MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS OF SPIKING NEURAL NETWORKS

ABDULRAZAK YAHYA SALEH

UNIVERSITI TEKNOLOGI MALAYSIA
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS OF SPIKING NEURAL NETWORKS

ABDULRAZAK YAHYA SALEH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

JUNE 2015
To my beloved parents, wife, children, brothers and my sisters
ACKNOWLEDGEMENT

Firstly, All my praise and thanks are owed to Allah, who honored me the health and persistence who substantially depends on Him.

I am very grateful to my main supervisor, Prof. Dr. Siti Mariyam Shamsuddin. I wish to express my sincere appreciation to her for all her kind guidance and inspiration to make this research possible. Her personality, enthusiasm, patience and intellectual spirit made her a great supervisor and invaluable role model for my professional career.

I am also grateful to my co-supervisor Dr. Haza Nuzly Bin Abdull Hamed for his precious advices and comments and knowledge sharing in spiking neural network. Special thanks for his generous help throughout the duration of this study.

Many thanks to the Ministry of Higher Education (MOHE) under the research grant that have partially paid from LRGS Grant R.J130000.7828.4L805 - MULTI-VARIATE PATTERN ANALYSIS FOR FORENSIC IDENTIFICATION AND VERIFICATION for the support during my study.

In addition, I am extremely grateful to my family for unlimited support and encouragement during this research. My sincere appreciation also extends to UTM Big Data Center, Soft Computing Research Group (SCRG) and all my colleagues for the support and incisive comments in making this study a success. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.
Spiking neural network (SNN) is considered as the third generation of artificial neural networks. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Among the many important issues that need to be explored in ESNN are determining the optimal pre-synaptic neurons and parameters values for a given data set. Moreover, previous studies have not investigated the performance of the multi-objective approach with ESNN. In this study, the aim is to find the optimal pre-synaptic neurons and parameter values for ESNN simultaneously by proposing several integrations between ESNN and differential evolution (DE). The proposed algorithms applied to address these problems include DE with evolving spiking neural network (DE-ESNN) and DE for parameter tuning with evolving spiking neural network (DEPT-ESNN). This study also utilized the approach of multi-objective (MOO) with ESNN for better learning structure and classification accuracy. Harmony Search (HS) and memetic approach was used to improve the performance of MOO with ESNN. Consequently, Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MODE-ESNN), Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (HSMODE-ESNN) and Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) were applied to improve ESNN structure and accuracy rates. The hybrid methods were tested by using seven benchmark data sets from the machine learning repository. The performance was evaluated using different criteria such as accuracy (ACC), geometric mean (GM), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and average site performance (ASP) using k-fold cross validation. Evaluation analysis shows that the proposed methods demonstrated better classification performance as compared to the standard ESNN especially in the case of imbalanced data sets. The findings revealed that the MEHSMODE-ESNN method statistically outperformed all the other methods using the different data sets and evaluation criteria. It is concluded that multi objective proposed methods have been evinced as the best proposed methods for most of the data sets used in this study. The findings have proven that the proposed algorithms attained the optimal pre-synaptic neurons and parameters values and MOO approach was applicable for the ESNN.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Overview 1
1.2 Problem Background 3
1.3 Problem Statement 6
1.4 Research Aim 8
1.5 Research Objectives 9
1.6 Research Scope 9
1.7 Research Methodology Overview 10
1.8 Summary of Research Contributions 12
1.9 Thesis Outline 13
2 LITERATURE REVIEW

2.1 Overview of Spiking Neural Network

2.1.1 Introduction to SNN

2.1.2 Neuron models

2.1.2.1 Hodgkin-Huxley model

2.1.2.2 Izhikevich SNN model

2.1.2.3 Leaky-integrate-and-fire model

2.1.2.4 Spike response model (SRM)

2.1.2.5 Thorpe model

2.1.3 Neuronal coding

2.1.3.1 Temporal coding

2.1.3.2 Rate coding

2.1.3.3 Population coding

2.1.4 Learning methods

2.1.4.1 Unsupervised learning

2.1.4.2 Supervised learning

2.1.5 SNN types/architectures

2.1.5.1 ESNN

2.1.5.2 SpikeProp

2.1.5.3 Spiking-timing dependent plasticity (STDP)

2.1.5.4 Spatio-temporal pattern recognition

2.2 Multi-Objective Evolutionary Algorithms (EAs)

Optimization

2.2.1 Multi-objective optimization (MOO)

2.2.1.1 Definition of a MOO problem

2.2.1.2 Search and decision making

2.2.1.3 Methods of MOO algorithms

2.2.2 EA algorithms

2.2.2.1 Differential Evolution (DE)

2.2.2.2 Harmony Search (HS)

2.2.2.3 Memetic Technique
2.2.3 Discussion of classification enhancement 45
2.3 Related Work and Discussion 45
2.4 Summary 53

3 RESEARCH METHODOLOGY 55
3.1 Introduction 55
3.2 General Research Framework 55
 3.2.1 Phase1: Research Design 58
 3.2.1.1 Improvement of Overall Research Plan 58
 3.2.1.2 Improvement of operational framework and algorithms for proposed methods 58
 3.2.2 Phase2: Experimental Design 63
 3.2.2.1 Data set Preparation 63
 3.2.2.2 Learning Phase 69
 3.2.3 Phase3: Results Evaluation and Comparison 69
 3.2.3.1 Performance Measures 69
 3.2.3.2 Statistical test 72
3.3 Summary 72

4 PROPOSED HYBRID METHODS FOR EVOLVING SPIKING NEURAL NETWORK 73
4.1 Introduction 73
4.2 Enhancement of ESNN Structure by Differential Evolution (DE-ESNN) for Pre-Synaptic Neurons 74
4.3 Parameter Optimization of DE-ESNN (DEPT-ESNN) 77
4.4 Experimental Study 80
 4.4.1 Experimental design 80
 4.4.2 Analysis of the proposed methods using k-fold cross-validation 81
 4.4.2.1 Results and analysis of ESNN 82
6 COMPARATIVE STUDY OF THE PROPOSED METHODS

6.1 Introduction

6.2 Analysis of the Proposed Methods on the Single and Multi-Objective Hybrid

6.3 Analysis of the Proposed Methods with Several Data Mining Algorithms

6.4 Analysis of the Proposed Methods with Various Classifiers

6.5 Analysis of the Proposed Methods Based on Computational Time and Convergence Time

6.5.1 Analysis of the proposed methods based on computational time

6.5.2 Comparison with related works based on computational time

6.6 Statistical Analysis of the Proposed Hybridisation Models with ESNN

6.7 Summary

7 CONCLUSION AND FUTURE WORK

7.1 Introduction

7.2 Thesis Summary

7.3 Research Contributions

7.4 Future Work

REFERENCES

Appendix A
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hodgkin-Huxley parameters (Gerstner and Kistler, 2002)</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Description of parameters of Izhikevich model</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Description of parameters of the HSA algorithm</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of fashionable approaches in SNN research</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of review on SNNs</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Framework of the study</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall research plan</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of data sets which used in this study</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameter settings for the proposed algorithms</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of training error, testing error and value of parameters for ESNN</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>(continued)</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of SEN, SPE, GM and ACC for ESNN</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Results of NPV, PPV and ASP for ESNN</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of training error, testing error and value of parameters for DE-ESNN</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of SEN, SPE, GM and ACC for DE-ESNN</td>
<td>86</td>
</tr>
<tr>
<td>4.7</td>
<td>Results of NPV, PPV and ASP for DE-ESNN</td>
<td>87</td>
</tr>
</tbody>
</table>
4.8 Results of training error, testing error and value of parameters for DEPT-ESNN
4.9 Results of SEN, SPE, GM and ACC for DEPT-ESNN
4.10 Results of NPV, PPV and ASP for DEPT-ESNN
4.11 Friedman descriptive statistics of the hybrid proposed algorithms
4.12 Friedman test statistics of the hybrid proposed algorithms
5.1 Parameter settings for MOO proposed algorithms
5.2 Results of training error, testing error and number of parameters for MODE-ESNN
5.2 (continued)
5.3 Results of SEN, SPE, GM and ACC for MODE-ESNN
5.4 Results of NPV, PPV and ASP for MODE-ESNN
5.5 Results of training error, testing error and number of parameters for HSMODE-ESNN
5.6 Results of SEN, SPE, GM and ACC for HSMODE-ESNN
5.7 Results of NPV, PPV and ASP for HSMODE-ESNN
5.8 Results of training error, testing error and number of parameters for MEHSMODE-ESNN
5.9 Results of SEN, SPE, GM and ACC for MEHSMODE-ESNN
5.10 Results of NPV, PPV and ASP for MEHSMODE-ESNN
5.11 Friedman descriptive statistics of MOO proposed algorithms
5.12 Friedman test statistics of the MOO proposed algorithms
6.1 Comparison of results of all proposed algorithms in terms of the modulation factor parameter (Mod) for 10-fold cross-validation
6.2 Comparison of results of all proposed algorithms in terms of the similarity value parameter (Sim) for ten-fold cross-validation

6.3 Comparison of results of all proposed algorithms in terms of the proportion factor parameter (Threshold) for ten-fold cross-validation

6.4 Comparison of results of all proposed algorithms in terms of the ESNN structure (pre-synaptic neurons) for ten-fold cross-validation

6.5 Sensitivity analysis of all proposed algorithms for ten-fold cross-validation

6.6 SPE analysis for all proposed methods for ten-fold cross-validation

6.7 GM analysis for all proposed methods for ten-fold cross-validation

6.8 Accuracy analysis for all proposed methods for ten-fold cross-validation

6.9 NPV analysis for all proposed methods for ten-fold cross-validation

6.10 PPV analysis for all proposed methods for ten-fold cross-validation

6.11 ASP analysis for all proposed methods for ten-fold cross-validation

6.12 Summary analysis of all proposed methods

6.12 (Continued)

6.13 Description In-depth of data sets which used in this study

6.14 Summary of performance evaluation on the proposed methods for each data sets

6.15 Description of KEEL data mining algorithm (Alcalá et al., 2011)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.16</td>
<td>Results of accuracy of training performance</td>
<td>154</td>
</tr>
<tr>
<td>6.17</td>
<td>Results of accuracy of testing performance</td>
<td>155</td>
</tr>
<tr>
<td>6.18</td>
<td>Results of different measures of classification performance of all proposed methods with some standard classifiers</td>
<td>159</td>
</tr>
<tr>
<td>6.18</td>
<td>(Continued)</td>
<td>160</td>
</tr>
<tr>
<td>6.18</td>
<td>(Continued)</td>
<td>161</td>
</tr>
<tr>
<td>6.19</td>
<td>Computational time (in seconds) for training the proposed algorithms</td>
<td>169</td>
</tr>
<tr>
<td>6.20</td>
<td>Computational time (in seconds) for testing the proposed algorithms</td>
<td>169</td>
</tr>
<tr>
<td>6.21</td>
<td>Summary of computational time the proposed and existing methods</td>
<td>170</td>
</tr>
<tr>
<td>6.21</td>
<td>(Continued)</td>
<td>171</td>
</tr>
<tr>
<td>6.22</td>
<td>Friedman descriptive statistics of the hybrid proposed algorithms</td>
<td>173</td>
</tr>
<tr>
<td>6.23</td>
<td>Friedman test statistics of the hybrid proposed algorithms</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scenario guides to the research problem</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow of research methodology phases</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary of research contributions</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>A general overview of the literature review of this study</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic representation of SNN. Redrawn from (Gerstner and Kistler, 2002)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Diagram of Hodgkin-Huxley model (Gerstner and Kistler, 2002).</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Parameters of Izhikevich model (Izhikevich, 2010).</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Diagram of the LIF model (Bishop and Maass, 1999)</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>GRF encoding. (Meftah et al., 2010)</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>A simplified architecture of ESNN (Hamed et al., 2009a)</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Flowchart for training of DE (Storn and Price, 1997)</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>Pseudo-code of standard HSA</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Flowchart for training of HS</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>Pseudo-code of MA (Elbeltagi et al., 2005)</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Framework of the study</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic of the proposed methods</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>N-fold cross-validation</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Visual summary of the hybrid proposed methods</td>
<td>74</td>
</tr>
</tbody>
</table>
4.2 Schematic representation of hybrid DE-ESNN learning
4.3 Population encoding method.(Schliebs et al., 2009b)
4.4 The DE candidate structure in DE-ESNN framework
4.5 Process of hybrid DEPT-ESNN learning
4.6 DE candidate structure in DEPT-ESNN framework
4.7 Comparison of the DEPT-ESNN for ten-fold cross-validation in terms of parameter analysis
4.8 Comparison of the proposed methods in terms of convergence time for the appendicitis data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.9 Comparison of the proposed methods in terms of convergence time for the Haberman data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.10 Comparison of the proposed methods in terms of convergence time for the heart data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.11 Comparison of the proposed methods in terms of convergence time for the hepatitis data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.12 Comparison of the proposed methods in terms of convergence time for the ionosphere data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.13 Comparison of the proposed methods in terms of convergence time for the iris data set: (a) DE-ESNN, (b) DEPT-ESNN.
4.14 Comparison of the proposed methods in terms of convergence time for the liver data set: (a) DE-ESNN, (b) DEPT-ESNN.
5.1 Summary of the proposed MOO methods
5.2 Schematic representation of the proposed MODE-ESNN
5.3 Flow chart of the hybrid HSMODE-ESNN
5.4 Schematic representation of the proposed MEHSMODE-ESNN
5.5 Comparison of the MODE-ESNN for ten-fold cross-validation in terms of parameter analysis
5.6 Comparison of the HSMODE-ESNN for ten-fold cross-validation in terms of parameter analysis
5.7 Comparison of the MEHSMODE-ESNN for ten-fold cross-validation in terms of parameter analysis
5.8 Evolution of accuracy and pre-synaptic neurons on (a) Appendicitis, (b) Haberman, (c) Iris from the proposed method MODE-ESNN.
5.9 Comparison of MOO methods with ESNN in terms of convergence time for the appendicitis data set
5.10 Comparison of MOO methods with ESNN in terms of convergence time for the Haberman data set
5.11 Comparison of MOO methods with ESNN in terms of convergence time for the heart data set
5.12 Comparison of MOO methods with ESNN in terms of convergence time for the hepatitis data set
5.13 Comparison of MOO methods with ESNN in terms of convergence time for the ionosphere data set
5.14 Comparison of MOO methods with ESNN in terms of convergence time for the Iris data set
5.15 Comparison of MOO methods with ESNN in terms of convergence time for the liver data set
6.1 A comparison of the proposed methods for 10-fold cross-validation in terms of Mod parameter analysis
6.2 Comparison of the proposed methods for 10-fold cross-validation in terms of Sim parameter analysis
6.3 Comparison of the proposed methods for ten-fold cross-validation in

6.4 Comparison of the proposed methods for ten-fold cross-validation in terms of pre-synaptic neurons analysis

6.5 Comparison of the proposed methods for ten-fold cross-validation in terms of sensitivity analysis

6.6 Comparison of the proposed methods for ten-fold cross-validation in terms of SPE analysis

6.7 Comparison of the proposed methods for ten-fold cross-validation in terms of GM analysis

6.8 Comparison of the proposed methods for ten-fold cross-validation in terms of accuracy analysis

6.9 Comparison of the proposed methods for ten-fold cross-validation in terms of NPV analysis

6.10 Comparison of the proposed methods for ten-fold cross-validation in terms of PPV analysis

6.11 Comparison of the proposed methods for ten-fold cross-validation in terms of ASP analysis

6.12 Average training accuracy of proposed methods with data mining methods

6.13 Average testing accuracy of proposed methods with data mining methods

6.14 Average training accuracy of proposed methods with various classifiers and data mining methods

6.15 Average testing accuracy of proposed methods with various classifiers and data mining methods

6.16 Average classification's measure performance of proposed methods with some standard classifiers for the appendicitis data set
6.17 Average classification's measures performance of proposed methods with some standard classifiers for the Haberman data set

6.18 Average classification's measures performance of proposed methods with some standard classifiers for the heart data set

6.19 Average classification's measures performance of proposed methods with some standard classifiers for the hepatitis data set

6.20 Average classification's measures performance of proposed methods with some standard classifiers for the ionosphere data set

6.21 Average classification's measures performance of proposed methods with some standard classifiers for the iris data set

6.22 Average classification's measures performance of proposed methods with some standard classifiers for the liver data set

6.23 Performance comparisons of the proposed and existing methods

7.1 Schematic representation of the research objectives achieved
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Accuracy</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>ASP</td>
<td>Average Site Performance</td>
</tr>
<tr>
<td>BP</td>
<td>Back-Propagation</td>
</tr>
<tr>
<td>CM</td>
<td>Current method (ESNN)</td>
</tr>
<tr>
<td>CPSO</td>
<td>Cooperative Particle Swarm Optimization</td>
</tr>
<tr>
<td>DE</td>
<td>Differential Evolution</td>
</tr>
<tr>
<td>DE-ESNN</td>
<td>Differential Evolution with Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>DEPT-ESNN</td>
<td>Differential Evolution for Parameter Tuning with Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>DM</td>
<td>Decision Making</td>
</tr>
<tr>
<td>EAs</td>
<td>Evolutionary Algorithms</td>
</tr>
<tr>
<td>ErrR</td>
<td>Error Rate</td>
</tr>
<tr>
<td>ESNN</td>
<td>Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FNR</td>
<td>False Negative Rate</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>FPR</td>
<td>False Positive Rate</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GM</td>
<td>Geometric Mean</td>
</tr>
<tr>
<td>GRF</td>
<td>Gaussian Receptive Fields</td>
</tr>
<tr>
<td>HM</td>
<td>Harmony Memory</td>
</tr>
<tr>
<td>HMCR</td>
<td>Harmony Memory Considering Rate</td>
</tr>
<tr>
<td>HMS</td>
<td>Harmony Memory Size</td>
</tr>
<tr>
<td>HS</td>
<td>Harmony Search algorithm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HSA</td>
<td>Harmony Search Algorithm</td>
</tr>
<tr>
<td>HSMODE-ESNN</td>
<td>Harmony Search Multi objective Differential Evolution with Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>LTD</td>
<td>Long Term Depression</td>
</tr>
<tr>
<td>LTP</td>
<td>Long Term Potentiation</td>
</tr>
<tr>
<td>MEHSMODE-ESNN</td>
<td>Memetic Harmony Search Multi objective Differential Evolution with Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>MLP</td>
<td>Multilayer Perceptron Network</td>
</tr>
<tr>
<td>Mod</td>
<td>Modulation Factor</td>
</tr>
<tr>
<td>MODE-ESNN</td>
<td>Multi objective Differential Evolution with Evolving Spiking Neural Network</td>
</tr>
<tr>
<td>MOEAs</td>
<td>Multi-objective evolutionary algorithms</td>
</tr>
<tr>
<td>MOGA</td>
<td>Multi objective genetic algorithm</td>
</tr>
<tr>
<td>MOO</td>
<td>Multi-Objective Optimization</td>
</tr>
<tr>
<td>MuSpiNN</td>
<td>Multi-Spiking Neural Network</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative Predictive Value</td>
</tr>
<tr>
<td>NRU</td>
<td>No right to use</td>
</tr>
<tr>
<td>PAR</td>
<td>Pitch Adjusting Rate</td>
</tr>
<tr>
<td>PM</td>
<td>Proposed Method</td>
</tr>
<tr>
<td>PNNs</td>
<td>Probabilistic Neural Networks</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Predictive Value</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>QiPSO</td>
<td>Quantum-inspired Particle Swarm Optimization</td>
</tr>
<tr>
<td>r_accept</td>
<td>Accepting Rate</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SEN</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>SI</td>
<td>Swarm Intelligence</td>
</tr>
<tr>
<td>Sim</td>
<td>Neuron Similarity Value</td>
</tr>
<tr>
<td>SNN</td>
<td>Spiking Neural Network</td>
</tr>
<tr>
<td>SO</td>
<td>Single Objective</td>
</tr>
<tr>
<td>SOM-AC</td>
<td>Self-Organizing Map with modified adaptive coordinates</td>
</tr>
<tr>
<td>SPE</td>
<td>Specificity</td>
</tr>
<tr>
<td>SRM</td>
<td>Spike Response Model</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>STDP</td>
<td>Spike Time Dependent Plasticity</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>SWRNN</td>
<td>Spiking Wavelet Radial Basis Neural Network</td>
</tr>
<tr>
<td>Threshold</td>
<td>Proportion Factor</td>
</tr>
<tr>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>TNR</td>
<td>True Negative Rate</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive</td>
</tr>
<tr>
<td>TPR</td>
<td>True Positive Rate</td>
</tr>
<tr>
<td>TS</td>
<td>Tabu Search</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data distribution</td>
<td>191</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Classification of patterns is vital for several data mining processes. Classification is one of the most commonly observed processing tasks for a decision support system (Ahmed et al., 2013a). There are many areas in life which need classification such as medical diagnoses, medicine, science, industry, speech recognition and handwritten character recognition. Among feasible classifiers, artificial neural network (ANN) classifiers have proved to be one of the most robust classification systems; their ability to deal with noisy input patterns and to handle both noisy and continuous data demonstrates their use as an important tool for classification (Mitchell and Michell, 1997).

ANNs are amongst the most well-known brain computational models and ANN solves problems that are based on standard algorithmic techniques. ANNs can be utilized in pattern recognition, generalization, perception and non-linear control. Action potentials or spikes are responsible for all communications between neurons; however, individual spikes in ANN models are averaged out over time. All interactions are divided by the mean firing rate of the neurons. Furthermore, they are computationally more powerful than ANNs, which use mean firing rates (Maass and Bishop, 2001).

Due to its effectiveness in ANNs, the sigmoidal neuron model is considered to be one of the best models of the biological neuron. Several vital applications of ANNs have been built by rate modeling, which means a single biological neuron
releases action potentials (spikes) as a monotonically increasing function of input-match. From another point of view, explorations of the computational power in single spikes have been undertaken due to the spiking nature of biological neurons. Bohte et al. (2002a) prove that more powerful computation can be found through individual spike times rather than sigmoidal activation functions.

Spiking neural networks (SNNs), the third generation of ANNs, play an essential role in biological information processing (Gerstner and Kistler, 2002). Compared with ANNs, which use rate coding for neuronal activity representation, spiking models provide an in-depth description of biological neuronal behavior. More information has been used with the average firing rate for computations with real neurons. Furthermore, instead of rate coding, the difference in firing times may be used (Belatreche et al., 2006).

Although there are many models of SNN, the evolving spiking neural network (ESNN) is used widely in recent research. The ESNN has several advantages (Schliebs et al., 2009c) including being a simple, efficient neural model and trained by a fast one-pass learning algorithm. The evolving nature of the model can be updated whenever new data becomes accessible with no requirement to retrain earlier existing samples. However, the ESNN model is affected by the choice of parameter; the correct selection of parameters allows the network to evolve towards reaching the best structure, thus guaranteeing the best output. For this reason, an optimizer is needed to find the best combination of parameters.

Optimization has been used to enhance the ESNN algorithm. Choosing a good optimization algorithm for real-world applications is necessary, especially for optimal solutions of an ESNN. Evolutionary algorithms (EAs), mainly differential evolution (DE), are common competitors in optimization problems because of the following characteristics: simpler implementation, better performance, very few control parameters and low space complexity (Abbass, 2001; Das and Suganthan, 2011). Therefore, DE is conducted to enhance ESNN algorithms. However, many real-world optimization problems include several contradictory objectives. Rather than single optimization, multi-objective optimization (MOO) can be utilized as a set of optimal solutions to solve these problems. Every MOO solution appears to be a
new trade-off between the objectives. The key objective of MOO is to improve ESNN optimal solutions of both structure and classification accuracy. In addition, optimization of both accuracy and complexity leads to generalization.

The MOO approach is preferred to algorithms of traditional learning for a number of reasons. First, as a result of using MOO, a good performance of these learning algorithms can be achieved (Abbass, 2003b). Second, various objectives are taken into consideration in the generation of multiple learning models such as accuracy, complexity (Igel, 2005; Jin, 2006; Jin et al., 2004), interpretability and accuracy (Jin et al., 2005), multiple error measures (Fieldsend and Singh, 2005). Third, it is superior to build learning ensembles to use models that are produced using MOO (Abbass, 2003a; Chandra and Yao, 2004; Jin et al., 2004). The important goal of the MOO algorithm is to find a set of solutions from which the best one is chosen. Based on Tan et al. (2001), the ability of EAs to search for optimal solutions gives them the priority to be selected in MOO problems. EAs have the ability to explore different parts of the related algorithm in the optimal set because of the population-based algorithms.

Moreover, one of the EAs i.e. harmony search (HS) algorithm was utilized to overcome problems of convergence rate at finding the global minimum of DE (Gao et al., 2014; Purnomo and Wee, 2014; Wang and Guo, 2013). Subsequently, backpropagation (BP) was used to speed up convergence known as a memetic approach.

1.2 Problem Background

In SNN, the behavior which is archived in topology is like that of Kohonen’s self-organization map and can be used effectively in character recognition (Buonomano and Merzenich, 1999), classifications and dynamic path planning (Yang and Luo, 2004). Consequently, SNNs have been utilized as a vital method for classification. Many types of SNN are used for classification problems. Bohte et al. (2002a) proposed a supervised learning algorithm, spike backpropagation
(SpikeProp), using spike-time encoding based on error BP, which is used for solving classification problems. Schrauwen et al. (2004) proposed many learning rules to extend SpikeProp for good learning of spike times. Ghosh-Dastidar et al. (2009) introduced a multi-SpikeProp for supervised learning of spike patterns in multysynapse transmission (Bohte et al., 2002b). Ahmed et al. (2013a) proposed and presented several methods for classification problems for an improved SpikeProp by particle swarm optimization (PSO) and angle-driven dependency learning rate. Ahmed et al. (2014) mentioned that the most important challenge is to find out efficient learning rules that might take advantage of the specific features of SNNs while keeping the advantageous properties (general-purpose, easy-to-use, available simulators etc.) of traditional connectionist models.

There have been many attempts to improve new models of SNNs. Wysoski et al. (2006c) proposed a new model type, ESNN. Recently, a few studies on the hybridization of the ESNN algorithm have been implemented. A novel supervised learning algorithm combined with PSO for this model ESNN has been introduced by Hamed et al. (2011a).

The most significant problem facing these recent studies is to determine the optimal number of pre-synaptic neurons for a given data set (Hamed et al., 2011a). The number of pre-synaptic neurons is required before the ESNN structure can be constructed. This problem is similar to identifying the number of hidden nodes in multilayer perceptron (MLP). Based on the work by Hamed (2012), a smaller number of pre-synaptic neurons cause fewer input spikes to be generated and may subsequently affect learning accuracy, while a larger number increases computational time. Evolving processes are difficult to model as there might be no prior knowledge for some parameters (Kasabov, 2003). Figure 1.1 explains the scenario which leads to the problem settled by this research. In Figure 1.1 the challenges of ESNN model and the limitation of existing model are revealed.
Evolving spiking neural network (ESNN)

1. ESNN cannot identify number of pre-synaptic neurons which is required before the ESNN structure
2. ESNN cannot identify the optimum values of parameters
3. Difficulty in achieving optimization trade-off between accuracy and ESNN structure.

What do we need?
A sufficient solution that guarantees the optimum number of pre-synaptic neurons, optimum values of ESNN parameters and high performance of classification accuracy.

Limitations of existing ESNN model
1. Predetermined number of pre-synaptic neurons
2. Predetermined values of ESNN parameters.

Challenges of ESNN model
1. Fixed number of pre-synaptic neurons affects the ESNN performance
2. ESNN performance is influenced by fixed values of its parameters.
3. Single optimization has an impact on performance of classification accuracy.

Required solution should guarantee
2. Improved ESNN structure (optimum pre-synaptic neurons).

Figure 1.1 Scenario guides to the research problem

The scenario shown in Figure 1.1 draws attention to the most important requirements that should be taken into consideration during the design of the solution.
According to Watts (2009), the automatic selection of evolving connectionist systems (ECOS) training parameters would be a significant advantage. Therefore, it would be interesting to choose an optimization technique to carry out this parameter adaptation. Among the various optimization techniques, EAs have been used to solve learning problems when applied to the ESNN model. The significance of using EAs is their ability to adapt to a varying environment (Fernandez Caballero et al., 2010); that is why it is a common optimizer in many classification models such as ANNs (da Silva et al., 2010; Mineu et al., 2010), wavelet neural networks (Dheeba and Selvi, 2012) and support vector machine (SVM) (Zhou et al., 2007). To capitalize on the particular advantage of DE, it can be an attractive method to optimize pre-synaptic neurons and to find trade-off solutions to overcome the problems of MOO.

A few studies have evaluated multi-objective evolutionary algorithm (MOEAs) methods with SNN such as multi-objective genetic algorithm (MOGA) with SpikeProp and showed that this algorithm performs well (Jin et al., 2007a). As Yee and Teo suggested in (2013) multi-objective techniques could generate better solutions in SNNs. Therefore, this research improved new hybrid methods with other types of SNNs, for example ESNN with MOEAs such as multi-objective differential evolution with evolving spiking neural network (MODE-ESNN), harmony search multi-objective differential evolution with evolving spiking neural network (HSMODE-ESNN) and memetic harmony search multi-objective differential evolution with evolving spiking neural network (MEHSMODE-ESNN). The proposed methods aim to create a trade-off between the structures of ESNN and the accuracy of testing data of ESNN.

1.3 Problem Statement

Issue 1: Recently, ESNNs have attracted extensive research attention because of the multiple advantages they offer compared to others models (Batllori et al., 2011; Kasabov, 2012; Kasabov et al., 2014; Mohemmed et al., 2013; Murli et al., 2014; Nuntalid et al., 2011a; Schliebs and Kasabov, 2013). Among the many real issues that need to be explored in ESNN, determining the optimal number of pre-
synaptic neurons for a given data set is the most important one (Hamed, 2012; Kasabov et al., 2014). The number of pre-synaptic neurons is required before the ESNN structure can be constructed. This problem is similar to identifying the number of hidden nodes in MLP. Fewer pre-synaptic neurons cause the generation of fewer input spikes, which may subsequently affect learning accuracy, while more pre-synaptic neurons increase computational time. Additionally, each of the methods has a number of parameters which are currently set by hand, based on performance with the training data set. Therefore, the automation of the process of parameter selection is another challenge (Kasabov, 2012; Kita, 2011; Pears et al., 2013; Yu et al., 2014).

Issue 2: Another real issue of the ESNN is achieving an optimized balance between accuracy and the network structure. Several integrations between EAs and Swarm Intelligence (SI) strategies with ESNN have been performed such as: (Hamed et al., 2009a; Schliebs et al., 2009b; Schliebs et al., 2010a). However, GA has some shortcomings such as more predefined parameters, competing conventions and premature convergence problem (Kim et al., 2005; Sahab et al., 2005). Nevertheless, no specific algorithm can achieve the best performance for particular problems as supposed to the 'no free lunch theorem' (Wolpert and Macready, 1997). On the other hand, the many advantages of DE compared to PSO and GA, which include being much simpler to implement, much better performance, very few control parameters and low space complexity (Abbass, 2001; Das and Suganthan, 2011) motivate research in utilizing this hybridization

Therefore, in this thesis, all the hybrid proposed methods: differential evolution with evolving spiking neural network (DE-ESNN), differential evolution for parameter tuning with evolving spiking neural network (DEPT-ESNN), multi objective differential evolution with evolving spiking neural network (MODE-ESNN), harmony search multi objective differential evolution with evolving spiking neural network (HSMODE-ESNN) and memetic harmony search multi objective differential evolution with evolving spiking neural network (MEHSMODE-ESNN) are presented.
Based on the above issues which are mentioned in section 1.3, the main research question is

Are the proposed hybrid methods between ESNN and different meta-heuristic and MOEAs which include DE-ESNN, DEPT-ESNN, MODE-ESNN, HSMODE-ESNN and MEHSMODE-ESNN, beneficial for evolving learning of ESNN in terms of structure (pre-synaptic neurons) and accuracy?

Thus, the following issues need to be addressed:

1. How to optimize both the structure of ESNN (the pre-synaptic neurons) using the proposed method (DE-ESNN) and ESNN parameters using the proposed method (DEPT-ESNN)?
2. How to improve a multi objective method to optimize ESNN’s pre-synaptic neurons as well as the parameters simultaneously using MODE-ESNN?
3. How effective is harmony search (HS) and memetic technique in enhancing the multi objective method (MODE-ESNN) using HSMODE-ESNN and MEHSMODE-ESNN?
4. Would the classification accuracy and other classification performance measures be improved when all the previous proposed methods are implemented?

1.4 Research Aim

This research aims to enhance hybrid learning of evolving spiking neural network (ESNN) with the proposed methods to obtain simple (the lowest number of pre-synaptic neurons) and accurate ESNN model.
1.5 Research Objectives

In order to find the answers to the above questions, the objectives of this study have been identified as:

1. To enhance evolving spiking neural network (ESNN) learning by proposing hybrid methods using a differential evolution (DE) algorithm to optimize the pre-synaptic neurons and the parameters of ESNN.
2. To improve a multi-objective hybrid method of multi objective differential evolution with evolving spiking neural network (MODE-ESNN) to optimize the pre-synaptic neuron as well as the parameters simultaneously.
3. To enhance the proposed hybrid methods using HS and memetic techniques.

1.6 Research Scope

To accomplish the above objectives, the scope of this study is restricted to the following:

1. Data sets on both binary and multi class classification problems are essential for evaluating the proposed methods Appendicitis, Iris, Hepatitis, Ionosphere, Liver, Haberman and Pima heart.
2. Focus is on the proposed methods of DE-ESNN, DEPT-ESNN, MODE-ESNN, HSMODE-ESNN and MEHSMODE-ESNN for learning, which includes training and testing in classification problems.
3. Performance is tested based on structure (number of pre-synaptic neurons), classification accuracy (ACC), geometric mean (GM), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and average site performance (ASP).
4. The programs are customized, improved and applied to the learning of ESNN using Microsoft Visual C++ 10.0 and Matlab.
1.7 Research Methodology Overview

This study consists of five phases: research planning, data set preparation, research design, implementation and analysis. Research planning is the key to success in guiding the research direction. Additionally, algorithm performance depends on data set nature. The data sets were used as inputs for the proposed methods in research design and implementation of the process enhancement. The proposed algorithms were trained, tested and validated using quantitative measurements to classification problems. Finally, statistical test analysis was applied. Figure 1.2 shows the research methodology of the study.
Figure 1.2 Flow of research methodology phases
1.8 Summary of Research Contributions

The contributions of the study can be summarized in the next points, as also illustrated in Figure 1.3:

1. Hybrid method known as DE-ESNN used for optimizing the pre-synaptic neurons.
2. Hybrid method known as DEPT-ESNN used to optimize the parameters (Mod, Sim, Threshold) in ESNN.
3. Multi-objective method known as MODE-ESNN used to optimize the pre-synaptic neurons and the parameters simultaneously.
4. Hybrid methods known as HSMODE-ESNN used to enhance the MODE-ESNN method.
5. Hybrid methods known as MEHSMODE-ESNN used to enhance the MODE-ESNN method.

Figure 1.3 Summary of research contributions
1.9 Thesis Outline

This thesis contains seven chapters, including the introduction chapter. The second chapter describes the background and the earlier work in the field of SNNs, evolving spiking neural network and MOEAs. The third chapter describes the research methodology for the work. The fourth and fifth chapters present the proposed methods used in this study and their algorithmic and results details. Finally, the last two chapters present the performance evaluation, discussion, conclusion and future extensions of the study.

Chapter 2, Literature Review, introduces a general overview of the literature review of this study. Fundamental concepts of SNNs, ESNN and EAs that are used in this thesis and MO optimization are introduced.

Chapter 3, Research Methodology, illustrates the methodology used in this study. The research methodology is presented as a flow chart diagram that explains briefly how each step is utilized.

Chapter 4, Hybrid Proposed Methods, explains in detail how EAs can optimize the ESNN model for classification. Furthermore, this chapter describes the implementation of the algorithms which are used. Moreover, the results based on performance measures are illustrated for all proposed methods. Last but not least, statistical analysis is carried out.

Chapter 5, MOO Proposed Methods, describes how multi-objective algorithms can optimize the ESNN model for classification. Additionally, this chapter explains the implementation of MOO algorithms that are used. Moreover, the results based on performance measures are illustrated for all proposed methods. Finally, statistical analysis is carried out.

Chapter 6, Comparative study of the proposed methods, implements the results based on performance measures and illustrates the comparative analysis among all proposed methods. Moreover, a comparison is conducted with various classifiers and data mining algorithms. Last but not least, statistical analysis is carried out.
Chapter 7, Conclusion and Future Work, winds up the study and highlights the contributions and findings of the research work. In addition, Chapter 7 provides recommendations and suggestions and for future work. Finally, a summary is reported for the whole study.

