SYNTHESIS AND CHARACTERIZATION OF SAGO/POLYVINYL ALCOHOL BLEND PERVAPORATION MEMBRANE FOR ETHYL ACETATE RECOVERY

ABDULHAKIM M. SALEM E-ALAMARIA

UNIVERSITI TEKNOLOGI MALAYSIA
SYNTHESIS AND CHARACTERIZATION OF SAGO / POLYVINYL ALCOHOL BLEND PERVAPORATION MEMBRANE FOR ETHYL ACETATE RECOVERY

ABDULHAKIM M. SALEM E-ALAMARIA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical & Energy Engineering
Universiti Teknologi Malaysia

MARCH 2016
TO MY FATHER
ACKNOWLEDGEMENT

First of all, I am grateful to The Almighty ALLAH for allowing me to complete this thesis.

I would like to express my special appreciation and thanks to my advisor Professor Dr. Mohd Ghazali Mohd Nawawi, you have been a tremendous mentor to me. I would like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been priceless.

I take this opportunity to record our sincere thanks to all the faculty members and administrative staff of the Faculty of Chemical Engineering those whom are in charge of the postgraduate office for their help and encouragement.

To all my friends and coworkers I met while studying at the Universiti Teknologi Malaysia, thank you for your friendship and support, special thank to my lab mate Zafifah Zamrud for her help.

A special thanks to my family. Words cannot express how grateful I am to my mother and father for all of the sacrifices that you have made on my behalf. Your prayers for me sustained me thus far.

I would also like to thank all of my brothers and sisters who supported me in writing and incentivized me to strive towards my goal.
ABSTRACT

Pervaporation is a membrane separation technology with high selectivity, efficiency and energy saving benefits that make it the method of choice for separation of mixtures. The application for pervaporation includes removal of dilute organic compounds from aqueous solution and dehydration of organics such as dehydration of ethyl acetate-water mixture. The best successful application that has been used for pervaporation is dehydration of organic liquid from water using hydrophilic polymer membrane. In this work, material used for membrane separation was sago and polyvinyl alcohol. However, during the separation process, excessive affinity of water towards hydrophilic polymer membrane led to an increase in the swelling of the membrane. To control the degree of swelling the membranes were cross-linked to improve the intrinsic properties of hydrophilic polymer membranes. Sago starch was used as based polymer to prepare membranes with polyvinyl alcohol (PVA) with various morphologies such as homogenous, composite and blended ration of sago and PVA. Sago/PVA membranes were cross-linked using three different approaches: firstly, using glutaraldehyde, secondly using thermal treatment (80 °C) and thirdly by using both glutaraldehyde and thermal treatment. The effects of various cross-linking methods on the intrinsic properties of hydrophilic polymer membrane were investigated. Before applying the cross-linking to sago/PVA membranes for separation of ethyl acetate-water mixture, a physicochemical characterization was carried out using Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), atomic force microscopy and swelling experiments. The investigation on the effect of cross-linking on the sago/PVA membranes showed an increase in surface hydrophobicity from contact angle measurements. DSC measurements showed an increase in melting temperature of the polymer membranes after cross-linking. In addition, TGA showed an increase in the stability of the polymer membranes after cross-linking. The effects of operating condition such as feed temperature and feed concentration on the permeation flux and separation factor were also investigated. For the pervaporation of ethyl acetate-water mixture, a decrease in flux and an increase in the separation factor were observed with chemical and combination of chemical and thermal cross-linking. Finally, central composite designs (CCD) of response surface methodology was applied to analyse pervaporation performance of thermal cross-linked membrane. Regression models were developed for permeation flux and separation factor as a function of feed temperature, feed concentration and permeate pressure.
ABSTRAK

# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvi</td>
<td></td>
</tr>
</tbody>
</table>

## 1 INTRODUCTION 1

1.1 Research Background 1
1.2 Problem Statement 6
1.3 Objectives 7
1.4 Scope of the Thesis 8

## 2 LITERATURE REVIEW 10

2.1 Sago 10
2.2 Sago Starch Copolymer 12
2.3 Modification of Sago Starch by Acid Treatment in Alcohol 13
2.4 Applications of Sago Starch
2.4.1 Applications of Plasticized Sago Starch-Based Bio-Composites
2.4.1.1 Biodegradable Film
2.4.1.2 Bioplastics
2.4.1.3 Biopackaging
2.5 Membrane Technology
2.5.1 Historical Development of Membranes and Membrane Processes
2.5.2 Membrane Process
2.5.3 Membrane Materials
2.5.3.1 Types of Membrane
2.5.3.2 Sago and Polyvinyl Alcohol as Membrane Material
2.5.4 Membrane Fabrication
2.5.5 Definition of a Membrane
2.5.6 Membrane Modification
2.5.6.1 Crosslinking
2.5.6.2 Grafting
2.5.6.3 Blending
2.5.6.4 Copolymerization
2.5.7 Membrane Morphology
2.6 Pervaporation
2.6.1 Introduction to Pervaporation
2.6.2 Pervaporation Principles
2.6.3 Definition of Pervaporation Process
2.6.4 Specifications of Pervaporation Membranes
2.6.4.1 Membrane Selectivity
2.6.4.2 Permeate Flux
2.7 Ethyl Acetate
2.7.1 Recent Knowledge of Separation of Ethyl Acetate
2.8 Mass Transfer through a Pervaporation Membrane
   2.8.1 Pore Flow Model
   2.8.2 Solution-Diffusion Model
2.9 Separation Characterization Parameters
   2.9.1 Effect of Process Condition
      2.9.1.1 Feed Concentration
      2.9.1.2 Effect of Feed Temperature
      2.9.1.3 Effect of Feed Flow Rate
      2.9.1.4 Feed Pressures
      2.9.1.5 Permeate Pressure

3 MATERIALS AND METHOD
3.1 Materials
3.2 Preparing of Membranes
   3.2.1 Preparation of Homogenous Sago/PVA Membranes
   3.2.2 Preparation of Sago/PVA Blend Composite Membranes
   3.2.3 Preparation of Blended Ratio Membrane
3.3 Membrane Characterization
   3.3.1 FTIR Spectroscopy
   3.3.2 Differential Scanning Calorimetry (DSC)
   3.3.3 Thermo Gravimetric Analysis (TGA)
   3.3.4 Scanning Electron Microscopy (SEM)
   3.3.5 Atomic Force Microscopy (AFM)
   3.3.6 Contact Angle Measurements
   3.3.7 Degree of Swelling Measurements (DS) Experiments
   3.3.8 Liquid Sorption Experiments
3.4 Pervaporation
## DEVELOPMENT AND CROSSLINKING OF HOMOGENOUS SAGO/PVA BLENDED MEMBRANE FOR PERVAPORATION OF ETHYL ACETATE-WATER MIXTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Result and Discussions</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Membrane Characterizations</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Liquid Sorption Characterization</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Thermal Stability TGA</td>
<td>80</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Fourier Transform Infrared (FTIR)</td>
<td>83</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Differential Scanning Calorimeter (DSC)</td>
<td>84</td>
</tr>
<tr>
<td>4.2.1.5</td>
<td>Scanning Electron Microscopy (SEM)</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Separation Behavior</td>
<td>86</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Pervaporation</td>
<td>86</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Cross-Linking Reaction</td>
<td>91</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effect of Feed Temperature</td>
<td>93</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Effect of Feed Concentration</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Pervaporation Dehydration Performance of Ethyl Acetate-Water Mixture</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>99</td>
</tr>
</tbody>
</table>

## CORRELATION OF PHYSICOCHEMICAL CHARACTERISTICS WITH PERVAPORATION PERFORMANCE OF SAGO/PVA COMPOSITE MEMBRANES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Results and Discussions</td>
<td>104</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Morphology of Composite Sago/PVA Membrane</td>
<td>104</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Differential Scanning Calorimeter (DSC)</td>
<td>112</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Atomic Force Microscopy Analysis of Membranes</td>
<td>113</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Contact Angle Measurements: Surface Hydrophobicity</td>
<td>115</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Fourier Transform Infrared (FTIR) Spectroscopy</td>
<td>116</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Thermo Gravimetric Analysis (TGA)</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Separation Behavior</td>
<td>119</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Pervaporation</td>
<td>119</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Non-cross-linked Composite sago/PVA Membrane vs. non-cross-linked Homogenous Membrane</td>
<td>121</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Effect of Cross-Linking Reaction</td>
<td>124</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Effect of Feed Concentration</td>
<td>127</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Effect of Feed Temperature</td>
<td>129</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of the Results with Other Work Using Different Material for Composite Membranes</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>132</td>
</tr>
</tbody>
</table>

6 EFFECT OF SAGO BLENDED RATION ON THE PERVAPORATION OF ETHYL ACETATE-WATER MIXTURE  

6.1 Introduction   134

6.2 Results and Discussion   138

6.2.1 Fourier Transform Infrared (FTIR) Spectroscopy   138

6.2.2 Degree of swelling measurements (DS)   139

6.2.3 Contact Angle Measurements   141

6.2.4 Thermo gravimetric (TGA) Analysis   142
6.3 Pervaporation
   6.3.1 Effect of Feed Temperature
   6.3.2 Pervaporation Separation Index (PSI)
   6.3.3 Effect of Sago Content on the Permeation Flux
   6.3.4 The Effect of Permeate Pressure
6.4 Conclusions

7 PERVAPORATION SEPARATION OF ETHYL ACETATE-WATER MIXTURE: OPTIMIZATION OF OPERATING CONDITIONS FOR PERMEATION FLUX AND SEPARATION FACTOR USING CENTRAL COMPOSITE ROTATABLE DESIGN
   7.1 Introduction
   7.2 Theory
   7.3 Experimental Procedure
      7.3.1 Materials
      7.3.2 Membrane Preparation
   7.4 Experimental Setup and Analysis
   7.5 Experimental Design
   7.6 Results and Discussions
      7.6.1 Statistical Model Analysis
      7.6.2 Effect of Operating Variables on Permeation Flux
      7.6.3 Effect of Operating Variables on Separation Factor
      7.6.4 Optimal Condition and Verification of the Model
   7.7 Conclusion

8 CONCLUSION AND RECOMMENDATIONS
   8.1 Conclusions
8.2 Recommendations for Future Study 186

REFERENCES 188
Appendix A-C 208-232
# LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Membrane process (2001, Purchas and Sutherland)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Present the development of Pervaporation membrane materials</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Presents the typical used of pervaporation membrane materials</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Overview of chosen membrane separation processes</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Physical properties of ethyl acetate</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Use of ethyl acetate applications</td>
<td>42</td>
</tr>
<tr>
<td>2.7</td>
<td>Pervaporation dehydration performance of various Jiraratanano membraneset al., 2002)</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of feed concentration on the separation factor</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between different materials on the separation of ethyl acetate/water mixture</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Result of the sago/PVA composite membranes from AFM experiment</td>
<td>114</td>
</tr>
<tr>
<td>5.3</td>
<td>Contact angle measurements results</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Separation of non-cross-linked and cross-linked membranes at different feed temperature</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison and summary of separation alcohol-water using composite membrane</td>
<td>131</td>
</tr>
<tr>
<td>6.1</td>
<td>Contact angle of Sago/PVA membranes</td>
<td>142</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>7.1</td>
<td>Experimental independent variables</td>
<td>170</td>
</tr>
<tr>
<td>7.2</td>
<td>Experiment runs and response of pervaporation of ethyl acetate water mixture</td>
<td>171</td>
</tr>
<tr>
<td>7.3</td>
<td>Estimated coefficients of the regression model of flux and separation factor</td>
<td>172</td>
</tr>
<tr>
<td>7.4</td>
<td>Analysis of variance (ANOVA) FOR $2^3$ full center composite design (CCD) for permeation flux of sago/PVA membrane</td>
<td>177</td>
</tr>
<tr>
<td>7.5</td>
<td>Analysis of variance (ANOVA) FOR $2^3$ full center composite design (CCD) for separation factor of sago/PVA membrane</td>
<td>180</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic drawing illustrating the various materials and structures of</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>technically relevant synthetic membranes (Mashhadi, 2001)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular structure of starch</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of polyvinyl alcohol</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic representation of a two-phase system separated by membrane</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(Abd-Aziz, 2002)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Configuration, morphology, transport, perm selectivity, and driving</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>forces employed in membrane science and technology</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram illustrating the operating principle of pervaporation</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Mass transport through a solution diffusion membrane in pervaporation</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(Nawawi, 1997)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>The pervaporation process (Schleiffelder and Staudt-Bickel, 2001)</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Schema of pervaporation (A) and vapor permeation (B) processes</td>
<td>38</td>
</tr>
<tr>
<td>2.10</td>
<td>Chemical structure of ethyl acetate</td>
<td>40</td>
</tr>
<tr>
<td>2.11</td>
<td>Pore Flow Model for Evaporation</td>
<td>45</td>
</tr>
<tr>
<td>2.12</td>
<td>Pervaporation membrane based on solution diffusion model</td>
<td>46</td>
</tr>
</tbody>
</table>
2.13 Effect of feed flow rate on (a) flux and (b) separation factor and PSI in pervaporation of 90 wt% ethanol solution at 60 °C and permeate pressure 3 mmHg with CS/HEC: 3/1-CA composite membrane.

3.1 Reaction scheme of Sago/PVA cross-linking with GA

3.2 Sequence of homogenous Sago/PVA blend membrane preparation

3.3 Preparation of composite membrane

3.4 Procedure of preparing blended membranes

3.5 Schematic diagram of pervaporation process

4.1 Sorption data for ethyl acetate-water mixtures in homogenous sago/PVA membranes

4.2 Effect of water content on the degree of swelling of non-cross-linked and cross-linked sago/PVA membranes

4.3 Effect of time on the degree of swelling of non-cross-linked and cross-linked sago/PVA membranes

4.4 Weight percent of ethyl acetate in the membrane sorbed phase versus weight percent of ethyl acetate in the bulk liquid phase

4.5 Degree of swelling and sorption selectivity of non-cross-linked membrane versus weight percent of water in the bulk liquid

4.6 Degree of swelling and sorption selectivity of thermal-cross-linked membrane versus weight percent of water in the bulk liquid

4.7 Degree of swelling and sorption selectivity of chemical-cross-linked membrane versus weight percent of water in the bulk liquid
4.8 Degree of swelling and sorption selectivity of chemical+thermal-cross-linked membrane versus weight percent of water in the bulk liquid

4.9 TGA for non cross-linking sago/PVA membrane

4.10 TGA for chemical cross-linking membrane

4.11 TGA for thermal cross-linking membrane

4.12 TGA for chemical+thermal cross-linking membrane

4.13 FTIR for sago/PVA membranes (N, CH, CH+TH, TH)

4.14 SEM for (a) non-cross-linked membrane (b) thermal cross-linked membrane for chemical cross-linked membrane (c), chemical+thermal cross-linked membrane (d).

4.15 The total and partial permeation fluxes at various water weight percent in the feed for homogenous non-cross-linking sago/PVA membrane. Operating temperature of 50 °C and permeate pressure of 0.067 bar.

4.16 Weight percent of ethyl acetate in permeate versus weight percent of ethyl acetate in the feed for homogenous non-cross-linking sago/PVA membrane. Operating temperature of 50 °C and permeate pressure of 0.067 bar.

4.17 The total permeation flux and the separation factor for homogenous non-cross-linking sago/PVA membrane versus weight percent of water in the feed. Operating temperature of 50 °C and permeate pressure of 0.067 bar.

4.18 Variations of total flux, separation factor and PSI with feed concentration in sago/PVA membrane at 50 °C
4.19 Total flux (a) and separation factor (b) of various cross-linked membranes at 50 °C.

4.20 (a) Effect of feed temperature on the permeation flux for all membranes, (b) effect of feed temperature on the separation factor for all membranes

4.21 Effect of feed concentration on the permeation flux for all membranes

5.1 (a) Surface area of non-cross-linked membrane and (b) thermal cross-linked membrane

5.2 (c) surface area of chemical cross-linked membrane and (d) chemical + thermal cross-linked membrane

5.3 Morphology of (a) non-cross-linked membrane and (b) of thermal cross-linked membrane

5.4 Morphology of (C) chemical cross-linked membrane and (D) of chemical + thermal cross-linked membrane

5.5 The cross-sectional view of SEM micrograph for (a) non-cross-linked and (b) thermal cross-linked composite membranes

5.6 The cross-sectional view of SEM micrograph for (c) chemical cross-linked and (d) chemical + thermal cross-linked composite membranes

5.7 DSC of non-cross-linked and cross-linked composite membranes

5.8 3D AFM topographic images of the sago/PVE composite membrane surfaces of (a) non-cross-linked (b) thermal cross-linked, (c) chemical cross-linked and (d) chemical + thermal cross-linked membranes. AFM used in tapping mode at 25 °C.

5.9 ART-FTIR spectra of the PVA layers before and after cross-linking at 25 °C
5.10 the total and partial permeation flux versus feed concentration of water for non-cross-linked composite sago/PVA membrane at 30 °C

5.11 Separation factor and total permeation flux versus feed concentration of water for non-cross-linked composite sago/PVA membrane at 30 °C

5.12 Total permeation flux at different water weight percent for homogeneous and composite non-cross-linked membranes. Feed temperature is 50 °C.

5.13 The separation factor for homogeneous and composite sago/PVA membrane as function of feed concentration

5.14 Pervaporation separation index (PSI) for composite sago/PVA non-cross-linked membrane versus water weight percent in the feed, operating temperature is 30 °C

5.15 Total permeation flux of various cross-linking of sago/PVA membrane for pervaporation of ethyl acetate-water mixture at 3 wt% of water

5.16 Total separation factor of various cross-linking of sago/PVA membranes for pervaporation of ethyl acetate-water mixture at 3 wt% of water

5.17 Pervaporation separation index (PSI) under different cross-linked sago/PVA membranes

5.18 Total permeation flux of non-cross-linked and cross-linked membranes at 60 °C at different feed water concentration

5.19 Separation factor of non-cross-linked and cross-linked membranes at 60 °C at different feed water concentration

5.20 Total permeation flux of non-cross-linked and cross-linked membranes at different feed temperature
6.1 FTIR spectra of blended sago membrane and blended ration

6.2 Effect of degree of swelling on the blended ration membranes (3 wt%, 5 wt% and 7 wt% of sago)

6.3 Effect of time and sago content on the degree of swelling of blended membrane

6.4 The total permeation flux for all membranes at different water content in the feed at 30 °C. Permeate pressure 0.067 bar.

6.5 The water permeation flux for all membranes at different water content in the feed at 30 °C. Permeate pressure 0.067 bar.

6.6 The ethyl acetate (EA) permeation flux for all membranes at different water content in the feed at 30 °C. Permeate pressure 0.067 bar.

6.7 Water permeation ratio vs weight percent of water in bulk feed

6.8 Ethyl acetate permeation ratio vs weight percent of water in bulk feed

6.9 The separation factor for homogenous sago/PVA blended membranes versus weight percent of water in the feed. Feed temperature 30 °C, permeate pressure 0.067 bar.

6.10 The effect of feed temperature on the permeation flux for all membranes

6.11 The effect of feed temperature on the separation factor for all membranes

6.12 Effect of feed temperature on permeation flux for the membrane contain 3 wt% of sago. Water in the feed 3 wt%. Permeate pressure 0.067 bar.

6.13 Effect of feed temperature on permeation flux for
the membrane contain 5 wt% of sago. Water in the feed 3 wt%. Permeate pressure 0.067 bar.

6.14 Effect of feed temperature on permeation flux for the membrane contain 7 wt% of sago. Water in the feed 3 wt%. Permeate pressure 0.067 bar.

6.15 Effect of feed temperature on water permeation flux for all sago/PVA membranes. Water in the feed 3 wt%. Permeate pressure 0.067 bar.

6.16 Effect of feed temperature on ethyl acetate permeation flux for all sago/PVA membranes. Water in the feed 3 wt%. Permeate pressure 0.067 bar.

6.17 Pervaporation separation index (PSI) for the membranes contain 3 wt%, 5 wt% and 7 wt% of sago in the blended membrane at different water weight percent in the feed. Permeate pressure 0.067 bar, feed temperature 30 °C.

6.18 Total permeation flux versus sago weight percent at different water concentration in the feed

6.19 Water permeation flux versus sago weight percent at different water concentration in the feed

6.20 Effect of permeate pressure on the total permeation flux for all homogenous sag/PVA membranes. Water content in feed 3 wt% operating temperature of 30 °C.

6.21 Effect of permeate pressure on the separation factor for all homogenous sag/PVA membranes. Water content in feed 3 wt% operating temperature of 30 °C.

7.1 Significance of estimated parameters on (a) Flux and (b) separation factor

7.2 Actual responses against predicted responses for (c) flux and (d) separation factor
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Plots of residuals against predicted responses for (e) flux and (f) separation factor</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of (a) feed temperature and concentration on the permeation flux at permeate pressure 0.064 bar; (b) feed temperature and permeate pressure on the permeation flux at 2.7 wt% of water in the feed concentration.</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of permeate pressure and concentration on the permeation flux at permeate pressure</td>
</tr>
<tr>
<td>7.6</td>
<td>Effect of feed temperature and concentration on the separation factor at permeate pressure 0.064 bar</td>
</tr>
<tr>
<td>7.7</td>
<td>Effect of feed temperature and permeate pressure on the separation factor at 2.7 wt% of water in the feed concentration</td>
</tr>
<tr>
<td>7.8</td>
<td>Effect of permeate pressure and feed concentration on the separation factor</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

DMAc - N,N-dimethylacetamide
EA - Ethyl acetate
ME - Microfiltration
PS - Polysulfone
PTFE - Poly(tetrafluoroethylene)
PTMS - poly[1-(trimethylsilyl)-1-propyne]
PV - Pervaporation
PVA - Polyvinyl alcohol
PVDF - Polyvinylidene difluoride
RO - Reverse osmosis
S - Sago
UF - Ultrafiltration
LIST OF SYMBOLS

\( \alpha \) - Membrane selectivity
\( c_i \) - Concentration of component which has lower volatility
\( c_j \) - Concentration of component which has higher volatility
\( X_i, X_j \) - feed mole/weight fraction of species i and j
\( y_i, y_j \) - permeate mole/weight fraction of species i and j
\( A \) - Effective membrane area
\( J \) - Permeation flux
\( T \) - Absolute temperature
\( W \) - Weight of permeate
\( \Delta t \) - Permeation time
\( \theta \) - advancing contact angle
# List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publications</td>
<td>212</td>
</tr>
<tr>
<td>B</td>
<td>Result’s Data</td>
<td>213</td>
</tr>
<tr>
<td>C</td>
<td>Materials and Apparatus</td>
<td>228</td>
</tr>
</tbody>
</table>
1.1 Research Background

Pervaporation is a membrane separation process used to separate mixture of dissolved solvents. In recent years there has been increased interest in the use of pervaporation membrane separation techniques for the selective separation of organic liquid mixtures, because of its high separation efficiency and flux rates coupled with potential savings in energy costs and environmentally friendly (Zhu et al., 2005). Two applications of pervaporation have been commercialized to date. The first application is the separation of the dilute dissolved organics such as trichloroethylene and phenol from the wastewater stream. The second and most important application is water removal from aqueous alcohol solutions such as removal water from ethyl acetate (Shao and Huang, 2007). Conversion of biomass into an energy source by fermentation processes to yield chemicals and fuels like bioethanol, to be used as fossil energy resources has been receiving increasing attention in recent years. Ethyl acetate is an organic compound with formula produced from liquid phase esterification of ethanol and acetic acid (Yuan et al., 2011). Ethyl acetate is extensively used in many chemical industry processes like solvent of essence, pharmacy, printing ink and paint (Parvez et al., 2012).
Sago starch can be developed to be a membrane for separation of ethyl acetate from aqueous solution. Sago starch is an important biopolymer and has been used in various applications such as in food, textile and paper. In recent years, production by fermentation of biomass has greatly increased. Sago is present in South East Asia and it could be produced from sago palm, and it is known as rumbia. Sago palm is an important resource especially to the people in rural areas because it has various uses especially in the production of starch either as sago flour or sago pearl (Rishabha 2010). In recent times, interest in the production of sago palm starch has improved extensively. The sago palm is felled, the trunk is split lengthwise and the pith is separated, the pith is crushed to release the starch, washed and strained to remove the starch from the fibrous residue (Abdorreza et al., 2012).

The sago palm is a crop par excellent for sustainable agriculture. It is interesting to note that sago palms are economical acceptable, environmentally friendly, and promotes a socially stable agroforestry system. It is an extremely hardy plant, thriving in swampy, acidic peat soils, submerged and saline soils where few other crops survive, growing more slowly in peat soil than in mineral soil. The palm is immune to floods drought, fire, and strong winds. The large fibrous root system traps silt loads and removes pollutants. Starch is found to accumulate in the trunk of the sago palm until the flowering stage with maximum starch content occurring just before the onset of the palm flowers (Singhal et al., 2007).

Application of sago starch (i.e., thickeners, sizing and coating papers, sizing textile, adhesive formulations, fluid loss additive in drilling mud and other applications) always involves gelatinization of starch that breaks the inter-chains hydrogen bonding such that the rheological properties of starch paste can be utilized effectively. The non-pith parts of the sago palm trunk can be utilized in a variety of ways: as an excellent building material for local and urban houses, sheds, or other buildings; as a resource for composting (biofertiliser); as a resource for gasification and energy production; and as an animal feed (Singhal et al., 2007).
The choice of a particular membrane material is dictated by the kind of application such as dehydration of alcohol/water and filtration of waste products in pharmaceutical industries, and the operating condition like temperature, concentration and thickness. In pervaporation dehydration of alcohol/water, the highly hydrophilic polymer such as polyvinyl alcohol is preferred due to its affinity for water. Hydroxy terminated polybutadiene (HTPB-PU) membrane has been used for the recovery of ethyl acetate from water, but the separation factor decreased significantly from 575 to 320 with increase in the operating temperature from 25 to 65°C; this is due to the weak resistance to the high temperature of physical cross-linking (Bai et al., 2008).

Membrane technology is considered as an efficient and economic separation process in the chemical industry. We can divide the process into three stages according to the mechanism of the separation; the first stage is the sieving mechanism, ultrafiltration, and microfiltration, the second stage is the electrochemical mechanism and electro-dialysis, and the third stage is the solubility mechanism, and pervaporation (Baker, 2004b).

Recently, the extractive distillation and azeotropic distillation have been completely investigated, and was used for the separation and concentration of ethyl acetate. Yet, the two processes are still facing hardship from high operating costs and low concentration of the products because entrainers are required, while pervaporation has a good advantage because it has a low cost, easy operation and no entrainers are required (Zhang et al., 2009b).

Currently, pervaporation, characterized by high separation efficiency, is one of the best alternative processes for the separation of volatile organic materials (such as ethyl acetate) (Konakom et al., 2011) from dilute aqueous solutions. A mixture containing solution of ethyl acetate-water can be made to diffuse from the inside to the outside of non-porous membranes by using a vacuum to the outside of the
membrane. The driving force of the pressure differential combined with a membrane selective for ethanol makes ethanol concentration possible (Hasanoğlu et al., 2005). In pervaporation, a variety of membrane materials have been developed to cater for mainly two types of industrial liquid separations: organic-water and organic-organics separations. For water selective membranes, the most important factor responsible for the separation is the specific interaction between water and the polymer.

Pervaporation has a high potential for separations where the more conventional techniques, such as distillation, are not possible to be realized or too expensive. The pervaporation, for separation of several components from a liquid mixture cannot be only determined by changes in their vapor pressure but can be determined by their permeation rate through the membrane. The actual driving force for the permeation of the different components through the membrane is the difference between the two phases separated by the membrane. Concentration polarization in pervaporation is usually controlled by decreasing the laminar boundary layer’s thickness through hydrodynamic measures. This situation can lead to problems if the flux is high and thin film composite membranes are used for the separation process. The laminar boundary layer at the permeate side is always as thick as the porous substructure and severe concentration polarization as well as capillary condensation may occur on the permeate side of the membrane (Nagy, 2012). Table 1.1 shows the list of the most important membrane process, the major field of application and the driving force for the preferentially permeating component.
### Table 1.1 Membrane processes (Purchas and Sutherland, 2001)

<table>
<thead>
<tr>
<th>Membrane process</th>
<th>Separation potential for</th>
<th>Driving force realized</th>
<th>Preferably permeating component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse osmosis</td>
<td>Aqueous low molecular mass solutions, aqueous organic solutions</td>
<td>Pressure difference (\leq 100 \text{ bar})</td>
<td>Solvent</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>Macromolecular solutions, emulsions</td>
<td>Pressure difference (\leq 10 \text{ bar})</td>
<td>Solvent</td>
</tr>
<tr>
<td>Microfiltration (Cross-flow)</td>
<td>Suspensions, emulsions</td>
<td>Pressure difference (\leq 5 \text{ bar})</td>
<td>Continuous phase</td>
</tr>
<tr>
<td>Gas permeation</td>
<td>Gas mixtures, water vapour-gas mixtures</td>
<td>Pressure difference (\leq 80 \text{ bar})</td>
<td>Preferably permeating component</td>
</tr>
<tr>
<td>Pervaporation</td>
<td>Organic mixtures, aqueous-organic mixtures</td>
<td>Permeate side: Ratio of partial pressure to saturation pressure</td>
<td>Preferably permeating component</td>
</tr>
<tr>
<td>Liquid membrane technique</td>
<td>Aqueous low molecular mass solutions, Aqueous-organic solutions</td>
<td>Concentration difference</td>
<td>Solute (ions)</td>
</tr>
<tr>
<td>Osmosis</td>
<td>Aqueous-organic solutions</td>
<td>Concentration difference</td>
<td>Solvent</td>
</tr>
<tr>
<td>Dialysis</td>
<td>Aqueous-organic solutions</td>
<td>Concentration difference</td>
<td>Solute (ions)</td>
</tr>
<tr>
<td>Electrodialysis</td>
<td>Aqueous-organic solutions</td>
<td>Concentration difference</td>
<td>Solute (ions)</td>
</tr>
</tbody>
</table>

Pervaporation is a membrane separation process used to separate mixtures of dissolved solvents. In recent years there has been an increased interest in the use of pervaporation membrane separation techniques for the selective separation of organic liquid mixtures; this is due to its high separation efficiency and flux rates coupled with potential savings in energy costs. In pervaporation, volatile organic components are removed from a liquid feed mixture through a semipermeable membrane into a gas phase.

In pervaporation the chemical potential gradient is usually induced by either applying a vacuum on the permeate side of a membrane or by using a sweep gas to remove the permeating component and by applying a temperature difference between
the liquid feed mixture and permeate gas phase. Most of the pervaporation membranes are composites formed by solution-coating of the selective layer onto a micro-porous support (Nagy, 2012).

1.2 Problem Statement

Sago and polyvinyl alcohol are highly hydrophilic material. Sago based membrane should be very selective to water; potentially effective for separation dehydration of aqueous solution. In general, the hydrophilic containing polymers have high solubility parameters and show relatively large water solubility. However, the introduction of hydrophilic groups sometimes swells the membranes significantly under aqueous mixture due to its plasticization action that results in poor selectivity. Malaysia is one of the largest producers of sago starch which covers around 7% of Sarawak total area. The production capacity of the sago palm varies from 10-25 tons/ha in dry starch. With the growing concern about the renewable energy especially the conversion of biomass to the biofuel. Potential industrial applications include the recovery of ethanol from fermentation process and the esterification of ethanol and acetic acid to produce the ethyl acetate which is attracting increasing attention due to its low toxicity. Ethyl acetate is an important solvent for antibiotics, paint, printing ink; solvent of essence and it’s also use in the manufacture of various drugs. Removal of ethyl acetate from ethanol and water mixture or from isooctane mixture is difficult because of the proximity of boiling point. Currently the industrial methods for the recovery of ethyl acetate from water depends on the extractive distillation, and this process contained several practical problems, such as technology complexity and high energy consumption, thus an eco-friendly and concise separation process is being demanded. Sago starch is a highly hydrophilic material and an important biopolymer, it has been widely used in various industrial applications. Highly hydrophilic, sago based membranes can be specially effective for the recovery of azeotropic mixtures such as ethyl acetate - water solution. The separation dehydration of ethyl acetate - water mixtures is an example for such
application where sago based membranes is expected to be effective to remove the water content and purify the ethyl acetate. The efficiency of the pervaporation process depends mainly on the intrinsic properties of the polymers used to prepare the membrane.

Since the sago is highly hydrophilic polymer and polyvinyl alcohol too, there is need for the decrease of the degree of swelling; thus, cross-linking will be important. Cross-linking were affects the physicochemical properties of a membrane, the diffusion and sorption process will be affected by the membrane surface. In order to achieve the effects and the improvement of membrane performance on dehydration of ethyl acetate/water, it will be interesting to study these properties such as (SEM, AFM and FTIR).

1.3 Objectives

The main objectives of this work are to develop sago membrane for dehydration of ethyl acetate/water and to study the effect of some operating parameters, namely volumetric flow rate, feed temperature, permeate-side pressure, thickness and degree of swelling on flux and ethyl acetate selectivity during the pervaporation separation process using sago membrane. Specific objectives of this study for achieving the above purpose are to:

i. Develop sago based membranes for the dehydration of ethyl acetate-water mixtures at different operating conditions.

ii. Investigate the effect of crosslinking on the physiochemical properties of sago/PVA blend membrane before and after crosslinking.

iii. Study the effect of cross-linking on the composite membranes consisting of sago/PVA- poly sulfone for pervaporation of ethyl acetate-water mixture.
iv. Study the effect of sago blended ration on the separation of ethyl acetate-water mixtures.

v. Study and optimize the effect of operating conditions on pervaporation performance using a statistical design (RSM) of experimental approach.

1.4 Scope of the Thesis

This thesis is including the studies of various hydrophilic sago/PVA membranes, their characterization techniques and use for pervaporation of ethyl acetate-water mixture. Characterizing of the membrane is necessary in order to determine the physical and chemical properties of the thin film. The sago-based membranes were characterized using Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy (FTIR). The driving force for transport across the membrane is the chemical potential gradient and the physical structure of the membrane determines the flux. The difference between the individual penetrant components determines the membrane selectivity. Cross-linking modification was used for improvement of the membrane performance. The research consists of two parts. The first part is including the development, characterization and separation of ethyl acetate water mixture using various membrane of sago/PVA. The second part will focus on the optimization of pervaporation process variables. The scope of each chapter is listed as follows:

**Chapter 1:** presents an overview of the thesis, including a brief introduction to the pervaporation membrane technology and pervaporation process and its history and overview to membrane materials. The objectives and scope of the thesis are also given in this chapter.

**Chapter 2:** provided the overview of sago starch and some aspects of pervaporation characteristics, different type of membrane materials, membrane modification
techniques, factors affecting pervaporation and pervaporation of ethyl acetate-water mixture.

Chapter 3: presented material and method of the thesis that used for preparing of the homogenous membranes, composite membrane and blended membranes.

Chapter 4: discusses the effects of various cross-linking on the physicochemical properties of sago/PVA membrane and on the pervaporation of ethyl acetate-water mixture. The liquid sorption and pervaporation were investigated for the ethyl acetate-water mixture using sago/PVA membrane.

Chapter 5: study the effect of cross-linked sago/PVA - polysulfone composite membrane for pervaporation of ethyl acetate-water mixture. The results were compared with homogenous sago/PVA membrane using the pervaporation separation index (PSI).

Chapter 6: of this study focuses on the development of sago/PVA membrane and the effect of sago blended ration on the separation performance. The effect of feed temperature, concentration and sago blended ratio on the separation factor and permeation flux was investigated.

Chapter 7 presents a study on the optimization of the operating conditions on the separation factor and the permeation flux by Central Composite Rotatable Design (CCRD) for pervaporation of ethyl acetate-water mixture; in order to find the optimum operating conditions of feed temperature feed concentration and permeate pressure.

The final chapter is the conclusions of the studies conducted in the thesis and recommendations for future work.
REFERENCES


Uragami, T., Yamada, H. and Miyata, T. (2001). Removal of Dilute Volatile Organic Compounds in Water through Graft Copolymer Membranes Consisting of Poly(Alkylmethacrylate) and Poly(Dimethylsiloxane) by Pervaporation and


Wu, Hong Fang, Xin Zhang, Xiongfei Jiang, Zhongyi Li, Ben Ma, Xiaocong. (2008). Cellulose Acetate–Poly(N-Vinyl-2-Pyrrolidone) Blend Membrane for


Zhao, Cuihong Wu, Hong Li, Xianshi Pan, Fusheng Li, Yifan Zhao, Jing Jiang, Zhongyi Zhang, Peng Cao, Xingzhong Wang, Baoyi (2013). High Performance Composite Membranes with a Polycarboxphil Calcium Transition Layer for Pervaporation Dehydration of Ethanol. Journal of Membrane Science. 429,(0), 409-417.


Zhu, Meihua Qian, Jinwen Zhao, Qiang An, Quanfu Song, Yihu Zheng, Qiang (2011). Polyelectrolyte Complex (Pec) Modified by Poly(Vinyl Alcohol) and