CARBON SUPPORTED PALLADIUM-PLATINUM CATALYST FOR OXYGEN REDUCTION REACTION IN HIGH TEMPERATURE PROTON EXCHANGE MEMBRANE FUEL CELL

MOHAMAD SUKRI BIN MOHAMAD YUSOF

UNIVERSITI TEKNOLOGI MALAYSIA
CARBON SUPPORTED PALLADIUM-PLATINUM CATALYST FOR OXYGEN REDUCTION REACTION IN HIGH TEMPERATURE PROTON EXCHANGE MEMBRANE FUEL CELL

MOHAMAD SUKRI BIN MOHAMAD YUSOF

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

JANUARY 2017
A special dedication to ayah, Yusof Hassan

Thank you for the endless support during my ups and downs even though you are no longer here to see me put an end for another chapter of my life stories

To mak, Saoyah Abdul Rahman,

Thank you for always being here; your endless love, faith and encouragement never fail to strengthen me

To my beloved siblings,

Thank you for your continuous helps, cares, kindness and devotion can never be repaid

To my love,

Thank you for gracing my life with your lovely presence. Thank you for coming into my life and giving me joy. Thank you for loving me and receiving my love in return

To the light of happiness,

Thank you for always stay strong and never give up during all the failures; your passion, faith also work hard finally being repaid and your new journey just begin
ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah. Peace and blessing to Prophet Muhammad S.A.W, his families and all muslims. Special thanks go to my supervisors; Prof. Dr. Aishah Abdul Jalil and Prof. Dr. Sugeng Triwahyono for the never ending advices and help during the study. Without their patience, sacrifices, time and guidance, this work could not have been accomplished.

A million thanks goes to all the Green Technology and Advanced Materials (GTAM) research group members for giving me a helping hand in the process of doing this research. A lot of appreciation also goes to staffs of Advance Membrane Technology Research Centre for their valuable help and cooperation. My appreciation also goes to Ministry of Higher Education Malaysia for MyMaster scholarship that was financially helpful in finishing this study.

Last but not least, I wish to express my sincere gratitude and appreciation to my family and close friends for their continuous encouragement and moral supports. Thank you very much for everything.
ABSTRACT

Platinum (Pt) is the most commonly adopted electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells (PEMFCs) due to its noteworthy features. However, for PEMFCs to have wide practical applications and become commercially viable, the challenging issue of the high catalyst cost, resulting from the exclusive conventional practice of platinum based catalysts should be addressed. Therefore, a study of the palladium (Pd) as a partial substitution to the platinum on carbon (C) has been conducted in high temperature PEMFCs. A series of metal electrocatalyst (Pt/C, Pd/C, and 10-40 wt% Pt-Pd/C) were synthesized via chemical reduction method and their characteristics have been observed by cyclic voltammetry, linear sweep voltammetry, field emission scanning electron microscope and energy dispersion x-ray, Fourier transform infrared spectroscopy, x-ray diffraction and nitrogen-physisorption. Among all, 30 wt% Pt-Pd/C, gave a promising 0.9 Wcm⁻² power density at 170 °C. 30 wt% Pt-Pd/C was then nominated to further enhance the catalyst layer. Polybenzimidazole (PBI) was added onto the catalyst layer of 30 wt% Pt-Pd/C in order to increase the porosity and facilitate the transport of oxygen in the catalyst layer due to their hydrophobic properties. The PBI ratio was varied towards 30 wt% Pt-Pd/C (PBI: 30 wt% Pt-Pd/C; 1:99, 3:97, 5:95 and 9:91). Short-term durability for all catalysts was conducted from 24-96 hr revealed that the impedance curves of 5:95 catalysts showed the slowest performance decay of the membrane electrode assembly (MEA). Hence, this result indicated that the decay of the catalyst could be prevented by appropriate PBI loading as well as increasing the lifetime of the MEA. The 5:95 MEA delivered a peak power density of 1.30 Wcm⁻², corresponding to an overall Pt utilization 0.02 mgPt/cm. At 170 °C, the MEA cathodic catalyst utilization was 65 kW/gPt. This is 1.5 times higher than the Pt-utilization efficiency of a reference fuel cell prepared using commercial catalyst layer, which emphasizes the enhancement that was mainly attributing by the Pd substitution and PBI ionomer in the catalyst. All the result indicated in this study strongly motivate the application of combining suitable ratio of PBI binder in an optimum metal loading catalyst. This combination would produce a low resistance MEA in order to compensate an encouraging power density.
Platinum (Pt) sering digunakan sebagai elektromangkin bagi tindakbalas pengurangan oksigen di dalam sel-sel bahanapi membran tukaran proton (PEMFCs) disebabkan oleh ciri-cirinya yang menarik. Walau bagaimanapun, bagi penggunaan PEMFCs yang lebih meluas secara praktikal dan menjadi berdaya maju komersial, cabaran terhadap isu kos mangkin yang tinggi dihasilkan dari penggunaan eksklusif mangkin berasaskan platinum secara konvensional harus diutarakan. Maka, satu kajian menggunakan paladium (Pd) sebagai sebahagian penggantian kepada Pt di atas karbon (C) telah dijalankan pada suhu tinggi PEMFCs. Satu siri elektromangkin logam (Pt/C, Pd/C, dan 10-40 wt% Pt-Pd/C) telah disintesis melalui kaedah pengurangan kimia dan ciri-cirinya diperhatikan melalui kitaran voltametri, lengkungan linear voltametri, mikroskop elektron pengimbas pancaran medan-sinar-x tenaga serakan, spektroskopi infra-merah transformasi Fourier, pembelauan sinar-x dan fisierapan nitrogen. Antara semua, 30 wt% Pt-Pd/C telah menghasilkan 0.9 Wcm\(^{-2}\) ketumpatan kuasa pada suhu 170 °C. 30 wt% Pt-Pd/C seterusnya dicalonkan bagi meningkat lagi lapisan mangkinnya. Polibenzimidazola (PBI) ditambah pada lapisan mangkin 30 wt% Pt-Pd/C bagi menambahkan lagi keliangan dan membantu pergerakan oksigen di dalam lapisan mangkin yang disebabkan oleh sifat hidrofobiknya. Kajian dipelbagaikan dengan kadar PBI terhadap 30 wt% Pt-Pd/C (PBI: 30 wt% Pt-Pd/C; 1:99, 3:97, 5:95 and 9:91). Ujian ketahanan jangka pendek untuk semua mangkin dijalankan pada sekitar 24-96 jam menunjukkan keluk galangan mangkin 5:95 adalah paling lambat prestasi pereputan himpunan elektrod membran (MEA). Oleh yang demikian, keputusan ini menunjukkan bahawa pereputan mangkin boleh dielakkan dengan menggunakan kandungan PBI yang betul dan juga mampu memanjangkan jangka hayat MEA. MEA 5:95 menghasilkan 1.30 Wcm\(^{-2}\) ketumpatan kuasa terhadap 0.02 mgPt/cm penggunaan keseluruhan Pt. Pada 170 °C, penggunaan katod MEA adalah sebanyak 65 kW/gPt. Ini adalah 1.5 lebih tinggi daripada kecekekapan sel bahanapi rujukan yang disediakan menggunakan lapisan mangkin yang komersial di mana ianya menekankan peningkatan utama adalah disebabkan penggantian Pd dan pengenalan ionomer PBI ke dalam lapisan mangkin. Keputusan ini merangsang kuat penggunaan gabungan nisbah perekat PBI yang sesuai di dalam mangkin muatan logam optimum. Gabungan ini mampu menghasilkan rintangan MEA yang rendah bagi meningkatkan lagi ketumpatan kuasa.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1

1.2 Problem Statement
 And Hypothesis 3

1.3 Research Objectives 5

1.4 Scopes of Research 6

1.5 Significant of Study 8

1.6 Thesis Outline 9

2 LITERATURE REVIEW

2.0 Introduction 10

2.1 A Brief History of PEMFC 12
2.1.1 Invention of the Fuel Cell 13
2.1.2 PEMFC Development 13
2.1.3 PEMFC in Space 14
2.1.4 PEMFC Breakthrough 15
2.1.5 PEMFC Today 16

2.2 Fuel Cell 17

2.3 Principle of PEMFC 20

2.4 Main Cell Component and Materials 21
 2.4.1 Membrane 21
 2.4.2 Electrocatalyst 24
 2.4.3 Gas Diffusion Layer 27
 2.4.4 PEMFC Applications 29

2.5 Basic Reaction 30
 2.5.1 Anode 30
 2.5.2 Cathode 31
 2.5.3 Oxygen Reduction Reaction 31

2.6 Opportunities and Challenges for High Temperature PEMFC (HT-PEMFC) 33

2.7 Routes to Increase the Operating 35

2.8 Challenges in Catalyst/Catalyst Layer 38

2.9 High Temperature Catalyst Layer-Component and Structure 42

2.10 Strategies for HT Catalyst/Catalyst Layer 43

2.11 Summary 44

3 METHODOLOGY 45

3.1 Introduction 46

3.2 Materials 47

3.3 Catalyst Preparation 47

 3.3.1 Synthesis of Single metal Electrocatalyst (Pt/C and Pt-Pd/C) 48

 3.3.2 Synthesis of Coupled Catalyst (10-40wt%Pt-Pd/C) 49

 3.3.3 Synthesis of Modified Catalyst (PBI/Pt-Pd/C) 51
3.4 Catalyst Characterizations 52
 3.4.1 Surface Morphology Properties 53
 3.4.2 Metal Content Analysis 55
 3.4.3 Electrochemical Process Analysis 57
3.5 Membrane Electrode Assembly Fabrication 58
3.6 H₂O₂ Single Test Performance and Durability Test 59
3.7 Concluding Remarks 60

4 RESULTS AND DISCUSSION 61
4.1 Introduction 61
4.2 Synthesis and Characterization 63
 4.2.1 Cyclic Voltammetry 64
 4.2.2 Linear Sweep Voltammetry 65
 4.2.3 Morphological Study 67
 4.2.4 Functional Group Study 68
 4.2.5 Surface Area Study 69
4.3 Single Cell Testing 70
4.4 Durability Study 73
4.5 Fuel Cell Performance 74

5 CONCLUSION 75
5.1 Conclusion 76
5.2 Recommendations 78
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Operating and applicable properties of five main types of fuel cells (Peighambardoust et al., 2009)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Application areas of PEM fuel cells with a variety of power level</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>ORR catalyst</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>List of chemicals</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>List of electrocatalysts</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>MEA fabrication condition</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>ESA values of all electrocatalyst</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Physical properties of all samples</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrochemical properties</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Electrochemical characteristics of MEAs with PBI and 30 wt% Pt-Pd/C ratio at the cathode</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison ionomer as a catalyst layer in previous studies</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The first fuel cell</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Fuel cells produced by Ballard Power Systems. (a) Mark1020 ACS, (b)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Mark1030 V3, (c) Heavy-Duty Fuel Cell Module (HD6)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Principle of PEMFC</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Diagram of typical MEA structure</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Oxygen reduction reaction mechanisms on noble catalyst</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Research flowchart</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of single metal catalyst</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of coupled metal catalyst</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparation of modified electrocatalyst</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Fabrication of MEA by hot-pressing</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>The fabricated MEA</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Cyclic voltammetry curves for all electrocatalyst</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear sweep voltammetry for all electrocatalyst</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>EDX mapping and FESEM images of (a & d) 20wt% Pt-Pd/C, (b & e) 30wt%</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Pt-Pd/C and (c & f) 40wt% Pt-Pd/C</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>(A) Isotherm graph and (B) Pore distribution of the electrocatalyst</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>XRD pattern of 20-40wt% Pt-Pd/C electrocatalyst</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>(A) Polarization curves of PBI: 30wt% Pt-Pd/C for different ratio at</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>170°C (B) FTIR spectra of 30wt% Pt-Pd/C with PBI (0-7 wt%) and (C) MTN3</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>AC impedance diagram of MEA for PBI: 30 wt% Pt-Pd/C; at ratio (A) 1:99,</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(B) 3:97, (C) 5:95 and (D) 7:93 at different operating hours</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.8</td>
<td>H$_2$/O$_2$ performance of single stack fuel cell for electrocatalyst</td>
<td>62</td>
</tr>
<tr>
<td>4.9</td>
<td>Proposed mechanism for ORR</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 wt% Pt-Pd/C</td>
<td>10 wt% of Pt-Pd loaded on carbon using chemical reduction method</td>
</tr>
<tr>
<td>20 wt% Pt-Pd/C</td>
<td>20 wt% of Pt-Pd loaded on carbon using chemical reduction method</td>
</tr>
<tr>
<td>30 wt% Pt-Pd/C</td>
<td>30 wt% of Pt-Pd loaded on carbon using chemical reduction method</td>
</tr>
<tr>
<td>40 wt% Pt-Pd/C</td>
<td>40 wt% of Pt-Pd loaded on carbon using chemical reduction method</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Proton exchange membrane fuel cell</td>
</tr>
<tr>
<td>HT-PEMFC</td>
<td>High temperature proton exchange membrane fuel cell</td>
</tr>
<tr>
<td>LT-PEMFC</td>
<td>Low temperature proton exchange membrane fuel cell</td>
</tr>
<tr>
<td>MEA</td>
<td>Membrane electrolyte assembly</td>
</tr>
<tr>
<td>GDL</td>
<td>Gas Diffusion Layer</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
</tr>
<tr>
<td>FESEM-EDX</td>
<td>Field Emission Scanning Electron Microscope-Energy Dispersion X-ray Spectrometer</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffractometer</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>kW</td>
<td>kiloWatt</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>$/kW</td>
<td>currency</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>eV</td>
<td>Electron Volt</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant which the amount of electric carried out by 1 mole of electrons</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g L⁻¹</td>
<td>Gram per liter</td>
</tr>
<tr>
<td>I</td>
<td>Current in unit ampere</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamphere</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mg L⁻¹</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>W g⁻¹</td>
<td>Watt per gram</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Today, we are facing a severe challenge such as global warming and climate change due to the usage of fossil fuels. Fossil fuel such as natural gases and petroleum oil are classified as non-renewable energy resources that are difficult to be replaced in a short period of time after being utilized and should be replaced by other promising alternative sources. The greenhouse gas emissions are also mainly derived from the transportation sector and electricity power generation based on fossil fuel sources. Therefore, a global solution taken must involve a dramatic shift to practical and environmentally sustainable energy sources. In the interest of the extending concerns on the consumption of petroleum based energy resources and also the changes in climate pattern, alternatives energy power generation has been discovered in recent years (Sims, 2014).

High capacity energy systems, such as fuel cells are highly desirable to meet the urgent requirement of electric vehicles and utilization of sustainable energies (Bruce et al., 2012). Fuel cells due to their particular properties are on the track in creating vast revolutionary modification in the electricity production field. By definitions, fuel cell is an electrochemical device in which the chemical energy of fuel in the absence of fuel combustion converted to electrical energy. Therefore, in a
fuel cell system, the chemical energy related to electrochemical reaction of the fuel with oxidant directly change into the water, electricity and heat (Peighambardoust et al., 2010). Currently, from different types of fuel cells, proton exchange membrane fuel cell (PEMFC) which is characterized by its fast start up and low operation temperature has been received a lot of attention (Othman et al., 2012). PEMFCs are also have been considered to be a promising technology for clean and efficient power generation.

However, PEMFC possess several disadvantages. For example, the low operating temperature PEMFC (LT-PEMFC) has a very low tolerance to impurities that present in fuel, thus requiring 99% pure hydrogen which is very costly. The heat produced from the LT-PEMFC is also a low temperature and thus is difficult to transfer away for use in other processes. A water management system is needed to prevent flooding/drying out of the membrane electrode assembly (MEA) due to the nature of the membrane which lead to a loss in a performance (Chandan et al., 2013). Thus, PEMFC system complexity could be reduced by the development of water-free electrolytes membrane that does not require hydration. It also enables the PEMFC to be operated under warm conditions (100-200°C) thus further improving its efficiency. In simple words, these issues can be overcome through the use of a high temperature PEMFC (HT-PEMFC).

As such, during these recent years, there has been an intense research activity in order to improve all the components in HT-PEMFCs especially in membrane electrode assembly (MEA) (Lobato et al., 2010). Highly dispersed carbon-supported Pt particles for MEA are the characteristics of the present benchmark electrocatalysts for HT-PEMFCs. Ultra low Pt loading (0.05-0.3 mgcm\(^{-2}\)) electrodes have been developed. Yet, the continuous increase of the cost of platinum has made less effective such progresses. In the transition process from platinum to cheaper non platinum-group (NPG) metals or non-precious catalysts by total or partial substitution, palladium-based substitution electrocatalysts may represent a proper compromise due to its lower cost and abundance (Stassi et al., 2013).
Recently, for other modification in MEA, several researchers have used different polymers to act as binders in the catalyst layer for HT-PEMFCs, such as polytetrafluoroethylene (PTFE) (Su et al., 2013; Oono et al., 2012; Oono et al., 2010; Wannek et al., 2009), polyvinylidene fluoride (PVDF) (Su et al., 2013; Liang et al., 2014), and Nafion (Su et al., 2013; Modestov et al., 2009). From these studies, it was observed that when PTFE and PVDF, serving as a binder, are introduced into the catalyst layer, porosity is enhanced, and the transport of oxygen in the catalyst layer is facilitated because of their hydrophobic properties.

Unfortunately, to date, no study is reported on the use of between coupled Pt-Pd together with PBI on performance have not been investigated for HT-PEMFCs. Therefore, the main aim of this work is to study the partial substitution of palladium on platinum catalyst with the presence of PBI as a binder. In this study, black Vulcan Carbon Xc-72 was employed as the support to deposited platinum and palladium via an ethylene glycol reduction method. The synthesized Pt-Pd/C electrocatalyst later added with PBI and used as the ORR electrocatalyst in PEMFC was studied, along with the electrocatalyst activity and single cell performance. In this study, black Vulcan Carbon Xc-72 was employed as the support to deposited platinum and palladium via chemical reduction method. The synthesized Pt-Pd/C electrocatalyst later added with PBI and used as the ORR electrocatalyst in PEMFC in ultra-low metal loading (0.02 mg) was studied, along with the electrocatalyst activity and single cell performance.

1.2 Problem Statement and Hypothesis

The limited supply and high cost of the Pt used in PEMFC electrocatalysts necessitate a reduction in the Pt level. Generally, there are two ways to reduce the use of Pt in PEMFCs, that is; [1] Pt electrodes with low Pt content and [2] total or partial substitution of Pt with other metals. In the former case, as discussed in a
review (Wee et al., 2007), the reduction of Pt loading in electrocatalysts can be achieved through an enhancement of the Pt utilization by increasing the active Pt sites, thinning the active layer thickness and introducing smaller, carbon-supported, nanometer-sized, Pt particles. Regarding the point (2), the partial or total substitution of platinum with palladium seems a promising way to reduce Pt content (Antolini, 2009). Pd, as other platinum-group metals, presents electrocatalytic activity for both the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR), but the HOR and ORR activities of Pd are considerably lower than those of Pt (Debe, 2012; Rau et al., 2008; Salvador-Pascual et al., 2007). The performance of Pd/C for the HOR as anode catalyst in PEMFC is very poor (Ham et al., 2012). It has been found, however, that by addition of a very low amount, Pt assisted the HOR activity of Pd attains that of pure Pt (Zhu et al., 2015; Zhang et al., 2012). Indeed, many works showed that platinum addition increases the ORR activity of palladium and that the dependence of the ORR activity on the Pt content goes through a maximum. Moreover, the particle size of carbon supported metals increases going from Pt to Pt–Pd independently of the preparation method (He et al., 2012). Not only that, Pt degradation and carbon corrosion on fuel cell operating in low temperature. A warmth condition of fuel cell could eliminate these phenomenon.

Recently, several researchers have used different polymers as ionomer binders in the catalyst layers for HT-PEMFC. From these studies, it was observed that when PTFE (Su et al., 2013) and PVDF (Liang et al., 2014), served as a binder and being introduced into the catalyst layer, the porosity is enhanced, and the transport of oxygen in the catalyst layer is facilitated due to the hydrophobic properties possess by the polymer. Unfortunately, the effects of the different and optimum ratios between PBI ionomer binder and coupled catalyst, Pt-Pd/C on performance have not been investigated for HT-PEMFCs. Therefore, to take the challenge, the properties of Pt-Pd/C, synthesis as cathode electrocatalyst, can be modified with different PBI ionomer ratio and metal (Pt-Pd) loading at even higher temperature which probably could enhance the efficiency of the electrocatalyst.
It was hypothesized that the preparation of a uniform Pt-Pd distribution onto carbon support that having a coarser and high surface roughness will significantly increase the reaction site surface area for the ORR and allow delivered a promising power density for the fuel cell application at high operating temperature. Lastly, the introduction of the PBI ionomer to the catalyst layer will expected lead to a better oxygen transport and enhancement in electrocatalyst porosity.

1.3 Research Objectives

The objectives of this study are:

1. To synthesize a series of metal electrocatalysts supported onto carbon black and modified with PBI ionomer binder on the cathode catalyst layer
2. To study the physicochemical and electrochemical properties of the prepared electrocatalyst
3. To analyze the performance of the synthesized electrocatalyst on the single H₂/O₂ fuel cell at high operating temperature

1.4 Scope of Research

The scopes of this study consist of three parts which are the synthesis of all sample electrocatalysts, characterization of the samples and the potential of the coupled catalyst on the fuel cell. The details are described as below:
1. Synthesis of coupled electrocatalyst Pt-Pd supported onto carbon black and modified with PBI ionomer binder on the catalyst layer.

i. The Pt/C is synthesized in ethylene glycol via reduction method under ambient atmosphere at room temperature. The Pd is also supported on Pt/C to give Pt-Pd/C electrocatalyst in 10-40wt% metal loading using impregnation method. Preparation of modified electrocatalyst, PBI: Pt-Pd/C in different ratio is also conducted via the same method. The PBI solution was initially prepared by using DMAc. Pd/C and Pt/C were also being prepared as for reference electrocatalyst.

2. Characterization of the electrocatalyst

 i. The physicochemical properties of the electrocatalyst were determined by different means of characterization. The specific electrochemically surface areas were investigated by cyclic voltammetry (CV) analysis which the values were then validated by the linear sweep voltammetry (LSV) analysis. LSV were also revealed E_{onset} and $E_{1/2}$ values for the coupled sample. The morphological properties and distribution of metal onto supportive material were examined using field emission scanning electron microscope (FESEM) and energy dispersion X-Ray mapping (EDX-mapping) analysis. Nitrogen adsorption-desorption isotherms (Brunauer-Emmett-Teller, BET) was used to obtain the textural properties of the electrocatalyst. The structural orientation, $d_{spacing}$ and wall thickness values of the prepared coupled electrocatalyst were recorded using X-ray diffraction (XRD) analysis. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to identify functional group present in the prepared electrocatalyst. Sort-term durability test for different period of
time were conducted to explore the stability of each modified sample.

3. The potential of the electrocatalyst were tested on the single fuel cell

 i. Electrodes with different metal loading electrocatalyst were used to prepare the MEAs for PEMFC single cell performance tests. The screening process is conducted to determine the optimum condition including the effect of metal loading and effect of binder (PBI) in catalyst layer. The effect of metal loading was studied by preparing a series of weight loading onto carbon black supported (10, 20, 30 and 40 wt% Pt-Pd/C). Whereas, the effect of binder was investigated using a potential coupled catalyst by introducing the PBI onto it in a series of ratio (1: 99, 3: 97, 5:95 and 7: 93). The potential of best coupled and modified electrocatalyst were also studied at high operating temperature (170°C) in single H₂/O₂ fuel cell.

1.5 Significance of study

This study was conducted to synthesize coupled electrocatalyst (Pt-Pd/C). A detail investigation of catalyst properties as well as the performance on the fuel cell was conducted. It was known that platinum catalyst gain much attention for application on PEMFC despite its disadvantages which is costly and tend to degrade on temperature less than 80°C. However, the exploration towards this type of fuel cell becomes stagnant for past few years. Therefore, steps should be taken to develop a promising study that will counter both technology and environmental aspects. Thus, the introduction of different weight loading of Pt-Pd coupled catalyst and modification of coupled electrocatalyst layer with PBI ionomer offer an alternative way to produce a good electrocatalyst that could assist ORR which could enhance the
power density produce from fuel cell application. In addition, the findings and discussion from this study could be a capable alternative electrocatalyst in term of the improvement of new electrocatalyst for PEMFC at high operating temperature range. This study will optimistically provide a new insight to the research and science community.

1.6 Thesis Outline

This thesis is divided into five chapters. In Chapter 1, an introduction is given about the use of fossil fuels as dependence source energy and fuel cell as the new alternative energy production system. Among all type of fuel cell, PEMFC received much attention and has been selected to further explore. Recent studies regarding PEMFC and its drawback were also mentioned. The general introduction about the costly of the PEMFC due to the use of Pt as the conventional electrocatalyst was highlighted. The problem statement of the current research was stated to provide clear objectives of the present study with the scopes of study covers the research work that will be conducted to meet these objectives. In Chapter 2, the literature related to this study was reviewed. The overview on previous studies about conventional electroacatalyst, modification of PEMFC with polymer used as ionomer binder and high operating temperature had been explored. The synthesis methods on this study and characterization techniques also included.

The research design and methodology used in this studied was explained in Chapter 3. The materials and chemicals, catalyst preparation and characterization were described in this chapter. In Chapter 4, results and discussion was divided by synthesis and characterization followed by the H₂/O₂ fuel cell performance evaluations. All the results and proposed mechanisms were presented and discussed comprehensively. Finally, Chapter 5 covered the conclusions about the study. The recommendations for future studies were also given in this chapter.
REFERENCES

Wang, Y. 2015. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. *Electrochimica Acta*,

