INPUT SHAPING-BASED CONTROL SCHEMES FOR A THREE DIMENSIONAL GANTRY CRANE

MOHAMMAD JAVAD MAGHSOUDI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

APRIL 2015
DEDICATION

To my dearly beloved wife, Fatemeh for her support and encouragement.
 To my lovely daughter Saba for making my life beautiful.
 To my dearest parents, for their love and blessing.
ACKNOWLEDGEMENT

First and foremost, praise and thank be to Almighty Allah, the most Gracious and the most Merciful.

I would like to express my sincere appreciation to my main supervisor Assoc. Prof. Dr. Zaharuddin Mohamed for his kindly guidance, masterly supervision, worthwhile advice and friendly assistance in this research and preparation of this thesis. My deepest gratitude also goes to my second supervisor, Dr. Abdul Rashid Husain for his kind support.

I would like to thank my beloved wife, Fatemeh, for her love, patience, understanding and unwavering support and to my lovely daughter, Saba for cheering up my day.

I would like to thank my parents, brothers and sisters for all their supports and encouragements.

Last but not the least, I would also like to thank the Malaysian Ministry of Education for their financial support granted through Malaysian International Scholarship.
ABSTRACT

The motion induced sway of oscillatory systems such as gantry cranes may decrease the efficiency of production lines. In this thesis, modelling and development of input shaping-based control schemes for a three dimensional (3D) lab-scaled gantry crane are proposed. Several input shaping schemes are investigated in open and closed-loop systems. The controller performances are investigated in terms of trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration (ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and experimental results show that all the shapers are able to reduce payload sway significantly while maintaining desired position response specifications. Robustness tests with ±20% error in natural frequency show that DZV shaper exhibits asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as analytical technique could only provide good performance for linear systems, meta-heuristic based input shaper is proposed to reduce sway of a gantry crane which is a nonlinear system. The results show that designing meta-heuristic-based input shapers provides 30% to 50% improvement as compared to the analytical-based shapers. Subsequently, a particle swarm optimization based optimal performance control scheme is developed in closed-loop system. Simulation and experimental results demonstrate that the controller gives zero overshoot with 60% and 20% improvements in settling time and integrated absolute error value of position response respectively, as compared to a specific designed PID-PID anti swing controller for the lab-scaled gantry crane. It is found that crane control with changing cable length is still a problem to be solved. An adaptive input shaping control scheme that can adapt to variation of cable’s length is developed. Simulation with real crane dimensions and experimental results verify that the controller provides 50% reduction in payload sway for different operational commands with hoisting as compared to the average travel length approach.
ABSTRAK

Ayunan hasil pergerakan sistem berayun seperti kren gantri akan mengurangkan keberkesanan proses pembuatan. Tesis ini membentangkan pemodelan dan pembangunan skema kawalan berasaskan pembentuk masukan untuk kren gantri tiga dimensi (3D) berskala makmal. Beberapa skema pembentuk masukan telah dikaji dalam sistem gelung buka dan gelung tutup. Prestasi pengawal dikaji berdasarkan sambutan kedudukan troli dan ayunan kren 3D. Pertama, pembentuk Getaran Sifar dengan Lengah teragih (DZV) digunakan dan dibandingkan dengan pembentuk Getaran Sifar (ZV) dan pembentuk Pembezaan Getaran Sifar (ZVD). Keputusan simulasi dan eksperimen menunjukkan semua pembentuk berupaya mengurangkan ayunan beban secara berkesan disamping mencapai spesifikasi sambutan masa yang diperlukan. Ujikaji ketegapan dengan ±20% ralat dalam frekuensi tabii menunjukkan pembentuk DZV mempunyai ciri-ciri ketegapan yang tidak simetri berbanding pembentuk ZV dan DZV. Disebabkan kaedah analitik hanya dapat memberikan keputusan yang baik untuk sistem lelurus, pembentuk masukan berasaskan meta-heuristik dicadangkan untuk mengurangkan ayunan kren gantri. Keputusan menunjukkan pembentuk masukan berasaskan meta-heuristik menghasilkan ayunan yang lebih baik dalam jutaan 30% hingga 50% berbanding pembentuk masukan berasaskan analitik. Kemudian, skema kawalan prestasi optima berasaskan pengoptimuman kerumunan zarah dibangunkan dalam sistem gelung tutup. Keputusan simulasi dan eksperimen menunjukkan bahawa pengawal tersebut menghasilkan sambutan kedudukan dengan lajak sifar dan perbaikan sebanyak 60% dan 20% dalam masa menetap dan nilai ralat purata kamiran berbanding pangawal anti-ayunan PID-PID. Disebabkan kawalan kren dengan perubahan panjang kabel masih merupakan masalah yang perlu diselesaikan, skema kawalan pembentuk masukan penyesuaian yang berupaya untuk menyesuaikan kepada perubahan panjang kabel dibangunkan. Keputusan simulasi dalam dimensi kren sebenar dan eksperimen menunjukkan bahawa pengawal ini berupaya menghasilkan pengurangan ayunan beban sebanyak 50% berbanding kaedah panjang perjalanan purata untuk berbagai jenis operasi kren.
TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARATION | ii
DEDICATION | iii
ACKNOWLEDGEMENT | iv
ABSTRACT | v
ABSTRAK | vi
TABLE OF CONTENTS | vii
LIST OF TABLES | xi
LIST OF FIGURES | xiii
LIST OF SYMBOLS | xviii
LIST OF ABBREVIATIONS | xx
LIST OF APPENDICES | xxi

1 | INTRODUCTION | 1
1.1 | Background | 1
1.2 | Statement of the Problem | 2
1.3 | Objectives of the Study | 2
1.4 | Scope of Works | 2
1.5 | Thesis Contributions | 3
1.6 | Thesis Organisation | 4

2 | LITERATURE REVIEW | 5
2.1 | Introduction | 5
2.2 Modelling

2.2.1 Extended Model

2.3 Control Strategy of a Gantry Crane

2.3.1 Input shaping
- 2.3.1.1 ZV and ZVD Shapers
- 2.3.1.2 DZV Shaper
- 2.3.1.3 UM-ZV Shaper

2.3.2 PID Control

2.3.3 Intelligent Control
- 2.3.3.1 PSO

2.3.4 Adaptive Control

2.3.5 Optimal Control

2.3.6 Nonlinear Control

2.3.7 Robust Control

2.4 Summary

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 General Methodology

3.3 Modelling of the 3D Gantry Crane

3.4 Research Tools

3.5 Control Schemes
- 3.5.1 Open Loop Control
- 3.5.2 Closed Loop Input Shaping Control
- 3.5.3 PSO-PID Design
- 3.5.4 PSO Shaper Design
- 3.5.5 Optimal Performance
- 3.5.6 PSO-PID Anti-Swing Control
- 3.5.7 Adaptive Input Shaping Scheme

3.6 Simulation and Evaluation

3.7 The 3D Gantry Crane Experimental Setup

3.8 Summary
4 MODELLING AND IMPLEMENTATION OF DZV SHAPER FOR A GANTRY CRANE 50

4.1 Introduction 50

4.2 Modelling and Verification 50

4.2.1 Mathematical Modelling 51

4.2.2 Dynamic Behaviour of a 3D Gantry Crane 51

4.2.3 Adding Dead-zone, Saturator and Damping Blocks 53

4.2.4 Verification 54

4.3 Implementation of DZV Shaper 57

4.3.1 Simulation Results 57

4.3.1.1 Open-Loop Control 58

4.3.1.2 Closed-Loop Control 60

4.3.1.3 Robustness 63

4.3.2 Experimental Results 66

4.3.2.1 Open-Loop Control 66

4.3.2.2 Closed-Loop Control 67

4.3.2.3 Robustness 69

4.4 Summary 71

5 PSO-BASED OPEN-LOOP AND CLOSED-LOOP INPUT SHAPING DESIGNS 73

5.1 Introduction 73

5.2 Open-Loop Design 73

5.2.1 Analytical Design 74

5.2.2 Meta-heuristic Design 75

5.2.3 Simulation Results 77

5.2.4 Experimental Results 82

5.3 Closed-Loop Design 91

5.3.1 Simulation Results 93

5.3.2 Experimental Results 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of modelling techniques for a gantry crane</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of literature review of control algorithms</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>PSO parameters for tuning PID</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>PSO parameters for tuning of ZV and DZV shapers</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>PSO parameters for tuning controllers</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>PSO parameters for tuning UM-ZV shaper</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>System parameters</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters of the shapers</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Controller gains for different closed loop systems</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Settling time and IAE values of system responses (simulation)</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Settling time, overshoot and IAE values of system responses (experiment)</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Natural frequencies and damping ratios of the 3D gantry crane for different lengths</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Parameters of shapers based on the analytical approach in X direction</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Parameters of shapers based on the analytical approach in Y direction</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>Parameters of shapers based on meta-heuristic approach in X direction</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>Parameters of shapers based on meta-heuristic approach in Y direction</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>Maximum residual sway and IAE values using ZV shapers (simulation)</td>
<td>79</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.7</td>
<td>Maximum residual sway and IAE values using DZV shapers (simulation)</td>
<td>81</td>
</tr>
<tr>
<td>5.8</td>
<td>Maximum residual sway and IAE values using ZV shapers (experiment)</td>
<td>87</td>
</tr>
<tr>
<td>5.9</td>
<td>Maximum residual sway and IAE values using DZV shaper (experiment)</td>
<td>91</td>
</tr>
<tr>
<td>5.10</td>
<td>Controller gains tuned using PSO</td>
<td>94</td>
</tr>
<tr>
<td>5.11</td>
<td>Settling time, overshoot and IAE values of system responses</td>
<td>95</td>
</tr>
<tr>
<td>5.12</td>
<td>Settling time, overshoot and IAE values of system responses (experiment)</td>
<td>99</td>
</tr>
<tr>
<td>6.1</td>
<td>Maximum residual vibration of all experiments in degrees</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>An industrial 3D gantry crane</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram and forces</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>ZV input shaping</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>The equally distributed delay</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>DZV Shaper</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>UM-ZV input shaping</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram of the research methodology</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart of general research methodology</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Open loop control scheme with input shaping</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Closed loop input shaping control scheme with PID controller</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>PID controllers tuning scheme</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>The scheme to find input shapers’ parameters by PSO</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>PSO-tuned PID control scheme</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>PSO-tuned PID-PID control scheme</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>PSO procedure</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>The scheme to find input shaper parameters by PSO</td>
<td>44</td>
</tr>
<tr>
<td>3.11</td>
<td>Curves obtained using curve fitting toolbox for t_2 and t_3 of trolley</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>Curves obtained using curve fitting toolbox for t_2 and t_3 of rail</td>
<td>46</td>
</tr>
<tr>
<td>3.13</td>
<td>Automatic UM-ZV shaper</td>
<td>47</td>
</tr>
<tr>
<td>3.14</td>
<td>Adaptive shaper</td>
<td>47</td>
</tr>
<tr>
<td>3.15</td>
<td>Lab-scaled 3D gantry crane</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Simulink block diagram of a 3D gantry crane</td>
<td>52</td>
</tr>
</tbody>
</table>
4.2 Subsystem of the 3D gantry crane block (S-function allocation) 52
4.3 Subsystem of the 3D gantry crane block (Initialization) 53
4.4 Modified Model 53
4.5 Input to the system 54
4.6 Position of rail 55
4.7 Position of trolley 55
4.8 Position of payload 56
4.9 Sway of payload (α) 56
4.10 Sway of payload (β) 57
4.11 Input to the open loop systems (simulation) 59
4.12 Sway of the payload for the open loop systems (simulation) 59
4.13 Control signals of the closed loop systems (simulation) 61
4.14 Position of trolley for the closed loop systems (simulation) 61
4.15 Sway of payload for the closed loop systems (simulation) 62
4.16 Sway of payload with 20% increase in natural frequency (simulation) 63
4.17 Sway of payload with 20% decrease in natural frequency (simulation) 64
4.18 IAE values of the payload sway for 20% increase and decrease in the natural frequency 65
4.19 Maximum residual sway for 20% increase and 20% decrease in the natural frequency 65
4.20 Sway of the payload for the open loop systems (experiment) 66
4.21 Control signals of the closed loop systems (experiment) 67
4.22 Position of trolley for the closed loop systems (experiment) 68
4.23 Sway of payload for the closed-loop systems (experiment) 69
4.24 Payload sway with 20% increase in natural frequency (experiment) 70
4.25 Payload sway with 20% decrease in natural frequency (experiment) 70
4.26 IAE values of the payload sway for 20% increase and decrease in the natural frequency (experiment) 71
5.1 Gain delayed ZV shaper 75
5.2 Gain delayed integrated DZV shaper 76
5.3 Unshaped, ZV shaped and DZV shaped input signals 77
5.4 Sway response using ZV shaped inputs with $l = 0.27$ m (simulation) 78
5.5 Sway response using ZV shaped inputs with $l = 0.47$ m (simulation) 78
5.6 Sway response using ZV shaped inputs with $l = 0.67$ m (simulation) 79
5.7 Sway response using DZV shaped inputs with $l = 0.27$ m (simulation) 80
5.8 Sway response using DZV shaped inputs with $l = 0.47$ m (simulation) 80
5.9 Sway response using DZV shaped inputs with $l = 0.67$ m (simulation) 81
5.10 Improvement achieved using meta-heuristic-based shapers as compared to analytical-based shapers in maximum residual sway 82
5.11 Improvement achieved using meta-heuristic-based shapers as compared to analytical-based shapers in IAE values 82
5.12 Sway response using ZV shaped inputs with $l = 0.27$ m (experiment); (a) rail, (b) trolley 84
5.13 Sway response using ZV shaped inputs with $l = 0.47$ m (experiment) ; (a) rail, (b) trolley 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14</td>
<td>Sway response using ZV shaped inputs with $l = 0.67$ m (experiment); (a) rail, (b) trolley</td>
</tr>
<tr>
<td>5.15</td>
<td>Sway response using DZV shaped inputs with $l = 0.27$ m (experiment); (a) rail, (b) trolley</td>
</tr>
<tr>
<td>5.16</td>
<td>Sway response using DZV shaped inputs with $l = 0.47$ m (experiment); (a) rail, (b) trolley</td>
</tr>
<tr>
<td>5.17</td>
<td>Sway response using DZV shaped inputs with $l = 0.67$ m (experiment); (a) rail, (b) trolley</td>
</tr>
<tr>
<td>5.18</td>
<td>Unshaped, gain delayed shaped and proposed shaped signals</td>
</tr>
<tr>
<td>5.19</td>
<td>Proposed ZV shaper for trolley and rail</td>
</tr>
<tr>
<td>5.20</td>
<td>PID-PID anti-swing control scheme</td>
</tr>
<tr>
<td>5.21</td>
<td>Optimal performance PID controller</td>
</tr>
<tr>
<td>5.22</td>
<td>Control signals of rail (simulation)</td>
</tr>
<tr>
<td>5.23</td>
<td>Control signals of trolley (simulation)</td>
</tr>
<tr>
<td>5.24</td>
<td>Position of rail (simulation)</td>
</tr>
<tr>
<td>5.25</td>
<td>Position of trolley (simulation)</td>
</tr>
<tr>
<td>5.26</td>
<td>Sway of payload in X direction (rail)</td>
</tr>
<tr>
<td>5.27</td>
<td>Sway of payload in Y direction (trolley)</td>
</tr>
<tr>
<td>5.28</td>
<td>Control signal of rail (experiment)</td>
</tr>
<tr>
<td>5.29</td>
<td>Control signal of trolley (experiment)</td>
</tr>
<tr>
<td>5.30</td>
<td>Position of rail (experiment)</td>
</tr>
<tr>
<td>5.31</td>
<td>Position of trolley (experiment)</td>
</tr>
<tr>
<td>5.32</td>
<td>Experimental sway of payload in X direction (rail)</td>
</tr>
<tr>
<td>5.33</td>
<td>Experimental sway of payload in Y direction (trolley)</td>
</tr>
<tr>
<td>5.34</td>
<td>Sway of payload with changes in natural frequency and weight (trolley)</td>
</tr>
<tr>
<td>5.35</td>
<td>Position of trolley with changes in natural frequency and weight</td>
</tr>
<tr>
<td>6.1</td>
<td>Input for all three actuators and length of cable (first case)</td>
</tr>
<tr>
<td>6.2</td>
<td>Adaptive shaped input (first case)</td>
</tr>
<tr>
<td>6.3</td>
<td>3D path of payload (first case)</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>6.4</td>
<td>Sway output of crane using adaptive shaper (first case)</td>
</tr>
<tr>
<td>6.5</td>
<td>Sway output of crane using ATL shaper (first case)</td>
</tr>
<tr>
<td>6.6</td>
<td>Sway output of crane using unshaped input (first case)</td>
</tr>
<tr>
<td>6.7</td>
<td>Input to trolley and hoisting system and cable length (second case)</td>
</tr>
<tr>
<td>6.8</td>
<td>3D path of payload (second case)</td>
</tr>
<tr>
<td>6.9</td>
<td>Sway output of crane using adaptive shaper (second case)</td>
</tr>
<tr>
<td>6.10</td>
<td>Sway output of crane using ATL shaper (second case)</td>
</tr>
<tr>
<td>6.11</td>
<td>Sway output of crane for unshaped input (second case)</td>
</tr>
<tr>
<td>6.12</td>
<td>Input for all three actuators and length of cable (simulation)</td>
</tr>
<tr>
<td>6.13</td>
<td>UM-ZVD shaped input</td>
</tr>
<tr>
<td>6.14</td>
<td>Sway output of crane using adaptive shaper (simulation)</td>
</tr>
<tr>
<td>6.15</td>
<td>Sway output of crane using UM-ZVD shaper (simulation)</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[A_j \] - amplitude of the \(j \)th impulse
\[D \] - initial amplitude of DZV delay
\[F_x \] - force driving the moving rail
\[F_y \] - force driving the trolley
\[F_z \] - force lifting the payload
\[G_i \] - position of the best particle thus far in the entire swarm
\[K_d \] - derivative gain
\[K_i \] - integral gain
\[K_p \] - proportional gain
\[P \] - local best position of the particle
\[T \] - reaction force in the payload rope acting on the trolley
\[T_x \] - components of the force \(T \)
\[T_y \] - components of the force \(T \)
\[T_z \] - components of the force \(T \)
\[V_i \] - the present velocity of the particle
\[X_{des} \] - desired position
\[X_i \] - the present position of the particle
\[a_{c1} \] - acceleration constant
\[a_{c2} \] - acceleration constant
\[e(t) \] - system error
\[f_x, f_y, f_z \] - corresponding friction forces
\[g \] - gravitational constant
\[i_w \] - inertia weight
\[l \] - length of the lift-line
\[m_p \] - payload mass
\[m_r \] - moving rail
\begin{itemize}
 \item m_t - trolley mass (including gear box, encoders and DC motor)
 \item r_1 - positive random number produced by a uniform distribution
 \item r_2 - positive random number produced by a uniform distribution
 \item t_0 - time of the impulse
 \item t_j - time of the j^{th} impulse
 \item t_m - time of the last impulse
 \item x - delay input
 \item y - delay output
 \item α - angle of lift-line with Y axis
 \item β - angle between negative part of Z axis and projection of the payload rope onto the XZ plane
 \item $\delta(t)$ - dirac delta function
 \item ζ - damping ratio of the system
 \item ψ - maximum range of delay
 \item $\omega(\epsilon)$ - delay distribution over the interval $[0,\psi]$
 \item ω_n - natural frequency
\end{itemize}
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ATL</td>
<td>Average travel length</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DZV</td>
<td>Distributed delay Zero Vibration</td>
</tr>
<tr>
<td>IAE</td>
<td>Integrated Absolute Error</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multi-Input Multi-Output</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PD</td>
<td>Proportional Derivative</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>UM</td>
<td>Unity Magnitude</td>
</tr>
<tr>
<td>ZV</td>
<td>Zero Vibration</td>
</tr>
<tr>
<td>ZVD</td>
<td>Zero Vibration Derivative</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>136</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Generally, role of crane in human life is very important. Cranes are mostly utilized in construction of structures like bridges, dams, buildings, and high-rise towers. They are used for transportation of heavy loads and hazardous materials in shipyard, factories and warehouses. Cranes are also used in energy-based industries such as nuclear power plants and oil platforms in refineries. The task of a crane is to lift a load from a source place and transfer it to a target place. For this purpose, the mechanism of a crane should consist of a hoisting system including hoisting line and a hook for vertical movements of the load. Moreover, it needs a support mechanism which is cart-girder, cart-jib or a boom that moves the load around the crane workspace in horizontal space. It should be mentioned that there are different type of cranes such as gantry, overhead, jib, tower and boom cranes (Abdel-Rahman et al., 2003). For this study a gantry crane is considered as this is one of the widely used cranes in factories and warehouses (Butler et al., 1991).

One of the significant factors affecting productivity and efficiency of the industrial systems is speed. However, it is obvious that for a flexible system such as a gantry crane increasing the speed of manoeuvres cause the flexible system to oscillate more. This oscillation can result in considerable residual sway that negatively affects performance of the systems (Gholabi et al., 2013). At low speeds, the payload’s sways are not considerable and can be neglected. However, at higher speed, these sway angles prevent the payload to settle down during movement and
unloading. This problem will be crucial particularly for industrial applications where operators should manipulate the cranes (Peng et al., 2012). To address the mentioned issues, an efficient controller should be designed to improve the system performance.

1.2 Statement of the Problem

To increase the production speed the commands to the crane should be fast but this type of commands causes undesirable residual oscillation of payload in three dimensional (3D) gantry cranes. This low damped sway definitely decreases the efficiency of production line and may cause some serious damages to the production area.

1.3 Objectives of the Study

The work focuses mainly on the control of a 3D gantry crane. The main objectives of the study are as follows:

(a) To implement and investigate a new input shaping technique on a 3D gantry crane
(b) To design and implement meta-heuristic based input shapers for a non-simplified model of a 3D gantry crane
(c) To design and implement a PSO-based PID controller to cater two control objectives including fast and accurate positioning and low payload sway
(d) To design and implement an open-loop adaptive input shaping controller for the 3D crane with varying cable lengths

1.4 Scope of Works

This work has been conducted within the following scope:
1) Matlab and Simulink are used to simulate and investigate the behaviour of the system
2) Experiments are conducted based on a lab-scaled 3D gantry crane
3) The cable is considered to be inextensible
4) Horizontal movements are restricted to 55 cm and hoisting range is between 0-75 cm
5) ZV, ZVD, UM-ZV, UM-ZVD and DZV shapers are considered as input shapers
6) PSO is considered in the development of a meta-heuristic based input shaping scheme
7) PID controller is utilized for closed-loop control design
8) Input is limited based on movement’s restrictions of the lab-scaled gantry crane
9) Maximum input for all three directions is considered as 1 N.
10) Cable length is the only variable characteristic of the crane

1.5 Thesis Contributions

This study may have several contributions in modelling and control of the system as follows:
(a) Development of a DZV based control scheme for payload sway control of a 3D gantry crane
(b) Development of a meta-heuristic based input shapers for a non-simplified model of a 3D gantry crane
(c) Development of a PSO-based PID controller including an input shaper for input tracking and payload sway reduction of the system.
(d) Development of an adaptive input shaping controller for handling varying cable lengths
1.6 Thesis Organisation

This thesis is organised as follows. Chapter 2 provides a review of the existing modelling and control for a 3D gantry crane. Chapter 3 describes research methodology of the current study. Chapter 4 describes the 3D gantry crane system considered in this study and incorporating payload’s damping, and dead zone of actuator into the dynamic model. Experimental results are presented for verification and assessment of the developed model. Also, implementation of DZV shaper for control of the 3D gantry crane is described. Development of a PSO-based input shaping scheme for payload sway control of the 3D gantry crane is described in chapter 5. Moreover, an optimal performance controller including PID control algorithm and input shaping techniques is also proposed in chapter 5. Adaptive input shaping scheme is proposed in Chapter 6. Finally, the conclusions of the thesis as well as the research direction of the work are presented in Chapter 7.

Mediterranean Conference on Control and Automation. Limassol, Cyprus, 485-490.

