YTTERBIUM DOPED AND CO-DOPED Q-SWITCHED FIBER LASERS
UTILIZING PASSIVE SATURABLE ABSORBERS

NABILAH KASIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2015
To my beloved parents,

Kasim bin Abbas and Munirah binti Ahmad,

and my family!

Thank you for all your supports, pray and blessing.
ACKNOWLEDGEMENT

Thanks to Almighty Allah, the Most Gracious and Most Merciful for Him is the source of this success for giving me the strength and faith to complete this research. With His blessing may this work be beneficial for the whole mankind.

I am honoured to have Assoc. Prof. Dr. Yusof Munajat as my supervisor and Prof. Dr. Sulaiman Wadi Harun as my external co-supervisor. I would like to express my thanks and sincere gratitude for their guidance, support, comments and encouragement throughout my research. I would like to acknowledge Universiti Malaya for their help and kind assistance during my experimental work there.

Thanks to Ministry of Science, Technology and Innovation for financially supporting my research under scholar of National Science Fellowship.

To my family and friends, I am thankful and grateful for your endless love, support, pray, patience, encouragement and valuable advice throughout the duration of this thesis.
ABSTRACT

Q-switched 2 micron fiber laser is a new area of research. Q-switching using passive technique by means of saturable absorber is quite rare in the research work. A stable passive Q-switched lasers operating at 1 micron, 1.5 micron and 2 micron wavelength regions were demonstrated using Ytterbium doped, Erbium-Ytterbium co-doped and Thulium-Ytterbium co-doped fibers, respectively as the gain medium. Carbon nanotubes and graphene based saturable absorbers (SA) were explored as the passive Q-switcher in the proposed lasers. The Q-switched Ytterbium doped fiber laser (YDFL) operating at 1060.2 nm was realized using a multi-walled carbon nanotubes / PEO saturable absorber. The repetition rate of the laser were varied from 7.92 kHz to 24.27 kHz by varying the pump power from 53.42 mW to 65.72 mW. At the 59.55 mW pump power, the lowest pulse width and the highest pulse energy were obtained at 12.18 µs and 143.5 nJ, respectively. The YDFL was then used to demonstrate an all-fiber based MOPA system where the maximum pulse energy of 354.2 nJ was obtained at the maximum cladding pump power of 800 mW. The Q-switching of Erbium-Ytterbium fiber laser (EYFL) was demonstrated using a multi-layer graphene film based saturable absorber. The proposed laser was operated at 1532.5 nm and self-started at pump threshold of 44 mW to produce Q-switching pulse with repetition rate of 12.33 kHz and pulse width of 9.36 µs. At the maximum pump power of 78 mW, the maximum pulse energy of 5.8 nJ and the shortest pulse duration of 2.68 µs were achieved. Multi-wavelength and Q-switched fiber lasers were also demonstrated based on the newly developed octagonal shape double-clad Thulium-Ytterbium fiber (TYF) operating at 2 micron wavelength region. By incorporating the home-made multi-wall carbon nanotubes saturable absorber (MWCNTs SA) in the ring cavity, a Q-switching pulse train operating at 1983.4 nm was successfully demonstrated. By varying the 905 nm multimode pump power from 1570 to 1606 mW, the pulse repetition rate increased from 27.4 to 37.8 kHz and the pulse width fluctuated from 3.8 µs to 4.9 µs. The maximum pulse energy of 10.6 nJ was obtained at pump power of 1570 mW. Besides showing good Q-switching performance, the proposed saturable absorbers are easy to fabricate and inexpensive.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Organization of the Thesis</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Optical fibers</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Fiber laser fundamental</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Working principles of fiber lasers</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Ytterbium fiber laser</td>
<td>16</td>
</tr>
</tbody>
</table>
2.6 Q-switched fiber laser 19
2.7 Laser threshold and output power 22
2.8 Slope efficiency 23

3 METHODOLOGY 24
3.1 Introduction 24
3.2 Proposed Research Framework 25
3.3 Important Parameters of Pulsed Laser 27
3.4 Fiber laser components 31
 3.4.1 Wavelength division multiplexer (WDM) coupler 31
 3.4.2 Output coupler 32
 3.4.3 Optical Isolator 33
 3.4.4 Laser diode pump 34
 3.4.5 Fiber Bragg Grating (FBG) 35
 3.4.6 Multimode combiner 36
3.5 Measuring equipments 37
 3.5.1 Optical spectrum analyser (OSA) 37
 3.5.2 Oscilloscope (OSC) 38
 3.5.3 Power Meter 40
 3.5.4 Photodetector 41
3.6 Q-Switching Experiments 42
3.7 Laser Configurations 43
3.8 Summary 45

4 DEVELOPMENT OF YTTERBIUM-DOPED FIBER LASER 46
4.1 Introduction 46
4.2 Linear Cavity CW Ytterbium-doped fiber laser 47
4.3 Ytterbium-doped fiber laser with ring configuration 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Cladding pumped YDFL</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Q-switched Ytterbium-doped fiber laser</td>
<td>62</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Preparation and Raman characterisation of WCNT-PEO film</td>
<td>64</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Configuration of the proposed YDFL</td>
<td>66</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Performance of the Q-switched YDFL</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Amplified Q-switched YDFL</td>
<td>71</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>ERBIUM YTTERBIUM FIBER LASER OPERATING IN 1550 nm REGION</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>Introductions</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Gain Characteristic of Erbium / Ytterbium Fiber</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Q-switched Erbium-Ytterbium co-doped fiber laser</td>
<td>83</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Fabrication and characterisation of MWCNTs-PVA</td>
<td>85</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Configuration of the Q-switched EYFL with a double-clad EYDF and MWCNTs-PVA SA.</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Performance of the Q-switched EYFL with MWCNTs-PVA SA.</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Q-switched Erbium-doped fiber laser using multi-layer graphene based SA</td>
<td>93</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Fabrication of Graphene Film</td>
<td>94</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Configuration of the graphene based Q-switched EYDFL</td>
<td>96</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Result and discussion</td>
<td>97</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>THULIUM YTTERBIUM CO-DOPED FIBER LASER OPERATING AT 1.9 MICRON REGION</td>
<td>102</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Working Principle</td>
<td>103</td>
</tr>
</tbody>
</table>
6.3 Double-clad D-shaped Thulium-Ytterbium Co-doped Fiber Laser
6.3.1 Fabrication of Double Clad TYDF 107
6.3.2 Amplified spontaneous emission (ASE) 112
6.3.3 2 micron fiber laser using the double-clad TYDF 115
6.3.4 TYDFL with 1552 nm pumping 119

6.4 2 Micron fiber laser based on Octagonal shaped TYDF 123
6.4.1 Fabrication and characterization of TYDF 123
6.4.2 Lasing characteristic of the TYDF 125
6.4.3 Q-switched TYDFL 128
6.4.4 Configuration of the Q-switched EDFL with MWCNTs-PVA 128
6.4.5 Q-switching performance 130

6.5 Summary 134

7 CONCLUSION AND FUTURE OUTLOOKS 135
7.1 Introduction 135
7.2 Development of CW Ytterbium-doped fiber lasers operating at 1 micron region 135
7.3 Q-switched YDFL 136
7.4 Amplification characteristic of Erbium Ytterbium co-doped fiber amplifier 137
7.5 Q-switched EYFL using a multi-layer graphene film based SA 138
7.6 Lasing Characteristic of Thulium Ytterbium Co-doped Fiber 138
7.7 Q-switched Thulium Ytterbium Co-doped Fiber Laser 140

REFERENCES 142
LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1 | TBP values for various pulse shape. | 31
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>(a) Schematic diagram of a standard step-index optical fiber and (b) its refractive index profile.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Confinement of light within the fiber core by total internal reflection.</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic drawing of a fiber laser configured with Fabry-Perot resonator.</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Wavelengths demonstrated in CW rare-earth-doped silica fiber lasers [52].</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of a double-clad fiber.</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>a) Absorption of a photon with energy $h\omega_0$ inducing a transition from the ground state \“(i)\” to the excited state \“(ii)\”. b) Spontaneous emission of a photon resulting in a transition from the excited state to the ground state. c) Stimulated emission.</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Energy levels diagram of a YDF, and the usual pump and laser transitions.</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Distributions of energy levels of Er$^{3+}$ and Yb$^{3+}$ ions in glass.</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Working principle of the EYDF laser operating at 1550 nm using a 980 nm pumping.</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Sandwiched device for integrating CNT and graphene film based SA into a fiber laser cavity.</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Proposed Research Framework.</td>
<td>26</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Important terms in pulsed lasers.</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Gaussian and (\text{Sech}^2) pulse shape.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>980/2000 nm WDM coupler.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>90/10 output coupler.</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>1550 nm optical isolator.</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Laser diode pump inside a mount.</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Fiber Bragg Gratings.</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Multimode combiner.</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Optical spectrum analyser (OSA).</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Oscilloscope.</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Power meter.</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Photodetector.</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Linear configuration.</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Ring configuration.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental set-up for the YDF.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Transmission spectrum of the 99.9% FBG.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>ASE spectra from 1 m long YDF at two different 975 nm pump powers.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Output spectrum of the YDFL with two different YDF lengths of 0.5 and 1.0 m.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Output spectrum of the YDFL configured with 1 m long YDF within a short span ranging from 1069 to 1072 nm.</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>The output power of the proposed YDFL against pump power at various YDF lengths.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Configuration of the ring YDFL.</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>ASE spectra of the forward pumped YDF at various fiber lengths when the pump power is fixed at 37.1 mW.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>The output spectrum of the ring YDFL at pump power of 65.7 mW and YDF length of 2 m.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>The output power of the proposed YDFL against pump power at various YDF lengths.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Schematic diagram of a double-clad fiber.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Absorption spectrum of Ytterbium-doped silica fibers.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Experimental set-up for the cladding pumped YDFL.</td>
<td></td>
</tr>
</tbody>
</table>
4.14 ASE spectra of the cladding pumped YDF at 980 nm pump power of 300 mW.

4.15 Output spectrum of the double-clad YDFL (a) at 950-1200 nm span (b) 1068-1072 nm span when the pump power is fixed at 350 mW.

4.16 The output power of the proposed DC YDF against pump power at various DC YDF lengths.

4.17 Image of the fabricated MWCNTs-PEO thin film.

4.18 Raman spectroscopy of MWCNTs-PEO composites thin film.

4.19 Configuration of the proposed Q-switched YDFL utilizing a MWCNTs-PEO film based SA.

4.20 Output spectrum of the proposed Q-switched YDFL at the threshold pump power of 53.42 mW.

4.21 Q-switched YDF of pulse train and single-pulse envelop at 980 nm pump powers of (a) 53.43 mW, (b) 59.55 mW and (c) 65.72 mW.

4.22 Repetition rate and output power as a function of 980 nm of pump power.

4.23 Pulse width and pulse energy as a function of 980 nm of pump power.

4.24 Configuration of the proposed all-fiber based MOPA system with a Q-switched YDFL as a master oscillator.

4.25 The output spectra of the seed and the amplified lasers.

4.26 Pulse train of the (a) seed Q-switched laser and the (b) amplified lasers.

4.27 Pulse train of the amplified Q-switched YDFL at pump power of 0.8 W.

4.28 Repetition rate and pulse width as a function of 975 nm of multimode pump power.

4.29 Output power and pulse energy as a function of 975 nm of multimode pump power.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Configuration of Erbium-Ytterbium Doped Fiber Amplifier. Inset shows the cross section image of the star-shape fiber.</td>
</tr>
<tr>
<td>5.2</td>
<td>Gain spectra of the proposed EYDFA at three different pump powers.</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of the output spectrum with the input spectrum of the signal.</td>
</tr>
<tr>
<td>5.4</td>
<td>Gain characteristic of the EYDFA against the pump power.</td>
</tr>
<tr>
<td>5.5</td>
<td>Raman spectrum from the fabricated MWCNTs-PVA film.</td>
</tr>
<tr>
<td>5.6</td>
<td>The configuration of the proposed Q-switched EYFL.</td>
</tr>
<tr>
<td>5.7</td>
<td>ASE spectra from the cladding pumped EYDF at different pumping powers of 200 mW and 400 mW.</td>
</tr>
<tr>
<td>5.8</td>
<td>Output spectrum from the ring EYDFL configured with and without the SA at pumping power of 204.9 mW.</td>
</tr>
<tr>
<td>5.9</td>
<td>Q-switched EYDF of (a) pulse train and (b) single-pulse envelop at 927 nm pump powers of 208.4 mW.</td>
</tr>
<tr>
<td>5.10</td>
<td>Repetition rate and pulse width as a function of 927 nm of multimode pump power.</td>
</tr>
<tr>
<td>5.11</td>
<td>Output power and pulse energy as a function of 927 nm of multimode pump power.</td>
</tr>
<tr>
<td>5.12</td>
<td>Raman spectrum from the graphene film.</td>
</tr>
<tr>
<td>5.13</td>
<td>Schematic configuration of the Q-switched EYFL.</td>
</tr>
<tr>
<td>5.14</td>
<td>Output spectra from the both EYFLs configured with and without the SA at pump power of 44 mW.</td>
</tr>
<tr>
<td>5.15</td>
<td>(a) The pulse train for the proposed EYFL with graphene based SA at 44 mW pump power with the repetition rate of 12.33 kHz. (b) Enlarge pulse width spectrum.</td>
</tr>
<tr>
<td>5.16</td>
<td>Repetition rate and pulse width as functions of pump power.</td>
</tr>
<tr>
<td>5.17</td>
<td>Output power and pulse energy versus pump power.</td>
</tr>
<tr>
<td>6.1</td>
<td>Energy diagram levels for both Ytterbium and Thulium ions in YTDF showing an energy transfer.</td>
</tr>
</tbody>
</table>
6.2 Energy transitions of Thulium ions with (a) 1550 nm pumping (b) 800 nm pumping.
6.3 Energy transfer within Thulium ions, which occurs with 800 nm pumping.
6.4 Deposition of multiple porous layer of composition SiO2-P2O5 along forward direction by the MCVD process.
6.5 SEM image of multiple un-sintered soot layers which is obtained before solution soaking and scanned along vertical direction.
6.6 Process of cutting the deposited silica tube.
6.7 EPMA plot of weight percentage versus cross sectional distance (μm) of the preform.
6.8 RI profile of one the preform showing the index difference between core and cladding.
6.9 Cross section view of LTY8 optical fiber showing the D-shaped cladding structure.
6.10 Experimental setup for ASE spectrum measurement.
6.11 The ASE spectrum for LTY6 at 1.5 m using different pumping wavelength.
6.12 ASE spectrum at various pump power using 905 nm pump.
6.13 Configuration of the 2 micron fiber laser using a TYDF as the gain medium.
6.14 Output power against the pump power at two different pumping wavelengths of 905 nm and 931 nm.
6.15 The attenuated output spectrum of the TYDFL with 980 nm pumping of 1.3 W.
6.16 Output laser spectrum for different pumping wavelengths.
6.17 Configuration of the TYDFL with 1552 nm pumping.
6.18 ASE spectra obtained by 1552 nm pumping at various TYF lengths. The pump power is fixed at 1 W.
6.19 Output spectrum of the TYFL. Inset shows the spectrum with a wider measurement range.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.20</td>
<td>The laser output power against 1552 nm pump power at various fiber lengths.</td>
</tr>
<tr>
<td>6.21</td>
<td>Microscopic cross-sectional view of an octagonal shaped low RI coated fiber.</td>
</tr>
<tr>
<td>6.22</td>
<td>Configuration of the proposed 2 micron fiber laser based on the fabricated TYDF and multimode pumping.</td>
</tr>
<tr>
<td>6.23</td>
<td>The output power of the ring TYDFL against the pump power at three different TYDF lengths.</td>
</tr>
<tr>
<td>6.24</td>
<td>The output spectra of the proposed TYDFL at three different TYDF lengths.</td>
</tr>
<tr>
<td>6.25</td>
<td>The configuration of the proposed Q-switched TYFL.</td>
</tr>
<tr>
<td>6.26</td>
<td>ASE spectra of the TYDFL at different pump powers of 2 W, 4 W and 6 W.</td>
</tr>
<tr>
<td>6.27</td>
<td>Output spectrum of the Q-switched TYDFL at the 905 nm multimode pump power of 2015.8 mW.</td>
</tr>
<tr>
<td>6.28</td>
<td>(a) A typical pulse trains and (b) a single pulse envelop of the proposed Q-switched TYFL at pump power of 2015.8 mW. It shows a repetition rate of 45.07 kHz and pulse width of 4.4 μs.</td>
</tr>
<tr>
<td>6.29</td>
<td>Repetition rate and pulse width as a function of 905 nm of multimode pump power.</td>
</tr>
<tr>
<td>6.30</td>
<td>Output power and pulse energy as a function of 905 nm of multimode pump power.</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

n – refrective index
r – radial coordinate
θ – angle of incidence
NA – numerical aperture
L – cavity length
β – amplification coefficient
k – Boltzmann constant
ΔN – population inversion
P – power
R1 – mirror 1
R2 – mirror 2
δo – round trip loss
η – slope efficiency
λ – wavelength
NF – noise figure
h – Plank constant
ν – frequency
G – gain
CHAPTER 1

INTRODUCTION

1.1 Background

A promising alternative to the conventional solid-state laser systems is the fiber laser with some advantages like compact size, high electrical efficiency, superior beam quality and reliability, great output power, lower maintenance, low ownership cost, mobility and ruggedness. It was firstly invented by Elias Snitzer in 1963 [1,2] and in late 1980s, fiber laser devices appeared in the market. These lasers emitted a few tens of milliwatts because they used single-mode diode pump. In addition, these lasers have large gain and it is possible to realise single-mode continuous-wave (CW) lasing operation using many transitions of lanthanide ions not realisable in the more-usual semiconductor material laser version. The active medium are specialized optical fibers doped with rare earth elements such as Ytterbium, Erbium and Thulium [3–5]. These rare earth elements have many advantages such as simple energy levels, long life time at high level, high quantum efficiency, and wide absorption spectrum which is good to develop high power fiber lasers for many applications such as industry, communication, military, and etc [6–9]. The most famous application of fiber-laser technology is in 1550 nm erbium-doped fiber amplifiers (EDFAs) [10].

In the late 1980s, double clad fiber was developed for high power fiber laser applications [11]. This fiber has a core, which is doped with active dopant material
that functions to guide and amplify the signal light. The pump light guided by the inner cladding is used to provide the energy needed to allow amplification in the core of the fiber. In order to confine the light into the core, the outer cladding must have lowest refractive index compared to the core. Double clad fiber [12–15] is better rather than standard single clad fiber because it has low dispersion over a much wider wavelength range.

Fiber laser progress continued with the discovery of one of the rare earth material named Ytterbium. When this element is doped with fiber laser, in the 1 µm band it work as a highly efficient gain medium that can compromise high power conversion efficiencies and larger power levels than erbium-doped fiber lasers (EDFLs). Therefore, ytterbium doped fiber amplifier can provide high power fiber laser that is now used broadly in industrial, medical, military and high quality imaging applications. In addition, Ytterbium has acquired a prominent role in the form of the trivalent ion Yb$^{3+}$, which is used as a laser-active dopant in a variety of host materials. Particularly, wide attentions have been attracted by Yb$^{3+}$ doped double clad fiber lasers. They have been extensively studied for some causes [16]. First, the wide bandwidth of Yb$^{3+}$ doped fiber lasers which is larger than 1550 nm, make it well adapted for tunable laser application. Second, Yb ion has a quasi-three-level energy system that manage high efficiency because it can avoid any pump or signal excited-state absorption (ESA). Third, they allow for a low cost commercially existing laser diode as the pump source because Yb ion gifts a large absorption cross-section around 980 nm.

However, other than emission at 1 µm band, ytterbium also can be used as the sensitized element for erbium and thulium for the emission band at 1.5 µm and 2.0 µm. These bands would also give several industry applications such as in area of communication, remote sensing and biomedical applications. Yb$^{3+}$ has the benefit to present only two multiplets which is the ground-state level $^2\!F_{7/2}$ and the excited-state level $^2\!F_{5/2}$, corresponding the highly efficiency absorption in the range of 900 nm-1000 nm. For efficient absorption emitting around 980 nm of commercially available laser diodes, this certain energy level structure is highly required and they avoid any
unwanted excited-state absorption under intense optical pumping. Based on the above consideration, ytterbium co-doping in erbium and thulium doped fiber is investigated and become an interest area of research. In this work, various fiber lasers operating in both continuous wave and Q-switching mode are proposed and demonstrated using a ytterbium doped and co-doped fibers as the gain medium.

1.2 Problem Statement

Lasers operating in CW or quasi-CW mode have limited optical output power, depending on the maximum available pump power. The laser peak output power can be improved by concentrating the available energy in a single, short optical pulse, or in a periodic sequence of optical pulses as in a Q-switched fiber laser. Q-switching is a method that allows the generation of an optical pulse at repetition rate in kHz region and pulse width in a range of microseconds to nanoseconds by sudden switching of the cavity loss. Compared to CW fiber lasers, various applications, such as remote sensing, medicine, range finding and industrial processing are practically useful in high peak power Q-switched fiber lasers [17–20]. Although Q-switching does not produce the ultra-short pulses as in mode-locked lasers, it has several advantages such as inexpensive, easy to implement and efficient in extracting energy stored in upper laser level.

The Q-switched fiber laser can be achieved using either active or passive techniques. Active Q-switching is realised by introducing an electro-optic or an acoustic-optic modulator into the cavity. On the other hand, to simplify the cavity design and exclude the requirement for external Q-switching electronics, there is a convenient technique which is passive Q-switching by means of saturable absorbers (SAs). Different kinds of saturable absorbers (SAs), such as the transition metal-doped crystals [21–23] and semiconductor materials [24], have been applied to realize Q-switched fiber lasers especially for operation in 1550 nm region. However, extra alignment devices, such as mirrors, lens or U-bench units have to be applied when they
are used in the laser cavity. This may increase the insertion loss and the complexity of the laser cavity.

Recently carbon nanotubes and graphene are normally used as the SA for the \(Q \)-switched fiber lasers [25–27]. These SAs are a comparatively simple and cost-effective alternative compared to semiconductor SA (SESAM). This is because of their inherent advantages, as well as wide operating bandwidth, good compatibility with optical fibers, fast recovery time and low saturation intensity. On the other hand, due to their relatively big volume, SAs based on semiconductor and crystal cannot be used for an all fiber laser structure. However, most of the current works are focusing on Erbium-doped fiber lasers (EDFLs). There are still a lack of research works on \(Q \)-switching in both 1 micron and 2 micron regions. In this work, various types of low cost CNT and graphene based SAs are developed for \(Q \)-switching applications in Yb doped and co-doped fiber lasers.

1.3 Research Objectives

The main objective of this research is to design and construct an efficient and low cost \(Q \)-switched Ytterbium doped and co-doped fiber lasers operating in 1.0, 1.5 and 2.0 \(\mu \)m regions. This can be achieved by performing the following tasks;

1. To characterize CW and \(Q \)-switched fiber laser operating at 1 micron region using Ytterbium doped fiber as the gain medium. Both core and cladding pumping approaches are used in this study.
2. To characterize various types of passive saturable absorber based on multi-walled carbon nanotubes and graphene.
3. To demonstrate a \(Q \)-switched Erbium Ytterbium co-doped fiber laser using a multi-layer graphene film based SA.
4. To design a lasing characteristic on the newly developed Thulium Ytterbium co-doped fiber.
To demonstrate a Q-switched fiber laser operating at 2 micron region using the TYDF as the gain medium.

1.4 Organization of the Thesis

This thesis is organized into five chapters which comprehensively demonstrate the development of Q-switched fiber lasers operating in 1.0, 1.5 and 2.0 µm region using Ytterbium doped and co-doped fibers as the gain medium. Chapter 1 gives a brief description on the recent development of fiber lasers. The motivation and objective of this study are also highlighted. Chapter 2 furnishes a detailed literature on the basic theory of optical fibers, fiber lasers, Ytterbium fibers and Q-switching are described.

Chapter 3 presents the methodology used in the experimental works. All the components and measuring equipment that used in this work are discussed in details through this section. Chapter 4 presents thorough study on Yb$^{3+}$ doped fiber laser (YDFLs) for both CW and pulse operations. Due to their compactness, low cost, and flexibility, this lasers become very attractive. An enormous range of applications of Yb$^{3+}$ doped fiber laser have been found in in recent years including optical imaging, material processing and fiber communications. A passively Q-switched YDFL is then demonstrated by using multi-walled carbon nanotubes, which is embedded in PEO polymer as saturable absorber. The SA film was prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution. It is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity to generate a stable Q-switching pulse operating at 1 µm region.

Q-switched Erbium Ytterbium fiber laser (EYFL) operating at 1.5 µm region is demonstrated in Chapter 5 using a multi-layer graphene film based SA. The SA was fabricated by sandwiching a thin graphene film produced via electrochemical
exfoliation technique between two FC fiber connectors. In addition, the amplification characteristic of a double-clad Erbium Ytterbium co-doped fiber (EYDF) under 927 nm multimode pumping are investigated. The EYDF amplifier (EYDFA) combines the multimode pump into the star shape inner cladding EYDF using a multimode combiner.

Chapter 6 aims to develop 2 micron fiber laser using a Thulium Ytterbium co-doped fiber (TYDF) as the gain medium. A 2 micron laser is demonstrated using two types of double-clad TYDF. Both TYDFs are fabricated using a MCVD process in conjunction with solution doping. Chapter 6 also demonstrates multi-wavelength and Q-switched fiber lasers based on the newly developed octagonal shape double-clad TYDF operating at 2 micron region. A homemade MWCNTs SA is used in this experiment. Finally, Chapter 7 summarizes the findings for this PhD work.
REFERENCES

