OPTIMIZATION OF HYDRODISTILLATION EXTRACTION CONDITIONS OF ZERUMBONE FROM ZINGIBER ZERUMBET RHIZOME

NOOR AMIRAH BINTI AZELAN

UNIVERSITI TEKNOLOGI MALAYSIA
OPTIMIZATION OF HYDRODISTILLATION EXTRACTION CONDITIONS OF ZERUMBONE FROM ZINGIBER ZERUMBET RHIZOME

NOOR AMIRAH BINTI AZELAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

JANUARI 2017
Dedicated to my beloved mother, Norogayah binti Abdul Aziz who means the world to me. To my brothers and sisters who supported me throughout the years, thank you very much.
ACKNOWLEDGEMENT

Alhamdulillah. I would to express my highest gratitude towards Allah S.W.T because His willing giving me opportunity to complete this thesis successfully within the time given. I would like to express my big thanks my supervisor, Prof Ramlan bin Aziz for support, supervision, advice and comments during preparation of this project and thesis. I am enjoying working with him and he is a great sources of inspiration regarding promoting the human wellness.

I am fortunate to have Dr Rosnani Hasham as my second supervisor. She always ready with brilliant idea, honest discussion and encouraging word when I really needed. Thank you also for continuous help and support in reviewing and commenting on the thesis.

Life would not have been as colorful without friends I met in IBD. I would like to extend my thanks to IBDians especially Nurhikmah Jamaludin, Nurul Ain Aqilla, Nur Ayshah, Farah Diana, Siti Najiah, Rahimah and Hazirah Abdul Hamid. Our friendship is built not only on the many social gatherings we attended together, but also on the many values we share.

I am deeply appreciative of the many individuals who have supported my work and continually encouraged me through the writing of this thesis. Without their time, attention, encouragement, thoughtful feedback, and patience, I would not have been able to see it through.
ABSTRACT

The optimization of zerumbone extraction from *Zingiber zerumbet* was investigated using a hydrodistillation extraction method. In the present work, the response surface methodology (RSM) based on a central composite design (CCD) was used to determine the optimum condition for the extraction of essential oil and zerumbone content from *Z. zerumbet* rhizome. Three evaluated process variables were the extraction time (60-120 min), raw material to solvent ratio (1:15-1:25) and particle size (250-2000 µm). The CCD consisted of 21 experimental points and three replications at the centre point. Data were analysed using Design Expert software 6.0.6. The optimal conditions suggested by the software for maximum yield of *Z. zerumbet* essential oil and zerumbone content were at 74.29 min, ratio of material to solvent of 1:18.76 and particle size of raw material of 2000 µm. From the experiment, the yield of *Z. zerumbet* essential oil was 4.10% slightly higher than the predicted value of the software (3.73%). Whereas for zerumbone content, it was observed that the amount obtained from the experiment analysis was 1.20% which was slightly lower compared with the predicted value of the Design Expert software (1.58%). The experimental values fell in a range between lower limit and upper limit of the predicted table indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Hence, the CCD model can be used to predict the zerumbone content in essential oil extraction from *Z. zerumbet* in a hydrodistillation extraction system.
ABSTRAK

Pengoptimuman pengekstrakan zerumbon dari Zingiber zerumbet telah dikaji dengan menggunakan kaedah pengekstrakan penyulingan hidro. Dalam kajian ini, kaedah gerak balas permukaan (RSM) berdasarkan reka bentuk komposit pusat (CCD) telah digunakan untuk menentukan keadaan optimum bagi pengekstrakan minyak pati dan kandungan zerumbon di dalam rizom Z. zerumbet. Tiga pembolehubah proses yang dinilai adalah masa pengekstrakan (60-120 min), nisbah bahan mentah pelarut (1: 15-1: 25) dan saiz zarah (250-2000 µm). CCD ini terdiri daripada 21 eksperimen dan tiga ulangan pada titik pusat. Data eksperimen telah dianalisis dengan menggunakan perisian Design Expert 6.0.6. Keadaan optimum yang dicadangkan oleh perisian untuk hasil maksimum minyak pati Z. zerumbet dan kandungan zerumbon adalah pada 74.29 min, nisbah bahan pelarut 1: 18.76 dan saiz zarah bahan mentah 2000 µm. Dari eksperimen, hasil minyak pati Z. zerumbet adalah 4.10% lebih tinggi sedikit daripada nilai yang diramalkan daripada nilai yang diramalkan oleh perisian (3.73%). Manakala bagi kandungan zerumbon jumlah yang diperoleh daripada analisis eksperimen adalah 1.20% lebih rendah sedikit berbanding dengan nilai yang diramalkan oleh perisian Design Expert (1.58%). Nilai eksperimen berada dalam julat antara had bawah dan had atas di dalam jadual jangkaan bagi menunjukkan kesesuaian model yang digunakan dan kejayaan RSM dalam mengoptimumkan keadaan pengekstrakan. Oleh itu, model CCD boleh digunakan untuk meramalkan kandungan zerumbon dalam pengekstrakan minyak pati dari Z. zerumbet menggunakan sistem pengekstrakan penyulingan hidro.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Objective of Research 4

1.4 Scope of Research 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Introduction *Zingiber zerumbet* 7

2.2.1 Plant Morphology and Geographic Distribution 7

2.2.2 Importance of *Zingiber zerumbet* 9
2.2.3 Phytochemicals Constituents of Zingiber zerumbet Essential Oil

2.2.3.1 Zerumbone

2.3 Herbal Processing

2.3.1 Extraction Method

2.4 Hydrodistillator Extractor

2.4.1 Processing Parameter

2.4.1.1 Extraction Time

2.4.1.2 Raw Material to Solvent Ratio

2.4.1.3 Particle Sizes

2.6 Identification and Characterization of Phytochemical Compound from Z. zerumbet Essential Oil

2.6.1 Gas Chromatography Flame Ionization Detector (GC-FID)

2.7 Optimization of Processing Parameters for Zingiber zerumbet Essential Oil Yield and Zerumbone Content

2.7.1 Response Surface Methodology (RSM)

2.7.2 Central Composite Design (CCD)

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Material

3.2.1 Chemical and Reagent

3.2.2 Plant Material

3.3 Preliminary Study Methodology

3.4 Design of Experiment (DOE)

3.5 Extraction of Zingiber zerumbet Essential Oil

3.5.1 Hydrodistillator Extraction

3.5.2 Rotary Evaporation

3.6 Gas Chromatography Flame Ionization Detector (GC-FID)

3.6.1 Preparation of Standard Solution

3.6.2 Preparation of Sample for GC-FID analysis

3.6 Data Analysis and Evaluation
4 RESULT AND DISCUSSION

4.1 Introduction 38

4.2 *Zingiber zerumbet* Plant Authentication 39

4.3 Preliminary Evaluation of Sample Preparation and Extraction Conditions 40

4.3.1 Effect of Drying Temperature on the Essential Oil Yield of *Z. zerumbet* Rhizomes 40

4.3.2 Effect of Extraction Time on Essential Oil Yield of *Z. zerumbet* Rhizomes 41

4.3.3 Effect of Raw Material to Solvent Loading Ratio on Yield of Essential Oil of *Z. zerumbet* 42

4.4 Optimization of Hydrodistillation Conditions Parameters 44

4.4.1 Effect of Processing Parameter Towards the Yield of *Zingiber zerumbet* Essential Oil 45

4.4.2 Effect of Processing Parameter Toward Zerumbone Contain in *Zingiber zerumbet* 54

4.4.3 Optimization of Processing Parameters of *Z. zerumbet* Essential Oil Yield and zerumbone Content 62

4.5 Verification of Optimum Condition 64

5 CONCLUSION AND RECOMMENDATION 66

5.1 Conclusion 66

5.2 Recommendation 67

REFERENCES 68

Appendices 82-93
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Zingiber zerumbet Classification</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Constituents of Leaf and Rhizome of Essential Oil of Zingiber zerumbet</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical Properties of Zerumbone</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Processing Parameters of the Extraction of Zingiber zerumbet's Essential Oil</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental Design for the Extraction of Essential Oil from Zingiber zerumbet using RSM.</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Zingiber zerumbet Plant Authentication Report</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental Data and Responses Obtained from the Central Composite Design (CCD)</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of Variance (ANOVA) for Yield of Essential Oil of Z. zerumbet Extract.</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Coefficient Estimate of the Quadratic Model for Yield of Essential Oil of Z. zerumbet Extract.</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of Variance (ANOVA) for Yield of zerumbone from Z. zerumbet Extract.</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Coefficient Estimate of the Quadratic Model for Yield of Zerumbone from Z. zerumbet Extract</td>
<td>56</td>
</tr>
</tbody>
</table>
4.7 Effect of Factors Variables to Response Variables of Z. zerumbet

4.8 Optimum Conditions, Predicted and Experimental Values of Response Under the Respective Conditions
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Rhizome of Zingiber zerumbet</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Zerumbone Pure Crystal</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical Structure of Zerumbone</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustrated Hydrodistillator Apparatus</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustrated Gas Chromatography Flame Ionization Detector (GC-FID)</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Hydrodistillation Extractor</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Rotary Evaporator</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Gas Chromatography</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Standard Curve of zerumbone</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Liquid Chromatography Mass Spectrometry</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Variation of Yield Essential Oil with Different Drying Temperature</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Extraction Yield of Essential Oil at Different Extraction Time</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Variation of Extraction Yield of Essential Oil at Different Loading Ratio of Solid to Solvent</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Predicted vs Actual Plot Towards the Yield of Z. zerumbet Essential Oil</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Loading Ratio of Solid to Solvent and Time Extraction</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Particle Size and Time Extraction</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Loading Ratio of Solid to Solvent and Particle Size.</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Predicted vs Actual Plot Towards the Yield of Zerumbone Content from Z. zerumbet Essential Oil</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Loading Ratio of Solid to Solvent and Time Extraction for Zerumbone</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Particle Size and Time Extraction for Zerumbone</td>
<td>60</td>
</tr>
<tr>
<td>4.11</td>
<td>2D (A) and 3D (B) Response Surface Graph Showing the Effect of Loading Ratio of Solid to Solvent and Particle Size for Zerumbone</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>Optimum Values of Processing Parameters from the Design Expert Software 6.08</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSM</td>
<td>Response Surface Method</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>GCFID</td>
<td>Gas Chromatography Flame Ionization Detector</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>Df</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>MRM</td>
<td>Multiple Reaction Monitoring</td>
</tr>
<tr>
<td>UPLC-MS/MS</td>
<td>Ultra Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry</td>
</tr>
<tr>
<td>ppm</td>
<td>Part Per Million</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid Chromatography Mass Spectrometry</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical Fluid Extraction</td>
</tr>
<tr>
<td>MAD</td>
<td>Microwave Accelerated Distillatory</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Expert</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimension</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight Per Weight</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of Determination</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
</tbody>
</table>
LIST OF SYMBOL

% - Percentage
° - Degree
µ - Micro
± - Plus Minus
- - Minus
α - Alpha
β - Beta
< - Less than
> - More than
Δ - Delta
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voucher Specimen for Species Authentication</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>The Optimum 3D Graph for Optimization of Processing Parameter on the</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Yield of Essential Oil and zerumbone Content of Z. zerumbet</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Liquid Chromatography-Mass Spectrometry (LC-MS)</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>Z. zerumbet Sample Curve from UPLC-MS/MS</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>GC-FID Chromatograms of (a) Standard Zerumbone (b) Zingiber zerumbet</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Essential Oil Extract at 340 nm</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Herbal remedies have played an enormous important role in the maintenance of human health throughout the history of mankind. Over 50% of modern clinical are sourced from various plants extracts and have been employed as supplements and nutraceuticals (Paper and Sivasubramanian, 2014; Bradley, 1992). There has been a revival of interest in herbal medicines. This is due to relatively lower incidence of adverse reactions to plant preparation compared to modern conventional pharmaceutical products (Schweiggert et al., 2005; Tang and Eisenbrand, 1992). The effects of plants extracts on the processing parameters have been studied by a very large number of researchers in different parts of the world. This worldwide interest in medicinal plants processing parameters reflects the quality and value of natural products in healthcare.
Zingiber zerumbet or locally known as ‘Lempoyang’ has caught increasing attention from researchers due to its potential active ingredient that can be beneficial to human healthcare such as anti-inflammatory, antitumor and antibacterial (Yob et al., 2011; Murakami et al., 2002; Nag et al., 2013). Z. zerumbet that belongs to Zingiberaceae family, is widely cultivated throughout the tropical and subtropical areas, especially in South East Asia, Hawaiian Islands and Puerto Rico (Rashid et al., 2005). It is used as traditional medicine for curing the swelling, sores and loss of appetite. The juice of the boiled rhizomes has also been used in indigenous medicine for worm infestation in children (Somchit and Nur Shukriah, 2003). This plant is reported to contain sesquiterpenoids, flavonoids, aromatic compounds, vanillin, kaempferol derivatives and other polyphenolic compounds (Nag et al., 2013).

Zerumbone, a predominant sesquiterpene from this plant, has been studied intensively for its use as an anti-inflammatory, and in chemoprevention and chemotherapy strategies (Calder et al., 2009; Surh, 2002; Unnikrishnan and Kuttan, 1988). Based on previous reports, zerumbone content in the essential oil from the rhizomes of Z. zerumbet was 46.83% (Bhuiyan et al., 2009). Zerumbone was further demonstrated to inhibit both azoxymethane-induced rat aberrant crypt foci and phorbol ester-induced papilloma formation in mouse skin a further indication of its efficacy to prevent colon and skin cancers (Murakami et al., 2004). This suggests that zerumbone is a phytochemical which has potential as both chemopreventive and chemotherapeutic strategies against cancer.

Essential oils are complex mixtures of volatile substances generally present at low concentrations. Before such substances can be analyzed, they have to be extracted from the plants. Various different methods can be used for that purpose, for example hydrodistillation, steam distillation, soxhlet extraction, and simultaneous distillation extraction (Lucchesi et al., 2004). The composition of the extracted oil may vary from one extraction method to another (Charles and Simon, 1990). These drawbacks have upsurge researchers in finding more effective and selective extraction methods in order to obtain a high yield of essential oil and its compounds. Commonly used traditional
extraction methods usually are time consuming, laborious, low selectivity and most of them resulting in low extraction yields (Gámiz and Luque, 2000). Moreover, these techniques employed large amounts of toxic solvents which is known to harm the environment.

Hydrodistillation is one of the oldest and common method of extracting essential oil since it is economically viable and safe (Golmakani and Rezaei, 2008). Although distilling equipment has gradually improved throughout the years, the method for extracting essential oil from the plant has hardly changed, especially in this Southeast region (Mohamed et al., 2004). Hydrodistillator can produce a similar composition of oil extracted from other methods that are more expensive such as supercritical fluid extraction (SFE) and microwave accelerated distillatory (MAD) (Ferhat et al., 2007; Khajeh et al., 2004). Numerous studies had shown that when a plant is being processed, the amount of chemical content was influenced by the processing parameter that is being used (Mohamed et al., 2004). Thus, the choice of processing parameters and methods are important in minimizing the nutrient losses during processing.

1.2 Problem Statement

Plant material continues to contribute in primary health care as a therapeutic remedies in many developing countries such as Malaysia. Herbs and medicinal plants are also act as exclusive sources of drugs for the majority of the world’s population. However, extraction of the bioactive plant constituents has always been a challenging task for the researchers. Z. zerumbet is known with high in zerumbone and α-caryophyllene content (Sabulal et al., 2006). However, numerous studies had shown that when a plant was being processed, the amount of the chemicals content in a plant were influenced by the processing parameter that being used. Therefore, it is essential to find out that the effect of these processing parameters towards the yield of essential oils and phytochemical compound.
To our knowledge, there is no clear guideline to prepare the plant extract according to the application of products as well as herbal medicines especially from Z. *zerumbet* by using hydrodistillation method (Wachtel and Benzie, 2011). Research into the quality, safety, molecular effects, and clinical efficacy of the numerous herbs in common usage is needed. Non standardized procedures of extraction may lead to the degradation of the phytochemical present in the plants and thus leading to the lack of reproducibility. Efforts should be made to produce batches with quality as consistent as possible.

Hydrodistillation on the other hand, has shown a great advantage in the extraction of Z. *zerumbet* essential oil due to its consistently which resulted the greatest number of constituents in an oil sample (Charles and Simon, 1990). In addition, based on previous study, the compositions of the hydrodistillation extracts were higher as compared to the SFE extracts of *Curcuma longa L* (Braga *et al*., 2003). 15 compounds were identified in hydrodistillated oil whereas only 10 compounds were identified using SFE. This method is suitable for screening compound. Up to recently, there is no report by previous study about the standardized processing method of *Z. zerumbet* by using hydrodistillator extractor. In this study, optimization of extraction of zerumbone content from *Z. zerumbet* rhizome using hydrodistillation was evaluated. The result obtained can be used for development and usage of zerumbone in *Z. zerumbet* rhizome in the future by providing a scientific experiment basis and improving the extraction efficacy of the product yield.

1.3 Objective of the Research

The objective of this study is to optimize the hydrodistillation extraction conditions for high essential oil yield and zerumbone content from *Zingiber zerumbet* rhizome.
1.4 Scopes of the Research

In order to achieve the objective, two scopes have been identified as listed below:

1) Identification of ideal conditions to produce maximum yield of Z. zerumbet oil and zerumbone content by hydrodistillation extraction method.

2) Optimization of hydrodistillation extraction conditions including particle size, raw material to solvent ratio and extraction time of zerumbone yield from Z. zerumbet rhizome by Response Surface Methodology (RSM).
REFERENCES

Muhammad A. M. S. (2009). A Study on Microwave-Assisted Extraction of Zingiber aromaticum. Faculty of Chemical and Natural Resources Engineering.

