EFFECT OF METHYL JASMONATE ON TRIGONELLINE CONTENT OF SUSPENSION CELL CULTURE OF *Abrus precatorius*

AHMAD LUTFI BIN RAMLY

 UNIVERSITI TEKNOLOGI MALAYSIA
EFFECT OF METHYL JASMONATE ON TRIGONELLINE CONTENT OF SUSPENSION CELL CULTURE OF *Abras precatorius*
To my beloved family
ACKNOWLEDGEMENT

Alhamdulillah thanks to Allah for giving me the strength to finish my research and able to write this dissertation. I am very thankful to my supervisor, Dr Azman Bin Abd Samad for highly contributing in the process of finishing my research.

I also want to express my appreciation to my fellow postgraduates’ students from Plant Biotechnology Laboratory, Faculty of Biosciences and Medical Engineering. Thanks to Zaidah, Goh Shin Yee, Farah, Victoria and Atiqah Ramly for giving me help directly or indirectly. Their tips and advice are very useful in achieving the objectives of the research.

A lot of thanks to Puan Ramlah from Faculty of Science, Universiti Teknologi Malaysia for giving me permission to use HPLC machine in the laboratory.
ABSTRACT

Trigonelline was a plant hormone that is built up in a plant from the methylation of the nitrogen atom of niacin. It was responsible for induction of G2 phase arrest in the root apices of many plant species. Trigonelline was also capable of reducing the blood sugar level and thus treating diabetes type II. In this study, effect of methyl jasmonate, MeJa (50 µM, 100 µM and 200 µM) on trigonelline content in suspension cell culture of Abrus precatorius using High Performance –Liquid Chromatography for trigonelline was investigated. The effect of different inoculum size (0.1 g and 0.5 g) on cell biomass and trigonelline content of suspension cell culture of A. precatorius was studied. Suspension cell culture of A. precatorius was developed in a 100 mL conical flask containing 30 mL MS medium supplemented with 0.5 mg/L kinetin and 0.5 mg/L 2, 4- D. Results showed that 0.5 g inoculum had higher cell biomass with maximum biomass of 0.0795 g than 0.1 g inoculum that had biomass decrement throughout the culture. Furthermore, addition of 50 µM MeJa had multiplied trigonelline content to five times (6.62 mg/L) compared to the control (1.41 mg/L) for a period of 2 weeks. The correlation coefficient test indicated that cell biomass was not correlated with trigonelline content. Different increment of cell biomass with trigonelline suggested that trigonelline was not involved in regulating cell cycle of A. precatorius. In conclusion, 0.5 g inoculum size was a better size compared to 0.1 g inoculum suspension cell culture. The optimum trigonelline during cell growth of A.precatorius was also discovered.
ABSTRAK

Trigonelin adalah hormon tumbuh-tumbuhan yang terbina dalam tumbuh-tumbuhan dari proses metilasi atom nitrogen dari niasin. Ia bertanggungjawab dalam mendorong penangkapan fasa G2 dalam pucuk akar dari pelbagai pokok. Trigonelin juga berkemampuan untuk mengurangkan kandungan gula dalam darah dengan itu mengubati penyakit kencing manis jenis II. Dalam kajian ini, kesan 50µM, 100 µM dan 200 µM metil jasmonat terhadap kandungan trigonelin dalam kultur ampaian sel Abrus precatorius dikaji menggunakan kromatografi cecair berprestasi tinggi untuk mengesan trigonelin. Kesan saiz inokulum yang berbeza (0.1 g dan 0.5 g) terhadap biomas sel dan kandungan trigonelin kultur sel ampaian A.precatorius juga dikaji. Kultur ampaian sel A.precatorius disediakan dalam 100 mL kelalang kon dengan 30 mL media MS ditambah dengan 0.5 mg/L kinetin dan 0.5 mg/L 2, 4- D. Keputusan menunjukkan 0.5 g saiz inokulum mempunyai sel biomas lebih tinggi dari 0.1 g. Selain daripada itu, penambahan 50 µM metil jasmonat meningkatkan kadar trigonelin kepada lima kali ganda (6.62 mg/L) berbanding dengan kawalan (1.41 mg/L). Ujian korelasi menunjukkan biomas sel tidak berkorelasi dengan kandungan trigonelin. Kenaikan berbeza biomas sel dengan kadar trigonelin mencadangkan trigonelin tidak terbabit dalam regulasi kitaran sel A.precatorius. Kesimpulannya, penggunaan saiz inokulum sebanyak 0.5 g adalah saiz inokulum yang lebih baik berbanding penggunaan 0.1 g untuk kultur sel ampaian. Trigonelin optimum semasa tumbesaran sel juga ditemui.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS/ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Statement of the Problem 2
1.3 Objectives 3
1.4 Scope of Study 3
1.5 Significance of Study 4

2 LITERATURE REVIEW

2.1 Botanical Aspects of *A. precatorius* 5
2.2 Studies on Medicinal Values of *A. precatorius* 6
2.3 Trigonelline as Potential Antidiabetic Compound 7
2.4 Tissue Culture of *A. precatorius* 10
2.5 Effect of Inoculum Size on Growth Pattern of Cell Culture of *A. precatorius* 11

2.6 Trigonelline Content in *A. precatorius* 12

2.7 Elicitation 12

2.7.1 Methyl Jasmonate as Elicitor 14

2.7.2 Induction of Trigonelline Content by Elicitor 15

2.7.3 Elicitation of Trigonelline Content by Methyl Jasmonate 15

3 MATERIALS AND METHODS

3.1 Plant Materials 17

3.2 Callus Induction 17

3.3 Sample Preparation for Trigonelline Detection 19

3.4 Suspension Cell Culture for Growth Profile 20

3.5 Trigonelline Elicitation by Methyl Jasmonate 21

3.6 Detection and Quantification of Trigonelline by HPLC 21

3.7 Statistical Analysis 23

4 RESULTS & DISCUSSION

4.1 Detection and Quantification of Trigonelline by HPLC 24

4.2 Effect of Inoculum Size on Cell Biomass of Cell Culture of *A. precatorius* 26

4.3 Distribution of Trigonelline Content during Cell Growth 28

4.6 Effect of Methyl Jasmonate on Biomass and Trigonelline Content 30

5 CONCLUSION

5.1 Conclusion 34

5.2 Future Work 34
REFERENCES 36
Appendices A-C 43
## LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Volume of PGR stock solution and media for specific PGR concentration in 1 L MS media</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Volume of trigonelline hydrochloride stock solution and media for specific trigonelline hydrochloride standard concentration</td>
<td>22</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A. precatorius plant</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Metabolic pathway of biosynthesis of trigonelline</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of trigonelline</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structure of methyl jasmonate</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Callus induced from shoots of A.precatorius</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Cell suspension culture of A.precatorius</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>HPLC chromatograms of trigonelline hydrochloride in standard</td>
<td>25</td>
</tr>
<tr>
<td>4.2</td>
<td>HPLC chromatograms of cell culture extract of A.precatorius</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Trigonelline hydrochloride standard curve</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Biomass accumulation of suspension cell culture of A.precatorius</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>Biomass accumulation and trigonelline content profiles of A.precatorius suspension cell cultures using 0.5g inoculum</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>Cell Biomass A. precatorius suspension cell elicited with 50µM, 100µM and 200µM methyl jasmonate</td>
<td>31</td>
</tr>
<tr>
<td>4.7</td>
<td>Trigonelline content of A.precatorius cell suspension cell culture elicited with 50µM, 100µM and 200µM methyl jasmonate</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS/ ABBREVIATIONS

± - plus minus
°C - degree celcius
% - percentage
pH - hydrogen concentration
g - gram
µM - micromolar
L - litre
mg/L - milligram per litre
µ - micro
mg/ml - milligram per millilitre
min - minute
rpm - revolutions per minute
2,4-D - 2,4-Dichlorophenoxyacetic acid
MeJa - Methyl Jasmonate
FW - Fresh weight
FBG - Fasting Blood Glucose
OGTT - Oral Glucose Tolerant Test
### LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Murashige and Skoog (MS) stock solution preparation</td>
<td>41</td>
</tr>
<tr>
<td>B</td>
<td>Preparation of Murashige and Skoog media supplied with 5 mg/L kinetin and 5mg/L 2,4-D for suspension cell culture (1L)</td>
<td>43</td>
</tr>
<tr>
<td>C</td>
<td>HPLC reading of standard curve</td>
<td>44</td>
</tr>
<tr>
<td>D</td>
<td>Preparation of different concentration of methyl jasmonate</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Disease is rapidly increasing worldwide. Hence, the development of new drugs for treating diseases undergoes a rapid phase. Unfortunately, the cost of commercial drugs is high and unaffordable for poor and moderate people. Diabetes mellitus that is a chronic disease that is caused by many factors such as inherited, acquired deficiency in insulin secretion and decreased responsiveness of the organs to secreted insulin (Ruiz et al., 2015). The prevalence of diabetes is increasing globally for all age-groups. Number of people with diabetes has increased from 2.8% in 2000 to 4.4% in 2030 (Wild et al., 2004). Example of drugs available in market for treating diabetes are sulphonylureas and biguanides (Waring, 2012). Since the cost of antidiabetic drugs are high and tendencies to adverse effect, the demand for traditional medicine has increased. A discovery of potential new compound for diabetes treatment i.e. identification of antidiabetic compound in a plant is exploited.

*A. precatorius* L. is a woody climber plant that commonly known as Crab’s eye, rosary pea and in Malay known as Akar Saga is a perennial climber that can be found in tropical and subtropical regions (Yonemoto et al., 2014). The seeds and flowers of
A. precatorius is found to be multicolour. The leaves are even-pinnate to 10cm long with 8-20 pairs. The plant usually grows in bushes and hedges up to 1000 m elevation (Balachandran & Rajendiran, 2015). A. precatorius is well known for its great medicinal purpose (Khare, 2004) as it is used in treatment of gonorrhoea, jaundice and skin diseases (Gul et al., 2013a). The use of the plant worldwide has a negative impact on the plant as the amount of the plant in nature is decreasing (Perveen et al., 2013).

Example of the compound that has been discovered to possess antidiabetic property is trigonelline. Trigonelline is a secondary plant hormone that has been reported to have anticarcinogenic and antidiabetic activities (Ghule et al., 2012). Cell cultures of Trigonella foenum-graecum had been found to increase the production of trigonelline compared with the differentiated plant (Radwan, 1980). Trigonelline increment was manipulated in Pinellia Ternata by elicitation (Liu et al., 2010).

Application of salicylic acid to peppermint increased the antidiabetic potential by increasing the trigonelline content (Figueroa-Perez et al., 2015). Elicitation by using MeJa to T. foenum-graecum cell suspension cultures abled to increase the trigonelline production (Ahmed and Husam, 2011).

Trigonelline was successfully isolated from seeds of A. precatorius. (Ghosal and Dutta, 1970). Till now, there was no report on effect of elicitor on trigonelline content of A. precatorius. In this study, an attempt was made to enhance trigonelline content in A. precatorius cell suspension culture using methyl jasmonate.

1.2 Statement of the Problem

A. precatorius is popular medicinal plant in India (Khare, 2004). The plant had been discovered with the presence of trigonelline that is one of active compounds in diabetes treatment. However, the rapid use of the plant had decreased its population worldwide. The use of the plant without control for disease treatment will decrease the plant population and the true potential of the plant cannot be fully utilized. Karwasara
et al., (2011) has established a protocol for cell suspension culture of *Abrus precatorius* by using 2.0 g inoculum size.

The content of trigonelline in *A. precatorius* must be increased in quantity to increase the ability of the plant to produce these compounds. The existing population of *A. precatorius* must not be disturbed in increasing the trigonelline production in the plant. Therefore, the accurate protocol in increasing the cell biomass and increasing the amount of trigonelline must be established.

### 1.3 Objectives

1. To investigate the effect of inoculum size on cell biomass of suspension cell culture of *A. precatorius*.
2. To determine trigonelline content at different stages of *A. precatorius* cell culture.
3. To investigate the effect of methyl jasmonate on biomass and trigonelline contents of suspension cell culture of *A. precatorius*.

### 1.4 Scope of the Study

In this study, the best inoculum size for suspension cell culture for biomass accumulation identification was identified by using 0.1g and 0.5g of inoculum size in media supplied with 5mg/L kinetin and 5 mg/L 2, 4-D in a room temperature on a gyratory shaker. Other than that, the trigonelline content at different stages of *A. precatorius* cell growth was investigated. The amount of trigonelline in
*A. precatorius* suspension cell culture was manipulated by using MeJa as elicitor with concentration of 50µM, 100µM and 200 µM.

### 1.5 Significance of Study

Identification of inoculum size for obtaining the growth pattern of *A. precatorius* can make sure to understand the behaviour of the cells when different inoculum size was used. The relationship of biomass with the trigonelline content can be understood and the growth phase where the optimum trigonelline production can be identified.

This study was conducted in effort to find a better or alternative source of trigonelline in plant. The difference in content of trigonelline in *A. precatorius* with other plants reported with trigonelline content after elicitation was also investigated. The small scale of the research that was in 30mL MS media can be used as a guide in up-scaling the production of trigonelline in *A. precatorius*. 
REFERENCES


Gul, M. Z., Ahmad, F., Kondapi, A. K., Qureshi, I. A., & Ghazi, I. A. (2013a). Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts -


