tools developed in Malaysia are mathematical-based which is carried out using finite difference method (FDM) (Abd El-Ghani, 1998; Alham, 2000; Mian, 1998; Shehata, 2001). It is extremely tedious and complicated, not to mention that the results are prone to inaccuracies because of various assumptions were made to simplify the problems, for instance the mechanical and thermal interactions between steel and concrete (Ghojel, 2004). Therefore, numerical modelling is seen as an alternative approach to stimulate a realistic behaviour of CFHSS columns at elevated temperature (Espinós et al., 2010). In addition, extensive parametric studies can be carried out to explore further behaviour of CFHSS columns in order to support the fire design for columns without the execution of physical tests.
1.3 Aim and Objectives

The principal aim of this research is to develop new and efficient 3D numerical models for predicting the thermal and structural behaviour of CFHSS columns at elevated temperatures. In order to achieve this aim, the objectives are outlined as follows:

1. To develop a 3D thermal-structural model for CFHSS circular and square columns subjected to the standard fire test.

2. To verify the 3D thermal-structural model by comparison with existing experimental and numerical results.

3. To compare the accuracy of the numerical predictions with those obtained from Eurocode 4 simplified calculation model against experimental results.

4. To undertake parametric studies to examine the effect of changing important parameters on the behaviour of CFHSS columns under standard fire condition.

1.4 Research Methodology

To achieve the aforementioned objectives, the following brief research methodologies are identified herein.

1. Nonlinear finite element analysis (FEA) model by ABAQUS was carried out to calculate the temperature distribution within the cross-section and the temperature gradient along the member length.

2. Nonlinear FEA model by ABAQUS was adopted to determine the fire resistance and displacement of CFHSS column at elevated temperature.
3. Validation of the FEA model with the available test results has been done. The list of test results for the validation of FEA model are shown in Table 1.1 and 1.2, for circular and square columns, respectively. The outer diameter of the circular columns ranged from 141.3 mm to 478 mm and the steel thickness varied from 4.78 mm to 12.79 mm. The outside width of the square columns ranged from 152.4 mm to 350 mm, while the thickness of the steel wall varied from 5.3 mm to 7.7 mm. The proposed numerical models are also ranged to types of concrete (plain and bar-reinforced concrete), steel yield strength (284 MPa to 350 MPa), concrete compressive strength (18.7 MPa to 58.3 MPa), and thickness of external protection (7 mm to 17 mm).

4. Sensitivity study to eliminate the uncertainties associated with the output of the numerical model. The input parameter studies include the Poisson’s ratio of concrete, thermal conductance at the steel-concrete interface, friction coefficient at steel-concrete interface, imperfection buckling of columns, concrete plasticity model and material mechanical models at elevated temperature.

5. Comparison of the numerical model for CFHSS columns with Eurocode 4 simplified calculation model.

6. Parametric studies to explore the effect of cross-sectional size, concrete types and the thickness of external fire protection on the fire resistance of steel tube with circular and square cross-section column filled with concrete.

7. Conclusion and recommendations based on the analysis and numerical results are drawn with suggestions for further work.
1.5 **Scope and Limitation**

The scope of this research is limited to CFHSS column of circular and square shape, filled with normal strength concrete and subjected to concentric loads. The research is also limited to plain and bar-reinforced concrete fillings, steel yield strength (284 MPa to 350 MPa) and the concrete compressive strength (18.7 MPa to 58.3 MPa).

This work will focus primarily on slender columns with length of 3810 mm for predicting the behaviour of columns at elevated temperature. For circular sections, the outer diameter is ranged from 141.3 mm to 478 mm and the steel thickness varied from 4.78 mm to 12.79 mm. For square sections, the outer width is ranged from 152.4 mm to 350 mm and the thickness of the steel wall is varied from 5.3 mm to 7.7 mm.

For the extension of this work, external fire protection with varying thickness between 7 mm to 17 mm is also included in the validation process of the model. Moreover, this work will focus mainly on axial loaded columns subjected to standard fire of either ASTM E-119 (ASTM, 1990) or ISO-834 (ISO, 1980).

1.6 **Significance of Research**

The research findings from this project provide significant contribution to the understanding of the behaviour of CFHSS columns subjected to fire and axial loads. The proposed 3D numerical models for predicting the thermal and mechanical response of the column provide structural design with an advanced analysis and design tools that can be used in fire design. In addition, the incorporation of the temperature dependent formulations factors gives more realistic representation of the behaviour of axially loaded CFHSS columns at elevated temperature.
1.7 Thesis Layout

The contents of this thesis are divided into 6 chapters. Chapter 1 is the introduction part which highlighted the background of the research work, the objectives and significance of the research work. Chapter 2 presents an extensive literature reviews on experimental investigations, analytical approaches, numerical methods, and calculation models on the behaviour of CFHSS columns at elevated temperature.

Chapter 3 discusses in detail the research methodology adopted in the study. The first task focuses on developing the proposed numerical model on ABAQUS for investigating the behaviour of CFHSS column at elevated temperature. The second task focuses on developing the Eurocode 4 simplified calculation model for predicting the fire behaviour of the CFHSS column.

Chapter 4 validates the proposed numerical model with a series of fire tests by various researchers. This chapter also compares the results obtained from the proposed numerical model against those obtained from the EC4 simplified calculation model and numerical models by previous researchers.

Chapter 5 conducts parametric studies to explore the effect of cross-sectional size, concrete types and thickness of external fire protection on the fire resistance of CFHSS column by using the numerical model that was validated in the previous chapter. The study for investigating the effect of cross-sectional size consists of three cases which include: (i) equal section strength at ambient temperature, (ii) equal steel cross-sectional area, and (iii) equal concrete-cross-sectional area. Meanwhile, there are three concrete types investigated which include (i) bare, (jj) plain concrete, and (iii) reinforced concrete. Lastly, the study on effect of thickness of the protection ranged from 0 mm, 10 mm and 25 mm.

Chapter 6 presents the summary of the entire work, conclusions as well as recommendations for future work.
REFERENCES

Abd El-Ghani, B. (1998). Development of Mathematical Models with Experimental Validation to Predict the Fire Resistance of Steel I-Section Insulated with Ceramic Fiber. (M.Sc), Universiti Teknologi Malaysia.

Choi, K. (2007). Analytical and Experimental Studies on Mechanical Behavior of Confined Concrete Filled Tubular Columns. (Ph.D), University of Southern California.

Chu, T.B. (2009). Hollow Steel Section Columns filled with Self-Compacting Concrete under Ordinary and Fire Conditions. (Ph.D), University de Liege.

Han, L.H. (2001). Fire Performance of Concrete Filled Steel Tubular Beam-Columns. *Journal of Constructional Steel Research*, 57(6), 697-711. doi: http://dx.doi.org/10.1016/S0143-974X(00)00030-4

Hognestad, E. (1951). *A Study of Combined Bending and Axial Load in Reinforced Concrete Members*. (Experiment Station Bulleting No. 399), University of Illinois Engineering.

