SCURRULA FERRUGINEA METHANOL EXTRACT INDUCES REACTIVE OXYGEN SPECIES-MEDIATED AND MITOCHONDRIAL-DEPENDENT APOPTOSIS IN BREAST CANCER CELLS

MOHSEN MARVI BAIGI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Biomedical Engineering)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

MARCH 2016
I would like to dedicate this thesis to my beloved wife, my lovely unborn child and my lovely father and mother for their endless support and encouragement.
ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my main thesis supervisor, Professor Dr. Ing Eko Supryianto for his encouragement, patience, motivation, immense knowledge and friendship. Besides my supervisor, I am also very thankful to my co-supervisor Associate Professor Dr. Fadzilah Adibah Abdul Majid, who provided me an opportunity to join TCERG group, and who gave access to the laboratory and research facilities. Without her precious support it would not be possible to conduct this research. My sincere appreciation also extends to my co-supervisors Dr. Shajarahtunnur Jamil and Dr. Saravana Kumar Jaganathan for their insightful comments, guidance, advices and motivation. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. I would like to thank all members of tissue culture engineering research group (TCERG) for their friendship and kind assistance. Finally yet importantly, I would like to express utmost appreciation to my lovely wife for her love, support and encouragements. In addition, especially I would like to thank my beloved father, mother, sister and brothers for their sacrifice and endless encouragement. My sincere thanks also goes to my father and mother in law for their kind encouragements.
ABSTRACT

The purpose of this study is to investigate antioxidant and anticancer activities of *Scurrula ferruginea* extracts. The antioxidant activities of the extracts were evaluated using various assays. The extracts were further investigated to examine their cytotoxic activity on human breast cancer cell lines; MDA-MB-231, MDA-MB-468 and MCF-7 using MTT assay. Microscopic examinations of cells were carried out to elucidate the modes of cell death. The effect of the extracts on cancer cells colony formation and migration were determined. Changes in mitochondrial membrane potential and level of reactive oxygen species (ROS) were measured. Western blot and cell cycle analysis were performed to unravel the mechanism of action of extracts against the breast cancer cells. Using GC-MS analysis, chemical composition of extracts were characterized to reveal the presence of anti-cancerous compounds. Our study on stem methanol extract has shown the highest amount of phenolic, flavonoid contents, strong DPPH radical scavenging and metal chelation activity in comparison to other extracts. The stem aqueous and methanol extracts have shown higher cytotoxic effect towards MDA-MB-231 cells compared to other cell lines with IC$_{50}$ value of 50.35 and 19.27 µg/mL, after 72 h of treatment, respectively. Morphological observations revealed properties of apoptosis in the treated cells. The results displayed that the extracts have the ability to stop migration of cancer cells and also inhibit the colony formation of cancer cells. Moreover, the results have shown that the extracts induced apoptosis in breast cancer cells by ROS generation and mitochondrial depolarization. Furthermore, this study demonstrated that methanol extract inhibited the proliferation of breast cancer cells via induction of cell cycle arrest at G0/G1 phase and apoptosis through a mitochondria-dependent apoptosis pathway. The findings of present study revealed the potential antioxidant and anticancer activities of *S. ferruginea* stem methanol extract which may serve as a promising candidate in the search of a new anti-cancer drug.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xxvii</td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCTION

1.1 Research Background
1.1.1 Breast Cancer
1.1.2 Breast Cancer Treatment
1.2 Problem Statement
1.3 Objectives of Study
1.4 Scope of Study
1.5 Significant of Study
1.6 Methodology

LITERATURE REVIEW

2.1 Different Forms of Breast Cancer
2.2 Natural Product as Chemotherapeutic Agents
2.3 Complementary and alternative medicine in breast cancer patients
2.4 Apoptosis
2.4.1 Intrinsic apoptotic pathway 15
2.4.2 Extrinsic apoptotic pathway 17
2.5 Cell-cycle–mediated apoptosis pathway in cancer cell 18
 2.5.1 Link between cell cycle and apoptosis 19
2.6 Antioxidants and ROS for cancer prevention and treatment 20
2.7 Mistletoe 21
 2.7.1 Mistletoe active compounds 22
 2.7.2 Preclinical studies using mistletoe extracts 25
 2.7.3 Clinical Studies using mistletoe extracts 31
 2.7.4 Mechanisms involved in the antitumor activity of mistletoe against breast cancer cells 41

3 METHODOLOGY 51
3.1 Chemicals and reagents 51
3.2 Plant material 52
3.3 Extraction of leaves, stems and flowers of S.ferruginea 52
3.4 Estimation of total phenolic content (TPC) 53
3.5 Determination of total flavonoid content (TFC) 54
3.6 DPPH free radical scavenging capacity 54
3.7 Ferrous ion-chelating capacity assay 55
3.8 TEAC method 56
3.9 Gas chromatography-mass spectroscopy (GC-MS) analysis 56
3.10 Cell culture 57
 3.10.1 Cell culture maintenance 57
 3.10.2 Subculture of cell lines 57
 3.10.3 Cell lines growth curve 59
 3.10.4 Cell counting 60
 3.10.5 Cryopreservation of cell lines 61
 3.10.6 Thawing cryopreserved cells 61
3.11 Cell proliferation assay 62
3.12 Morphological observation of breast cancer cells 62
3.13 Ethidium bromide and acridine orange staining for apoptosis detection 63
3.13.1 Apoptotic Index 63
3.14 Nuclear morphological studies by propidium iodide and Hoechst 33342 staining 64
3.15 Clonogenic inhibition assay 65
3.16 In vitro scratch motility assay 65
3.17 Determination of intracellular reactive oxygen species (ROS) generation 66
3.18 Mitochondrial membrane potential assay (JC-1 assay) 67
3.19 Extraction of proteins 68
3.20 Determination of protein concentration using BCA assay 68
3.21 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 69
3.22 Western Blotting 71
3.23 Flow cytometry based analysis of cell cycle distribution 72
3.24 Statistical analysis 73

4 RESULTS AND DISCUSSION 75
4.1 Extraction of plant materials 75
4.1.1 Extraction yields 76
4.2 Amount of phenolic compounds in S. ferruginea extracts (TPC) 78
4.3 Determination of total flavonoid content (TFC) 79
4.4 DPPH scavenging activity 80
4.5 Fe $^{2+}$ chelating ability 85
4.6 Determination of TEAC value 87
4.7 Correlation between antioxidant activity assays, phenolic and flavonoids contents 89
4.8 Chemical composition of S. ferruginea methanolic extracts 90
4.8.1 Lupeol 98
4.8.2 Cinnamic acid 99
4.8.3 Linolenic acid 99
4.8.4 Humulane 100
4.8.5 Squalene 100
4.8.6 Hydrocarbons 100
4.8.7 Phytol 101
4.8.8 Vitamin E 101

4.9 Growth curves of breast cancer cell lines 102

4.10 In vitro cytotoxic activity of methanol and aqueous extracts of *S. ferruginea* stems 105

4.10.1 Cytotoxic activity of selected extracts against MDA-MB-231 cells 106
4.10.2 Cytotoxic activity of selected extracts against MDA-MB-468 cells 108
4.10.3 Cytotoxic activity of selected extracts against MCF-7 cells 110
4.10.4 Cytotoxic activity of selected extracts against HSF-1184 cells 112

4.11 Morphological changes of breast cancer cells following treatment with *S. ferruginea* extracts 115

4.11.1 Morphological changes of MDA-MB-231 cells treated with *S. ferruginea* extracts 116
4.11.2 Morphological changes of MDA-MB-468 cells treated with *S. ferruginea* extracts 118
4.11.3 Morphological changes of MCF-7 cells treated with *S. ferruginea* extracts 120

4.12 Apoptosis detection by acridine orange/ethidium bromide staining 123

4.12.1 Acridine orange/ethidium bromide (AO/EB) staining of MDA-MB-231 cells 123
4.12.2 Acridine orange/ethidium bromide (AO/EB) staining of MDA-MB-468 cells 127
4.12.3 Acridine orange/ethidium bromide (AO/EB) staining of MCF-7 cells 131

4.13 Nuclear morphological studies using propidium iodide and Hoechst staining 136

4.13.1 Propidium iodide and Hoechst staining of MDA-MB-231 cells 137
4.13.2 Propidium iodide and Hoechst staining of MDA-MB-468 cells 140
4.13.3 Propidium iodide and Hoechst staining of MCF-7 cells 143

4.14 Effect of *S. ferruginea* extracts on colony formation in breast cancer cell lines 146
4.14.1 Effect of selected extracts on clonogenicity of MDA-MB-231 cells 146
4.14.2 Effect of selected extracts on clonogenicity of MDA-MB-468 cells 148
4.14.3 Effect of S. ferruginea extracts on clonogenicity of MCF-7 cells 150
4.15 Cell migration inhibition efficiency of S. ferruginea extracts 154
 4.15.1 Effect of selected extracts on MDA-MB-231 cell migration 154
 4.15.2 Effect of selected extracts on MDA-MB-468 cell migration 157
 4.15.3 Effect of selected extracts on MCF-7 cell migration 160
4.16 Measurement of reactive oxygen species (ROS) generation 164
 4.16.1 Qualitative measurement of ROS formation in breast cancer cells 165
 4.16.2 Quantitative measurement of ROS formation in breast cancer cells 168
4.17 Measurement of mitochondrial membrane potential (MMP) by JC-1 assay 170
 4.17.1 Qualitative measurement of MMP 170
 4.17.2 Quantitative measurement of MMP 173
4.18 Effect of S. ferruginea methanol extract on apoptosis-associated proteins expression in MDA-MB-231 cells 175
 4.18.1 Effect of Methanol Extract on Pro-apoptotic and Anti-apoptotic Proteins 175
 4.18.2 Effect of Methanol Extract on Caspase 3, Caspase 7 and PARP 178
4.19 Effects of S. ferruginea methanol extract on cell cycle progression in breast cancer cells 182

5 CONCLUSION AND RECOMMENDATIONS 188
 5.1 Conclusion 188
 5.2 Recommendations 190

REFERENCES 191
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of various methods of breast cancer treatment and their common side effects.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of invasive breast cancer according to Fisher et al. 1975 and Linell et al. 1984.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of breast cancer based on molecular markers.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of in vitro and in vivo studies of mistletoe extracts on breast cancer cells and animal models.</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of the clinical trials on efficacy of mistletoe therapy in breast cancer patients.</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>A list of systematic and meta-analysis reviews including controlled randomized, non-randomized and matched pair clinical trials on different aspects of HRQoL in breast cancers patients.</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation of resolving and stacking gels.</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage of S. ferruginea extraction yields obtained from different parts using different solvents.</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Total phenolic content of S. ferruginea leaves, stems and flowers using different solvents expressed in mg Gallic acid/g extract.</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Total flavonoid content of S. ferruginea leaves, stems and flowers using different solvents expressed in mg catechin/ g extract.</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Radical scavenging activity (IC$_{50}$ value) of S. ferruginea extracts against DPPH radical.</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Metal chelation ability of various parts of S. ferruginea extracts using different solvents. All analysis are mean of three replicate determinations ± standard deviation (n = 3). Data expressed in percent of Fe (ii) chelation. Data are represented as IC$_{50}$ and the values are presented with their respective 95% confidence interval (95% CI). Positive reference standard.</td>
<td>87</td>
</tr>
</tbody>
</table>
4.6 ABTS⁺ radical scavenging capacity of *S. ferruginea* extracts. Data were expressed as µM Trolox/g extract.

4.7 Pearson’s correlation coefficients of antioxidant activities, total flavonoid and total phenolic content in *S. ferruginea*.

4.8 Phytochemical compounds identified in the methanolic extracts of the *S. ferruginea* stem by GC-MS.

4.9 Phytochemical compounds identified in the methanolic extracts of the *S. ferruginea* leaf by GC-MS.

4.10 Phytochemical compounds identified in the methanolic extracts of the *S. ferruginea* flower by GC-MS.

4.11 Inhibitory effect of *S. ferruginea* extracts against MDA-MB-231 breast cancer cell line at different incubation times.

4.12 Inhibitory effect of *S. ferruginea* extracts against MDA-MB-468 breast cancer cell line at different incubation times.

4.13 Inhibitory effect of *S. ferruginea* extracts against MCF-7 cells at different incubation times.

4.14 Inhibitory effect of *S. ferruginea* extracts against different breast cancer cells after 72h of incubation.

4.15 Comparison of the percentage of apoptotic cells at various breast cancer cells treated with different concentrations of methanol extract, aqueous extract and IC₅₀ concentration of positive control (tamoxifen).

4.16 Comparison of the percentage of colony forming potential at various breast cancer cells treated with different concentrations of methanol extract, aqueous extract and positive control (tamoxifen).

4.17 Comparison of the percentage of migration of breast cancer cells treated with different concentrations of methanol and aqueous extracts after 24 h.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic diagram of extrinsic and intrinsic apoptotic pathways adapted from (Vries et al., 2006).</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Origin and scientific names of mistletoes belonging to Loranthaceae family.</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Origin and scientific names of mistletoes belonging to Viscaceae family.</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of the various cellular activities and mechanisms involved in mistletoe extracts effects on QOL. As depicted, the mechanisms involved in anti-tumor properties of mistletoe are interrelated biological phenomena including apoptosis, β-endorphin release, immunomodulation (stimulation of pro-inflammatory cytokines). ADCC: antibody-dependent cell-mediated cytotoxicity.</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic illustration explaining the possible mechanisms of apoptosis induction by mistletoe in breast cancer cells (stimulatory effect represented by arrow with directed blue lines and inhibitory effect indicated by red lines).</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>S. ferruginea (Jack) Danser on host tree (Bauhinia x blakeana) collected from the campus of Universiti Teknologi Malaysia (Latitude N 1° 33’ 54.9”, Longitude E 103° 38’ 29.2”), Skudai, Johor, Malaysia.</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Close-up view of S. ferruginea (jack) Danser stem, leaf and flower.</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Extract evaporation using rotary evaporator (BUCHI, Switzerland, R210).</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>DPPH radical scavenging capacities of (a) stem, (b) leaf and...</td>
<td></td>
</tr>
</tbody>
</table>
(c) flower extracts of *S. ferruginea* and positive control (Ascorbic acid).
Values are mean of three replicate determinations ± standard deviation (n = 3). Points marked with different letters are significantly different at $P < 0.05$ when compared at the same concentration point as determined by two-way ANOVA. The positive control (ascorbic acid) showed a significantly higher scavenging capacity as compared to the samples (at $P < 0.05$ as determined by two-way ANOVA).

4.5 Metal chelating activities of (a) stem, (b) leaf and (c) flower extracts of *S. ferruginea* and positive control (EDTA).
Values are mean of three replicate determinations ± standard deviation (n = 3). Points marked with different letters are significantly different at $P < 0.05$ when compared at the same concentration point as determined by two-way ANOVA. The positive control (EDTA) showed a significantly higher scavenging capacity as compared to the samples (at $P < 0.05$ as determined by two-way ANOVA).

4.6 GC-MS chromatogram of methanolic extract of *S. ferruginea* stem.

4.7 GC-MS chromatogram of methanolic extract of *S. ferruginea* leaf.

4.8 GC-MS chromatogram of methanolic extract of *S. ferruginea* flower.

4.9 The complete growth curve of MDA-MB-231 cell line. Population doubling time (PDT) is 24.63 h (1.02 day). Data are represented as means ± SD.

4.10 The complete growth curve of MDA-MB-468 cell line. Population doubling time (PDT) is 26.97 h (1.12 day). Data are represented as means ± SD.

4.11 The complete growth curve of MCF-7 cell line. Population doubling time (PDT) is 39.04 h (1.62 day). Data are represented as means ± SD.

4.12 *S. ferruginea* extracts inhibits MDA-MB-231 cells proliferation in a time- and dose-dependent manner. The cells were treated with indicated concentrations of (a) methanol and (b) aqueous extracts of *S. ferruginea* for indicated time intervals. The results were expressed versus percentage of the value observed with control. Cytotoxic activity of extracts was compared to reference drug, tamoxifen on MDA-MB-231 cell line (c). Cell viability was measured by MTT assays. Data are represented as means ± SD of three replicates in three independent experiments. All data showed statistically significant difference from control (one way ANOVA, $P < 0.05$).
4.13 *S. ferruginea* extracts inhibits MDA-MB-468 cells proliferation in a time- and dose-dependent manner. The cells were treated with indicated concentrations of (a) methanol and (b) aqueous extracts of *S. ferruginea* for indicated time intervals. The results were expressed versus percentage of the value observed with control. Cytotoxic activity of extracts was compared to reference drug, tamoxifen on MDA-MB-468 cell line (c). Cell viability was measured by MTT assays. Data are represented as means ± SD of three replicates in three independent experiments. All data showed statistically significant difference from control (one way ANOVA, P < 0.05).

4.14 *S. ferruginea* extracts inhibits MCF-7 cells proliferation in a time- and dose-dependent manner. The cells were treated with indicated concentrations of (a) methanol and (b) aqueous extracts of *S. ferruginea* for indicated time intervals. The results were expressed versus percentage of the value observed with control. Cytotoxic activity of extracts was compared to reference drug, tamoxifen on MCF-7 cell line (c). Cell viability was measured by MTT assays. Data are represented as means ± SD of three replicates in three independent experiments. All data showed statistically significant difference from control (one way ANOVA, P < 0.05).

4.15 *In vitro* anti-proliferative activity of the methanol and aqueous extracts of *S. ferruginea* stems against HSF-1184 normal cell lines. The results were expressed versus percentage of the value observed with control. The result indicated that extracts were non-selective towards normal cell line. Extracts showed negligible toxicity in normal cell line. Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

4.16 Morphological changes of MDA-MB-231 cells treated with methanol and aqueous extracts at their respective IC₅₀ concentrations. As a positive control, the MDA-MB-231 cells were treated with 8.5 µg/mL tamoxifen. After 24, 48 and 72 hours of treatment, the cell morphological alterations were observed with an inverted-phase contrast microscope (20x magnification).

4.17 Close-up views of MDA-MB-231 cells treated with *S. ferruginea* methanol and aqueous extracts viewed under an inverted light microscope (20x magnification). The cells showed hallmark properties of apoptosis such as cell shrinkage (A, B, D) and cell rounding (C).
4.18 Morphological changes of MDA-MB-468 cells treated with methanol and aqueous extracts at their respective IC\textsubscript{50} concentrations. As a positive control, the MDA-MB-468 cells were treated with 8.5 µg/mL tamoxifen. After 24, 48 and 72 hours of treatment, the cell morphological alterations were observed with an inverted-phase contrast microscope (20× magnification).

4.19 Close-up views of MDA-MB-468 cells treated with \textit{S. ferruginea} methanol and aqueous extracts viewed under an inverted light microscope (20× magnification). The cells showed characteristics of apoptosis such as cell shrinkage (A, B), cell rounding (C) and membrane blebbing (D).

4.20 Morphological changes of MCF-7 cells treated with methanol and aqueous extracts at their respective IC\textsubscript{50} concentrations. As a positive control, the MCF-7 cells were treated with 8.5 µg/mL tamoxifen. After 24, 48 and 72 hours of treatment, the cell morphological alterations were observed with an inverted-phase contrast microscope (20× magnification).

4.21 Close-up views of MCF-7 cells treated with \textit{S. ferruginea} methanol and aqueous extracts viewed under an inverted light microscope (20× magnification). The cells showed characteristics of apoptosis such as membrane blebbing (A) and cell shrinkage and rounding (B, C, D).

4.22 Morphological observation of AO/EB-stained MDA-MB-231 cells incubated for 24 hours with methanol and aqueous extracts. As a positive control, the cells were treated with 8.5 µg/mL tamoxifen. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Viable cells stained uniformly in green color with normal morphology. Treated cells showed early apoptotic cells with membrane blebbing and bright green nuclei, late apoptotic cells with fragmented and condensed orange-red nuclei and necrotic cells with deep orange nucleus.

4.23 Close-up views of AO/EB double-stained MDA-MB-231 cells treated with \textit{S. ferruginea} extracts viewed under fluorescence microscope (20×). Membrane blebbing were seen in treated cells (A, B). Early and late apoptotic cells with nuclear fragmentation and margination were observed in treated cells after 24 h incubation with extracts (C, D).
Quantification of the percentage of live, apoptotic, and necrotic cells at different concentrations (31.25-1000 µg/mL) of (a) methanol and (b) aqueous extracts. The percentage of apoptotic cells at different concentrations were observed higher in methanol extract compare to aqueous extract. Data are represented as means ± SD of three replicates in three independent experiments, counting a minimum of 200 total cells each. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

Morphological observation of AO/EB-stained MDA-MB-468 cells after 24 hours incubation with methanol and aqueous extracts. As a positive control, the cells were treated with 8.5 µg/mL tamoxifen. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Viable cells stained uniformly in green color with normal morphology. Treated cells showed early apoptotic cells with membrane blebbing and bright green nuclei, late apoptotic cells with fragmented and condensed orange-red nuclei and necrotic cells with deep orange nucleus.

Close-up views of AO/EB double-stained MDA-MB-468 cells treated with S. ferruginea extracts viewed under fluorescence microscope (20×). Plasma membrane blebbing were seen in treated cells (A). Early and late apoptotic cells with nuclear fragmentation and margination were observed in treated cells after 24 h incubation with extracts (B, C, D).

Quantification of the percentage of live, apoptotic, and necrotic cells at different concentrations (31.25-1000 µg/mL) of (a) methanol and (b) aqueous extracts. The percentage of apoptotic cells at different concentrations were observed higher in methanol extract compare to aqueous extract. Data are represented as means ± SD of three replicates in three independent experiments, counting a minimum of 200 total cells each. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

Morphological observation of AO/EB-stained MCF-7 cells after 24 hours treatment with methanol and aqueous extracts. As a positive control, the cells were treated with 8.5 µg/mL tamoxifen. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Viable cells stained uniformly in green color with normal morphology. Treated cells showed early apoptotic cells with membrane blebbing and bright green nuclei, late apoptotic cells with fragmented and condensed orange-red nuclei and necrotic cells with deep orange nucleus.
4.29 Close-up views of AO/EB double-stained MCF-7 cells treated with *S. ferruginea* extracts viewed under fluorescence microscope (20×). Cell shrinkage and membrane blebbing were seen in treated cells (A, B). Early and late apoptotic cells with nuclear fragmentation were observed in treated cells after 24 h incubation with extracts (C, D).

4.30 Quantification of the percentage of live, apoptotic, and necrotic cells at different concentrations (31.25-1000 µg/mL) of (a) methanol and (b) aqueous extracts. The percentage of apoptotic cells at different concentrations were observed higher in methanol extract compare to aqueous extract. Data are represented as means ± SD of three replicates in three independent experiments, counting a minimum of 200 total cells each. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

4.31 Fluorescence imaging for detection of apoptosis in MDA-MB-231 cells treated with methanol extract for 24 hours at concentrations of 31.25 and 250 µg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells at both concentrations showed condensed and fragmented nuclei. The number of deranged nuclei and apoptotic cells increased at concentration of 250 µg/mL.

4.32 Fluorescence imaging for detection of apoptosis in MDA-MB-231 cells treated with aqueous extract for 24 hours at concentrations of 31.25 and 250 µg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells at both concentrations showed condensed and fragmented nuclei. The number of deranged nuclei and apoptotic cells increased at concentration of 250 µg/mL.
4.33 Fluorescence imaging for detection of apoptosis in MDA-MB-231 cells treated with tamoxifen as positive control for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells were observed with condensed and fragmented nuclei.

4.34 Fluorescence imaging for detection of apoptosis in MDA-MB-468 cells. Cells were treated with methanol extract for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells at both concentrations showed condensed and fragmented nuclei.

4.35 Fluorescence imaging for detection of apoptosis in MDA-MB-468 cells. Cells were treated with aqueous extract for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei.

4.36 Fluorescence imaging for detection of apoptosis in MDA-MB-468 cells. Cells were treated with tamoxifen (positive control) for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×).

4.37 Fluorescence imaging for detection of apoptosis in MCF-7 cells. Cells were treated with methanol extract for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells at both concentrations showed condensed and fragmented nuclei.
4.38 Fluorescence imaging for detection of apoptosis in MCF-7 cells. Cells were treated with aqueous extract for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×). Both viable and dead cells nuclei were stained with Hoechst 33342 while PI was unable to stain viable cells nuclei. Treated cells at both concentrations showed condensed and fragmented nuclei.

4.39 Fluorescence imaging for detection of apoptosis in MCF-7 cells. Cells were treated with tamoxifen (positive control) for 24 hours at concentrations of 31.25 and 250 μg/mL. Left panel displays Hoechst 33342 staining while right panel displays PI staining of the same field. The morphological alterations in the cells were visualized under fluorescence microscope (20×).

4.40 Effect of *S. ferruginea* extracts on colony-forming abilities of MDA-MB-231 cells. Methanol (a) and aqueous (b) extracts suppressed colony formation in a dose dependent manner. The methanol extract inhibited the clonogenicity of MDA-MB-231 cells more effectively than aqueous extract. The images were taken using an inverted phase contrast microscope (Zeiss Axiovert 100) at 4× magnification.

4.41 Quantitative measurement of colony formation of selected extracts on MDA-MB-231 cells at different concentrations (31.25-1000 μg/mL). The numbers of the colonies were estimated under dissection (stereo) microscope (Wild Heerburgg M3). The colony forming ability of the cells at each dose of extracts is expressed in terms of percent of control and represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

4.42 Effect of *S. ferruginea* extracts on colony-forming abilities of MDA-MB-468 cells. Methanol (a) and aqueous (b) extracts suppressed colony formation in a dose dependent manner. The methanol extract inhibited the clonogenicity of MDA-MB-468 cells more effectively than aqueous extract. The images were taken using an inverted phase contrast microscope (Zeiss Axiovert 100) at 4× magnification.
Quantitative measurement of colony formation of selected extracts on MDA-MB-468 cells at different concentrations (31.25–1000 µg/mL). The numbers of the colonies were measured under dissection (stereo) microscope (Wild Heerburgg M3). The colony forming ability of the cells at each dose of extracts is expressed in terms of percent of control and represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

Effect of *S. ferruginea* extracts on colony-forming abilities of MCF-7 cells. A. Methanol (a) and aqueous (b) extracts suppressed colony formation in a dose dependent manner. The methanol extract inhibited the clonogenicity of MCF-7 cells more effectively than aqueous extract. The images were taken using an inverted phase contrast microscope (Zeiss Axiovert 100) at 4x magnification.

Quantitative measurement of colony formation of selected extracts on MCF-7 cells at different concentrations (31.25–1000 µg/mL). The numbers of the colonies were estimated under dissection (stereo) microscope (Wild Heerburgg M3). The colony forming ability of the cells at each dose of extracts is expressed in terms of percent of control and represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

Effect of *S. ferruginea* methanol and aqueous extracts on the cell migration of MDA-MB-231 cells. Scratch closure activity of treated MDA-MB-231 cells upon creation of scratch using a scratcher in control and treated well. The images of scratched MDA-MB-231 cell monolayer treated with extracts captured under an inverted phase-contrast microscope at different time intervals (0, 6, 12 & 24 h).

Quantitative measurement of cell migration of methanol (a) and aqueous (b) extracts on MDA-MB-231 cells at different concentrations (31.25–1000 µg/mL). Scratch closure rates were analyzed quantitatively as the difference between scratch width at 0, 6 and 12 or 24 h and results are expressed as percentage of cell migration. Results showed that in presence of selected extracts the migration of the MDA-MB-231 cells was dose- and time-dependently inhibited. Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).
4.48 Effect of *S. ferruginea* methanol and aqueous extracts on the cell migration of MDA-MB-468 cells. Scratch closure activity of treated MDA-MB-468 cells upon creation of scratch using a scratcher in control and treated well. The images of scratched MDA-MB-468 cell monolayer treated with extracts captured under an inverted phase-contrast microscope at different time intervals (0, 6, 12 & 24 h).

4.49 Quantitative measurement of cell migration of methanol (a) and aqueous (b) extracts on MDA-MB-468 cells at different concentrations (31.25-1000 µg/mL). Scratch closure rates were analyzed quantitatively as the difference between scratched width at 0, 6 and 12 or 24 h and results are expressed as percentage of cell migration. Results showed that in presence of selected extracts the migration of the MDA-MB-468 cells was dose- and time-dependently inhibited. Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

4.50 Effect of *S. ferruginea* methanol and aqueous extracts on the cell migration of MCF-7 cells. Scratch closure activity of cells upon creation of scratch using a scratcher in control and treated well. The images of scratched MCF-7 cell monolayer treated with extracts captured under an inverted phase-contrast microscope at different time intervals (0, 6, 12 & 24 h).

4.51 Quantitative measurement of cell migration of methanol (a) and aqueous (b) extracts on MCF-7 cells at different concentrations (31.25-1000 µg/mL). Scratch closure rates were analyzed quantitatively as the difference between scratch width at 0, 6 and 12 or 24 h and results are expressed as percentage of cell migration. Results showed that in presence of selected extracts the migration of the MCF-7 cells was dose- and time-dependently inhibited. Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from their respective control (one way ANOVA, P < 0.05).

4.52 Qualitative evaluation of ROS generation in MDA-MB-231 cells using the fluorescent probe DCF-DA. MDA-MB-231 cells were treated with 31.25 µg/mL, 250 µg/mL and positive control (50 µM H2O2) for 12 h. Fluorescence microscopic images (10×) indicated that methanol extract induced intracellular ROS formation in MDA-MB-231 cells.
4.53 Qualitative evaluation of ROS generation in MDA-MB-468 cells using the fluorescent probe DCF-DA. MDA-MB-468 cells were treated with 31.25 μg/mL, 250 μg/mL and positive control (50 μM H₂O₂) for 12 h. Fluorescence microscopic images (10×) indicated that methanol extract induced intracellular ROS formation in MDA-MB-468 cells.

4.54 Qualitative measurement of ROS generation in MCF-7 cells using the fluorescent probe DCF-DA. MCF-7 cells were treated with 31.25 μg/mL, 250 μg/mL and positive control (50 μM H₂O₂) for 12 h. Fluorescence microscopic images (10×) indicated that methanol extract induced intracellular ROS formation in MCF-7 cells.

4.55 Effects of *S. ferruginea* methanol extract on ROS generation in different breast cancer cell lines. Cells were treated with different concentrations of methanol extract and positive control (50 μM H₂O₂) for 12 h. Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from corresponding controls (one way ANOVA, P < 0.05).

4.56 Effect of methanol extract on mitochondrial membrane potential (MMP) in MDA-MB-231 cells using JC-1 fluorescence dye. Methanol extract induced MMP depolarization in MDA-MB-231 cells. The cells were treated with 31.25 μg/mL, 250 μg/mL and positive control (50 μM CCCP) for 12 h. Images were obtained with an inverted fluorescent microscope (Zeiss Axiovert A) (40×). The emitted green fluorescence indicates MMP depolarization which is an early event in apoptosis.

4.57 Effect of methanol extract on mitochondrial membrane potential (MMP) in MDA-MB-468 cells using JC-1 fluorescence dye. Methanol extract induced MMP depolarization in MDA-MB-468 cells. The cells were treated with 31.25 μg/mL, 250 μg/mL and positive control (50 μM CCCP) for 12 h. Images were obtained with an inverted fluorescent microscope (Zeiss Axiovert A) (40×). The emitted green fluorescence indicates MMP depolarization which is an early event in apoptosis.

4.58 Effect of methanol extract on mitochondrial membrane potential (MMP) in MCF-7 cells using JC-1 fluorescence dye. Methanol extract induced MMP depolarization in MCF-7 cells. The cells were treated with 31.25 μg/mL, 250 μg/mL and positive control (50 μM CCCP) for 12 h. Images were obtained with an inverted fluorescent microscope (Zeiss Axiovert A) (40×). The emitted green fluorescence indicates MMP depolarization which is an early event in apoptosis.
4.59 Relative quantity of mitochondrial membrane potential ($\Delta \Psi_m$) in different breast cancer cell lines. Cells were treated with different concentrations of methanol extract and positive control (50 μM CCCP) for 12 h. Methanol extract disrupts mitochondrial transmembrane potential ($\Delta \Psi_m$). Data are represented as means ± SD of three replicates in three independent experiments. * indicates statistically significant different from corresponding controls (one way ANOVA, P < 0.05).

4.60 Western blot analysis of pro-apoptotic Bax protein in MDA-MB-231 cells. MDA-MB-231 cells were treated with IC$_{50}$ concentration of S. ferruginea methanol extract and control cells (0.1% DMSO) for indicated times. β-actin was used as loading control. Densitometry analysis showed time-dependent up-regulation of Bax protein. The expression of Bax protein increased as early as 2 hour. The densitometer-intensity data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

4.61 Western blot analysis of anti-apoptotic Bcl-2 protein in MDA-MB-231 cells. MDA-MB-231 cells were treated with IC$_{50}$ concentration of S. ferruginea methanol extract and control cells (0.1% DMSO) for indicated times. β-actin was used as loading control. Densitometry analysis showed time-dependent down-regulation of Bcl-2 protein. The densitometer-intensity data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

4.62 Western blot analysis of caspase-3 protein in MDA-MB-231 cells. MDA-MB-231 cells were treated with IC$_{50}$ concentration of S. ferruginea methanol extract and control cells (0.1% DMSO) for indicated times. β-actin was used as loading control. Densitometry analysis demonstrated that procaspase-3 (32-kDa) was cleaved to yield a catalytically active 17-kDa fragment after treatment with methanol extract. The densitometer-intensity data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).
Western blot analysis of caspase-7 protein in MDA-MB-231 cells. MDA-MB-231 cells were treated with IC_{50} concentration of *S. ferruginea* methanol extract and control cells (0.1% DMSO) for indicated times. β-actin was used as loading control. Densitometry analysis demonstrated that procaspase-7 (35-kDa) was cleaved to yield a catalytically active 17-kDa fragment after treatment with methanol extract. The densitometer-intensity data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

Western blot analysis of PARP protein in MDA-MB-231 cells. MDA-MB-231 cells were treated with IC_{50} concentration of *S. ferruginea* methanol extract and control cells (0.1% DMSO) for indicated times. β-actin was used as loading control. The PARP protein (116-kDa) was cleaved into its signature 85-kDa fragment, a marker of apoptosis, after treatment with methanol extract. The densitometer-intensity data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

Effect of *S. ferruginea* methanol extract on the cell cycle progression in MDA-MB-231 cell. MDA-MB-231 cells were treated with IC_{50} concentration of methanol extract for 24 and 48 h, stained with PI and its content was analyzed by flow cytometry. The data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

Effect of *S. ferruginea* methanol extract on the cell cycle progression in MCF-7 cell. MCF-7 cells were treated with IC_{50} concentration of methanol extract for 24 and 48 h, stained with PI and its content was analyzed by flow cytometry. The data are represented as means ± SEM of three replicates in three independent experiments. * indicates statistically significant different from control (one way ANOVA, P < 0.05).

Proposed schematic diagram of *S. ferruginea* methanol extract-induced apoptosis in human breast cancer cells MDA-MB-231. Treatment of MDA-MB-231 cells with *S. ferruginea* methanol extract induced high level of ROS generation and subsequently reduced ΔΨm levels which leading to changes in the expression levels of Bax/Bcl-2. This results in mitochondrial dysfunction and caspase-3 and caspase-7 activation. These events all contribute to the subsequent degradation of PARP in MDA-MB-231 cells via G0/G1 cell cycle arrest, which mediates apoptosis.
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCR</td>
<td>The National Cancer Registry</td>
</tr>
<tr>
<td>DCIS</td>
<td>Ductal Carcinoma In Situ</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobular Carcinoma In Situ</td>
</tr>
<tr>
<td>HER</td>
<td>Human Epidermal Growth Factor Receptor</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen Receptor</td>
</tr>
<tr>
<td>PR</td>
<td>progesterone receptor</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>CAM</td>
<td>Complementary and Alternative Medicine</td>
</tr>
<tr>
<td>DPPH</td>
<td>Diphenyl-2-picryl hydrazine</td>
</tr>
<tr>
<td>ABTS</td>
<td>2, 2'-azino bis-(3-ethyl benzo thiazoline-6-sulphonic acid)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer saline</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Content</td>
</tr>
<tr>
<td>TFC</td>
<td>Total Flavonoid Content</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectroscopy</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PDT</td>
<td>Population Doubling Time</td>
</tr>
<tr>
<td>MTT</td>
<td>Thiazolyl Blue Tetrazolium Bromide</td>
</tr>
<tr>
<td>AO/EB</td>
<td>Acridine orange/Ethidium bromide</td>
</tr>
<tr>
<td>MMP</td>
<td>Mitochondrial Membrane Potential</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic Acid</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>AP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>MOMP</td>
<td>Mitochondrial Outer Membrane Permeabilization</td>
</tr>
<tr>
<td>DISK</td>
<td>Death-Inducing Signaling Complex</td>
</tr>
<tr>
<td>ML-I</td>
<td>Mistletoe Lectin I</td>
</tr>
<tr>
<td>HR-QOL</td>
<td>Health-Related Quality Of Life</td>
</tr>
<tr>
<td>VA</td>
<td>Viscum album</td>
</tr>
<tr>
<td>ADCC</td>
<td>Antibody-Dependent Cell-mediated Cytotoxicity</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor Necrosis Factor alfa</td>
</tr>
<tr>
<td>CRF</td>
<td>Cancer Related Fatigue</td>
</tr>
<tr>
<td>TCM</td>
<td>Traditional Chinese Medicine</td>
</tr>
<tr>
<td>LS</td>
<td>Life Satisfaction</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox Equivalent Antioxidant Capacity</td>
</tr>
<tr>
<td>RT</td>
<td>Retention Time</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

1.1.1 Breast Cancer

Cancer of breast formed due to formation of malignant tumor in the cells of breast. Initially the growth of breast cancer is local which is followed by extension within lymph vessels into regional lymph nodes and invasion of small vein which results in systematic metastatic spread (Spratt & Tobin, 1995). Breast cancer is the most common type of non-skin malignancy among women worldwide. It has been reported that the incidence and mortality of breast cancer have increased during the last two decades (American Cancer Society Global Cancer Facts & Figures 2nd Edition, 2011; Jemal et al., 2011; Ferlay et al., 2013). Based on 2006-2010 statistics, the number of deaths in the United States was 22.6 per 100,000 women per year. It is predicted that an estimated 231,840 new cases of breast cancer and 40,730 breast cancer-related deaths will occur among women in 2015 worldwide (“American Cancer Society. Cancer Facts & Figures,” 2015)

The incidence rate of breast cancer is highest in North America with the age standardized rates of 99.4 per 100,000 population, followed by countries in the Eastern Europe, South America, Southern Africa, and western Asia with moderate incidence rates, while the lowest incidence rates are reported in most African countries (Yip et al., 2006; Ferlay et al., 2010).
It is reported that approximately one million females are diagnosed with breast malignancy with an estimated 410,000 deaths every year, worldwide (Coughlin & Ekwueme, 2009). The incidence and mortality of breast cancer were reported lower in low-resource countries compared to high-resource countries (Smith, 2006). In most of the Asian countries, the incidence rate of breast cancer is increasing (Abdullah et al., 2013). An increasing in the prevalence of breast cancer was reported in Malaysia as well (Abdullah et al., 2013). The highest incidence rate for breast cancer in Malaysia was observed at women between 50-60 years old (Dahlui et al., 2011). It is estimated that one out of twenty Malaysian women have a chance to get breast cancer at some point of their lives (Dahlui et al., 2011).

Breast cancer is the most common cancer among Malaysian women (Lim et al., 2008). The National Cancer Registry (NCR) 2003-2005 reported an age-standardized rate (ASR) of 47.3 per 100 000. The incidence is highest in Chinese (59.9 per 100 000) followed by Indians (54.2 per 100 000) and Malays (34.9 per 100 000) (Lim et al., 2008). The International Agency for Research in Cancer (GLOBOCAN) 2012 estimated the ASR of breast cancer in Malaysia as 38.7 per 100,000 with 5410 new cases in 2012 (“http://globocan.iarc.fr,”).

1.1.2 Breast Cancer Treatment

Different treatment options are currently available including local therapy and systemic therapy. Local therapy includes surgery, radiotherapy or a combination of the two, applied to kill cancer cells from a limited (local) area such as lymph nodes, breast and chest wall. Systemic therapy includes endocrine or hormone therapy and chemotherapy which administered following primary surgery or radiotherapy to kill or inhibit metastases and to improve survival. Table 1.1 represents various methods of breast cancer treatment and their common side effects. Selection of treatment strategies depend on tumor size, metastatic potential, axillary lymph node status and molecular and patient profile (Liao et al., 2013). Systemic therapy with cytotoxic chemotherapy and endocrine therapy were found to be effective in prolonging disease-free and survival time (Peto et al., 2000).
Table 1.1: Summary of various methods of breast cancer treatment and their common side effects.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Mechanism of action</th>
<th>Side effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery</td>
<td>Conservative and mastectomy</td>
<td>Lymphedema, chronic nerve damage, infection at the incision site, armpit discomfort</td>
<td>(Karen et al., 2002; Ridner et al., 2011)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>Using high dose of radiation</td>
<td>Skin reactions of the area being radiated</td>
<td>(Sjövall et al., 2010)</td>
</tr>
<tr>
<td>Biological targeted therapy</td>
<td>Using monoclonal antibody and medicine Herceptin (Trastuzumab) Tykerb (lapatinib)</td>
<td>Weakness, diarrhea, Pain, fever Itchy and dry skin, diarrhea</td>
<td>(Nahta et al., 2006)</td>
</tr>
<tr>
<td>Endocrine or hormone therapy</td>
<td>Using aromatase inhibitors and tamoxifen by blocking the action of estrogen Tamoxifen:</td>
<td>Vaginal discharge, an increase in thromboembolic events and uterine sarcoma Musculoskeletal adverse effect, hot flashes, increased LDL, loss of libido, vaginal dryness</td>
<td>(Kalidas & Brown, 2005; Connor & Attai, 2013)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>The most commonly type of treatment using anti-breast cancer drugs Carboplatin, Cisplatin: Cyclophosphamide:</td>
<td>Nephrotoxicity Pulmonary toxicity</td>
<td>(Yao et al., 2007; Chandwani et al., 2012; Gianni et al., 2008)</td>
</tr>
</tbody>
</table>
Despite of varied side effects, using chemotherapy either as a single compound or combination therapy with multiple-agents is still the most commonly used treatment option by breast cancer patients (Ozer et al., 2000). Chemotherapy uses anti-breast cancer drugs and cytotoxic agents for treatment of metastatic breast cancer (ER-negative tumors). Tumor cell response to chemotherapy and cytotoxic agents through an active form of cell death is known as apoptosis or programmed cell death. It is now well established that other modes of cell death such as necrosis and autophagy also take place following chemotherapy in tumor cells (Brown & Attardi, 2005).

1.2 Problem Statement

Although many treatment methods are currently established including surgery, radiotherapy, biological therapy, hormone therapy and chemotherapy, these therapies are less effective and recurrence is still occurring in breast cancer patients due to side effects and toxicity of drugs in normal cell and aggressive behaviour of the tumours (Table 1.3). In spite of many improvement in the use of hormonal and adjuvant cytotoxic therapies in breast cancer patients, there is no considerable reduction in mortality of breast cancer today (Eggenschwiler et al., 2007). Costly treatment methods and serious side effects associated with available therapies may cause greater tendencies among people to use herbal medicines for health care.

Complementary and alternative medicine (CAM) as one of the major aspect of cancer therapy has been developed in last few years in order to alleviate drug side effects and relief pain in breast cancer patients (Ostermann et al., 2009). A large proportion of cancer patients (up to 80%) use complementary and alternative medicine (CAM) (Vardy et al., 2013). Breast cancer patients are among the most likely users of CAM (Bennett et al., 2009). Among CAM, herbal supplements (antioxidants) is the most commonly used group of cancer treatment. Cancer treatment using herbal medicine has a history of more than 2000 years (Craig, 1999).
Harmful effects of conventional treatment as well as toxicity of chemotherapy create a significant problem in breast cancer therapy. The alternate solution to decrease side effects of chemotherapeutic drugs is the use of medicinal plants. Use of medicinal plants which have fewer side effects as compared to synthetic drugs can provide an alternative to the use of conventional allopathic medicine for treatment of breast cancer. In addition, any practical solution to manage cancer progression is of paramount importance. Therefore, there is a need to evaluate whether medicinal plant extracts are able to act as potent anticancer agent by controlling the cancer progression or arresting the carcinogenic process.

Previous research findings have shown that various European mistletoe extracts from different host trees are capable of inducing apoptosis and cell death in numerous tumor cells and human cancer cell lines (Ramaekers et al., 2007; Harmsma et al., 2006).

Although various studies investigated the effect of European mistletoe on cancer, not many studies focused on other species of mistletoe from other continents. Malaysia’s rainforest being part of the world’s tropical rainforest is also considered as one of the most evolved and diverse rainforest in the world. *Scurrula ferruginea* is one of the mistletoe species in Malaysia which is used as a folk medicine for treatment of several ailments (Barlow, 1991). It has been reported that a decoction of *S. ferruginea* leaves along with *Millettia sericea* used for bathing malarial patients. In addition, a poultice of the pounded leaves administered as a post-partum protective medicine and also applied for snake bite and wound (Burkill et al., 1966) (Perry, 1978). Moreover, this plant are traditionally employed in the treatment of many diseases including gastrointestinal malfunction, high blood pressure and hypertension (Ameer et al., 2009).

Ethno-medical knowledge plays an important role in selection of plants for discovery of novel drugs. Therefore, *S. ferruginea* was selected for the present study based on its reputation in folk medicine. There is no report on antioxidant capacity, anticancer activity and mechanism of action of *S. ferruginea*. The current study
provide the scientific rational for antioxidant and anti-breast cancer activities of *S. ferruginea*.

1.3 Objectives of Study

Based on the above-mentioned problem statements, the objectives of the present study are as follow:

1. To evaluate potential of *S. ferruginea* crude extracts based on the antioxidant activity and phytochemical analysis

2. To investigate the selective cytotoxic effects of selected extracts on breast cancer cells and study apoptosis-inducing effects of extracts

3. To study the mechanism of growth arrest and unravel apoptotic pathway involve in breast cancer cell death by selected extract

1.4 Scope of Study

Aerial parts of *S. ferruginea* (Jack) Danser including stems, leaves and flowers were used in the present study. Different types of breast cancer cell lines including MCF-7 (luminal A breast carcinoma), MDA-MB-231(Claudin-low breast carcinoma) and MDA-MB-468 (basal-like breast carcinoma) which are differ in molecular markers status and invasiveness have been selected for the present study.

To achieve the listed objectives, the study was confined to the following scopes:

1. Determination of total phenolic and total flavonoid content by Folin-Ciocalteu and aluminum chloride methods, respectively and antioxidant activities of different extracts by assessing DPPH free
radical scavenging activity, ABTS and metal chelation capacity of *S. ferruginea* extracts.

2. Analysis of chemical composition using GC-MS of *S. ferruginea* extracts.

3. Evaluation of selective cytotoxic activities of selected extracts against breast cancer cell lines and non-cancerous cell line using MTT assay and characterization of the cell death using AO/EB and Hoechst/PI staining methods.

4. Determination of cell migration inhibition efficiency and colony forming ability of treated cancer cells using scratch assay and colony forming assay respectively.

5. Measurement of mitochondrial membrane potential by JC-1 assay and investigation on the potential mechanism of apoptosis as the result of oxidative stress by measuring intracellular ROS level using DCF-DA assay.

6. Determination of cell death mechanism pathway of selected extract against breast cancer cell through the regulation of bcl-2, bax, caspase-3, caspase-7 and PARP proteins using western blot analysis and possible cell cycle arrest using flow cytometric analysis.
1.5 **Significant of Study**

i. Growth inhibitory effects on different carcinoma cell types may be crucial for effective control of breast cancer; therefore, the present study is of great importance to introduce a novel candidate in battling breast cancer particularly ER-negative breast carcinoma.

ii. The present study is also paving the way for further research on *S. ferruginea* in the field of pharmaceutical industry and anti-cancer drug discovery for the development of anticancer agents.

iii. This study provides an experimental basis for systematic and clinical research of medicines for treatment of breast cancer in the future.

1.6 **Methodology**

- **Antioxidant activity assays**
 - Extracted with
 - Methanol
 - Water
 - Ethyl acetate
 - Hexane

- **In vitro cell culture assays**
 - 1. LSPH assay
 - 2. ABTS assay
 - 3. Metal chelation activity assay
 - 4. Total phenolic content
 - 5. Total flavonoid content
 - 6. GC-MS analysis

- **Chemical composition of extracts**

- **Assays to determine mechanism of action**
 - 1. JC-1 assay
 - 2. ROS generation assay
 - 3. Cell cycle analysis
 - 4. Western blot analysis

- **Bcl-2, Bax, Caspase, PARP**
REFERENCES

Abdullah, N. A., Rozita, W., Mahiyuddin, W., Muhammad, N. A., Ali, Z. M.,
patients in Malaysia: a population-based study. *Asian Pacific Journal of
Cancer Prevention, 14*, 4591–4594.

Abhyankar, G., Suprasanna, P., Pandey, B. N., Mishra, K. P., Rao, K. V., & Reddy,
V. D. (2010). Hairy root extract of Phyllanthus amarus induces apoptotic cell
death in human breast cancer cells. *Innovative Food Science & Emerging

Ahmad, P., Jaleel, C., Salem, M., Nabi, G., & Sharma, S. (2010). Roles of enzymatic
and nonenzymatic antioxidants in plants during abiotic stress. *Critical
reviews in biotechnology, 3*, 161–75.

Ameer, O. Z., Salman, I. M., Yam, M. F., Abd Allah, H. H., Abdulla, M. H., Shah,
Pharmacology, 5*(1), 44–50.

Society*.

Amudha, M., & Rani, S. (2014). GC-MS Analysis of Bioactive components of
Cordia retusa (Boraginaceae). *Hygeia: journal for drugs and medicines,
6*(April), 12–19.

from Head to Toe* (pp. 757–766).

survival in the Carolina Breast Cancer Study. *Clinical cancer research, 16*(24), 6100–6110.

Bussing, A., Troger, W., Stumpf, C., & Schietzel, M. (2008). Local Reactions to Treatments with *Viscum album L.* Extracts and their Association with T-
Lymphocyte Subsets and Quality of Life. *Anticancer research*, 28, 1893–1898.

Pan, L., Chai, H.-B., & Kinghorn, A. D. (2013). Discovery of new anticancer agents from higher plants. *Front Biosci (Schol Ed), 4*, 142–156.

Pieme, A., Jeanne, N., & Marietta, C. (2012). *In Vitro* Antiproliferative and Anti-Oxidant Activities of Methanol Extracts of *Urena Lobata* and *Viscum Album*

Werner, M., Bock, P. R., Hanisch, J., & Stauder, G. (2011). Supportive therapy with mistletoe extract in tumor patients-Results of four controlled pharmacoepidemiological cohort studies as basis for prospective studies (Clinical report). *Phytomedicine, 18*(1), S12–S13.

