CELLULAR FUNCTIONAL ROLES OF CELASTROL ON MITOCHONDRIAL DYSFUNCTION-INDUCED INSULIN RESISTANCE

MOHAMAD HAFIZI BIN ABU BAKAR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioprocess Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

NOVEMBER 2015
Special dedication to my beloved

Father

Abu Bakar Bin Osman

Mother

Faezah Binti Idris

Siblings

Nor Shafinaz Binti Abu Bakar

Siti Mayuha Binti Abu Bakar

Maisarah Binti Abu Bakar

Masturah Binti Abu Bakar

Thanks for all the tremendous love, understanding, prayer, advices and motivations during the hard times.

“My Lord! Increase me in knowledge”

Quran 20:114
ACKNOWLEDGEMENT

In The Name of Allah, The Most Magnificent, The Most Merciful

First and foremost, Alhamdullilah. All praises to Allah for the strengths and His blessing in completing this thesis. In no particular order, I would like to express my heartfelt gratitude to my main supervisor, Prof. Dr. Mohamad Roji Sarmidi, for his towering presence, constant support and professional guidance throughout my PhD candidature. I genuinely thank my co-supervisor Dr. Cheng Kian-Kai, Dr. Harisun Yaakob and Dr. Hasniza Zaman Huri for their useful advice and guidance and also for being very supportive during the hard times. Dr. Hasniza is gratefully thanked for her supervision during the clinical studies at the Clinical investigation Centre, University Malaya Medical Centre (UMMC). I am indebted to Universiti Teknologi Malaysia and Ministry of Education (MOE), Malaysia for the scholarship under UTM Doctoral Zamalah and UTM Academic Fellow which has been funding me for 3 years.

Importantly, I cannot thank enough my beloved late father, Mr. Abu Bakar Osman (Abah) and mother, Mrs. Faezah Idris (Mak) for encouraging me every step of the way, especially when I felt low; for taking the stake of travelling so far, just to help and rejuvenate me when I needed them; and most importantly for believing in me and for inculcating in me the tenacity to push against all odds. I also would like to thank my siblings who have been showing constant support, unconditional love and understanding. Without all of you, it would be much difficult working alone throughout those years of studies. Last but definitely not the least, the supports and helps from all personals involved during my candidature will always be remembered. Thank you so much.
There are compelling evidence showing that mitochondrial dysfunction and low-grade chronic inflammation in several peripheral tissues may attribute to the central pathophysiological mechanism of insulin resistance and type 2 diabetes. Celastrol, a pentacyclic-triterpene, is an established anti-inflammatory agent from the root of *Tripterygium wilfordii* that has been used for centuries as medicament to treat numerous inflammatory diseases. As its therapeutic treatment is increasingly being recognized, the present study sought to investigate the functional roles of celastrol upon mitochondrial dysfunction and insulin resistance induced by mitochondrial respiratory inhibitors in insulin responsive cells. The glucose uptake activity, mitochondrial functions, lipolysis, intracellular lipid accumulation and a number of signaling pathways were investigated using cell-based assays and western blot analyses. The optimum doses of celastrol in improving insulin-stimulated glucose uptake of mitochondrial inhibitors-treated 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells were 5, 15 and 30 nM, respectively. Celastrol treatment for 48 hours improved the mitochondrial activities and decreased the mitochondrial superoxide productions. The integrity of mitochondrial dynamics was restored via substantial changes in mitochondrial fusion and fission. Furthermore, celastrol prevented the amplified level of cellular oxidative damages where the production of pro-inflammatory cytokines in cultured cells was greatly down-regulated. The release of free fatty acids and glycerol from conditioned media of adipocytes and hepatocytes were reduced after celastrol treatment. The relative amount of intracellular lipid accumulation was decreased in celastrol-treated cells with mitochondrial dysfunction. Importantly, celastrol enhanced the phosphorylation of amino acid residues of insulin receptor substrate 1 (IRS1), serine/threonine kinase (Akt/PKB) and Akt substrate 160 (AS160) proteins in insulin signaling pathways with amplified expression of 5' adenosine monophosphate-activated protein kinase (AMPK) protein in human myotubes and hepatocytes. The metabolic effects of celastrol were also accompanied with the attenuation of nuclear factor-kappa B (NF-κB) and diminished activation of the protein kinase C (PKC) isoforms in insulin resistant cells. The protein expression of glucose transporter 4 (GLUT4) was normalized by celastrol in adipocytes and human myotubes while reduced GLUT2 protein expression was observed in hepatocytes, signifying its ameliorative properties in enhancing insulin sensitivity of these *in vitro* disease models. Collectively, these results unequivocally suggested that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction and inflammation in the development of insulin resistance and type 2 diabetes.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background

1.2 Problem Statement

1.3 Objective

1.4 Scopes of the Study

1.5 Significances and Original Contributions of the Study

1.6 Thesis Structure and Organization
2 LITERATURE REVIEW

2.1 Metabolic Disorders
 2.1.1 Type 2 Diabetes
 2.1.2 Insulin Resistance
 2.1.3 Inflammation

2.2 The Roles of Mitochondria in Health and Disease
 2.2.1 Electron Transport Chain
 2.2.2 Tricarboxylic Acid Cycle

2.3 Insulin Signaling Pathways
 2.3.1 AMP-activated Protein Kinase (AMPK)
 2.3.2 Activation of Protein Kinase C (PKC)

2.4 The Mitochondrial Dysfunction Theory on Insulin Resistance

2.5 Inhibition of Intracellular Insulin Signaling Pathways by Mitochondrial Dysfunction

2.6 The Roles of NF-κB in The Pathogenesis of Insulin Resistance

2.7 Celastrol: Structure and Therapeutic Indication

2.8 Mechanistic Targets of Celastrol
 2.8.1 Inhibition of IKKα/β
 2.8.2 Inhibition of Proteasomes
 2.8.3 Activation of HSF1 and HSP70 Response

2.9 The Roles of Celastrol in Diabetes-associated Complications

3 MATERIALS AND METHODOLOGY

3.1 Materials

3.2 Cell Culture Disease Model
3.2.1 3T3-L1 Adipocytes 51
3.2.2 Human Primary Skeletal Muscle-derived Myoblast 52
3.2.3 C3A Human Liver Cells 52
3.3 Summary of Methodology 53
3.3.1 Flow Chart of the Research Activities 53
3.4 Cell Culture Protocol 54
3.4.1 Thawing of Cells 54
3.4.2 Cell Counting and Viability 55
3.4.3 Subculture and Routine Maintenance 56
3.4.4 Seeding of the Cells into Multi-Well Plate 56
3.4.5 3T3-L1 Pre-Adipocytes Differentiation 57
3.4.6 Human Skeletal Muscle Differentiation 58
3.4.7 Cell Cryopreservation 58
3.5 Insulin-Resistant Models 59
3.5.1 Treatments of Mitochondrial Inhibitors and Celastrol 60
3.6 Quantification of Cell Viability by MTT Assay 61
3.7 Glucose Regulation Analysis 63
3.7.1 Glucose Uptake Activity 63
3.8 Mitochondrial Isolation 64
3.9 Measurement of Mitochondrial Activities 65
3.9.1 Intracellular ATP Concentration 65
3.9.2 Mitochondrial Membrane Potential (ΔΨm) 65
3.9.3 Mitochondrial Superoxide Production 66
3.9.4 Citrate Synthase Activity 66
3.10 Analysis of Cellular Oxidative Stress 67
3.10.1 Mitochondrial DNA Oxidative Damage 68
3.10.2 Protein Carbonylation 69
3.10.3 Lipid Peroxidation 69
3.11 Lipolysis 70
3.12 Quantification of Lipid Content by Oil Red O Assay 72
3.13 Enzyme-Linked Immunosorbent Assay for Pro-Inflammatory Cytokines 73
3.14 Isolation of Nuclear Extracts 73
3.15 Isolation of Plasma Membrane 74
3.16 Western Blot Analysis 75
 3.16.1 Cell Extraction 75
 3.16.2 Protein Isolation 75
 3.16.3 Gel Profiling 76
 3.16.4 Running Gels (Electrophoresis) 77
 3.16.5 Immunoblotting 77
3.17 Analysis of Total Proteins 78
3.18 Statistical Analysis 78

4 RESULTS AND DISCUSSIONS 79
4.1 Overview 79
4.2 Cell Culture Differentiation 80
 4.2.1 3T3-L1 Adipocytes Differentiation 80
 4.2.2 Human Skeletal Muscle Cells Differentiation 81
4.3 Analysis of Dose and Time Dependent 81
 4.3.1 Determination of Optimal Oligomycin, AMA and Celastrol Dose-Dependent Treatment on Cells 82
4.3.2 Determination of Optimal Oligomycin, AMA and Celastrol Time-Dependent Treatment on Cells 84

4.4 Effect of Celastrol on Glucose Uptake of Mitochondrial Dysfunction-induced Insulin Resistance in Cells 86

4.4.1 Discussion 91

4.5 Morphological Analyses on 3T3-L1 Adipocytes, Human Skeletal Muscle and C3A Human Liver Cells 93

4.6 NF-κB Protein Activities 96

4.6.1 Effect of Celastrol on NF-κB and IKKα/β Protein Expression of Mitochondrial Dysfunction-induced Insulin Resistance in 3T3-L1 Adipocytes 97

4.6.2 Effect of Celastrol on NF-κB and IKKα/β Protein Expression of Mitochondrial Dysfunction-induced Insulin Resistance in Human Skeletal Muscle Cells 99

4.6.3 Effect of Celastrol on NF-κB and IKKα/β Protein Expression of Mitochondrial Dysfunction-induced Insulin Resistance in C3A Human Liver Cells 100

4.6.4 Discussion 102

4.7 Mitochondrial Activities 104

4.7.1 Effects of Celastrol on Mitochondrial Activities of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes 104

4.7.2 Effects of Celastrol on Mitochondrial Activities of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells 106
4.7.3 Effects of Celastrol on Mitochondrial Activities of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Human Liver Cells 109

4.7.4 Discussion 111

4.8 Cellular Oxidative Profile 115

4.8.1 Effects of Celastrol on Oxidative Profile of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes 115

4.8.2 Effects of Celastrol on Oxidative Profile of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells 117

4.8.3 Effects of Celastrol on Oxidative Profile of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Liver Cells 118

4.8.4 Discussion 119

4.9 Mitochondrial Dynamics Protein Activity 121

4.9.1 Effects of Celastrol on Mitochondrial Dynamics Protein of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes 121

4.9.2 Effects of Celastrol on Mitochondrial Dynamics Protein of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells 122

4.9.3 Effects of Celastrol on Mitochondrial Dynamics Proteins of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Liver Cells 124

4.9.4 Discussion 125

4.10 Production of Pro-Inflammatory Cytokines 128
4.10.1 Effects of Celastrol on Pro-Inflammatory Cytokines Level of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes

4.10.2 Effects of Celastrol on Pro-Inflammatory Cytokines Level of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells

4.10.3 Effects of Celastrol on Pro-Inflammatory Cytokines Level of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Liver Cells

4.10.4 Discussion

4.11 Lipolysis and Intracellular Lipid Accumulation

4.11.1 Effect of Celastrol on Lipolysis and Intracellular Lipid Accumulation of Mitochondrial Dysfunction-induced Insulin Resistance in 3T3-L1 Adipocytes

4.11.2 Effect of Celastrol on Lipolysis and Intracellular Lipid Accumulation of Mitochondrial Dysfunction-induced Insulin Resistance in Human Skeletal Muscle Cells

4.11.3 Effect of Celastrol on Lipolysis and Intracellular Lipid Accumulation of Mitochondrial Dysfunction-induced Insulin Resistance in C3A Human Liver Cells

4.11.4 Discussion

4.12 Insulin Signaling Pathways

4.12.1 Effects of Celastrol on Insulin Signaling Pathways of Mitochondrial Dysfunction-
Induced Insulin Resistance in 3T3-L1 Adipocytes

4.12.2 Effects of Celastrol on Insulin Signaling Pathways of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells

4.12.3 Effects of Celastrol on Insulin Signaling Pathways of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Liver Cells

4.12.4 Discussion

4.13 Intracellular Signaling Pathways of AMPK and PKC

4.13.1 Effects of Celastrol on AMPK and PKC \(\theta \) Protein Expressions of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes

4.13.2 Effects of Celastrol on AMPK and PKC \(\theta \) Protein Expressions of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells

4.13.3 Effects of Celastrol on AMPK and PKC \(\delta \) Protein Expressions of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Liver Cells

4.13.4 Discussion

4.14 Glucose Transporter

4.14.1 Effects of Celastrol on GLUT4 and GLUT1 Protein Expression of Mitochondrial Dysfunction-Induced Insulin Resistance in 3T3-L1 Adipocytes
4.14.2 Effects of Celastrol on GLUT4 and GLUT1 Protein Expression of Mitochondrial Dysfunction-Induced Insulin Resistance in Human Skeletal Muscle Cells 167

4.14.3 Effects of Celastrol on GLUT2 Protein Expression of Mitochondrial Dysfunction-Induced Insulin Resistance in C3A Human Liver Cells 168

4.14.4 Discussion 170

4.15 Summary 173

5 CONCLUSION AND FUTURE RECOMMENDATION 178

5.1 Overview 178

5.2 Conclusion 178

5.3 Future Recommendation 180

REFERENCES 182

Appendices A - E 215-232
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Top 10 countries for number of people with diabetes in 2014 [27].</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of metabolic effects of insulin on peripheral tissues.</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Mitochondrial dysfunction in insulin resistant, obese and type 2 diabetes patients.</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Scientific classification of Tripterygium wilfordii Hook F.</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>List of studies reporting the use of celastrol in diabetes-related complication.</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Cell densities used for seeding in different plate types.</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Gel preparation based on percentage relative to protein size.</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of the in vitro metabolic effects of celastrol upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells.</td>
<td>176</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Metabolic tissues that are implicated in the development of obesity-induced insulin resistance and type 2 diabetes. Adapted from McArdle et al. [25].</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Proposed cellular mechanisms in the progression of inflammation-induced insulin resistance. Adapted from Shoelson et al. [58].</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>The metabolic processes of lipids, proteins and carbohydrates in mitochondria.</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Different components of the electron transport chain and ATP synthase in the inner membrane of mitochondria. Adapted from Rousset et al. [75].</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>The simplified key steps of insulin signaling cascades via IRS/PI3K/Akt in the skeletal muscle, adipose tissue (right panel) and liver (left panel).</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>List of mitochondrial and oxidative phosphorylation inhibitors.</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>The mechanism of mitochondrial dysfunction-induced insulin resistance in skeletal muscle cells.</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>Pathways of NF-κB activation in the cell. Adapted from Xiao et al. [158].</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Image of Thunder God Vine.</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Chemical structure of celastrol.</td>
<td>41</td>
</tr>
</tbody>
</table>
2.11 The electrophilic sites of celastrol (I) is in positions C₂ (ring A) and C₆ (ring B) that can react with nucleophilic thiol groups of cysteine residues and result in the formation of covalent Michael adducts. Adapted from Salminen et al. [170].

2.12 Schematic diagram showing the roles of celastrol in attenuating adipokine-resistin associated migration in vascular smooth muscle cells [174].

3.1 The flowchart of research activities in the present study on the functional roles of celastrol on mitochondrial dysfunction-induced insulin resistance in insulin responsive cells.

3.2 The chemical structures of (a) oligomycin and (b) antimycin A (AMA).

3.3 MTT reaction mechanism in the mitochondria of the living cells.

3.4 Chemical structure of 2-deoxy-D-glucose.

3.5 The preparation of fee fatty acid standard solution at different concentrations.

3.6 The preparation of glycerol standard solution at different concentrations.

4.1 Series of image (Magnification: 40X) for 3T3-L1 pre-adipocytes till fully differentiated adipocytes following differentiation process.

4.2 Differentiation process of human skeletal muscle cells in the following days of cells growth.

4.3 Dose-dependent analysis of mitochondrial inhibitors and celastrol on (a) 3T3-L1 adipocytes, (b) human myotubes and (c) C3A human liver cells. Data were expressed as means ± SEM of three independent experiments.

4.4 Time-dependent analysis of oligomycin (10 nM) and celastrol (5 nM) treatment on 3T3-L1 adipocytes.
4.5 Time-dependent analysis of AMA (30 nM) and celastrol (15 nM) treatment on human myotubes. 85

4.6 Time-dependent analysis of AMA (30 nM) and celastrol (30 nM) treatment on C3A human liver cells. 85

4.7 The effects of mitochondrial inhibitors, metformin and celastrol treatment on the glucose uptake activity in mitochondrial inhibitor-treated (a) 3T3-L1 adipocytes, (b) human skeletal muscle and (c) C3A human liver cells. 89

4.8 Representative images of the oligomycin and celastrol treatment on 3T3-L1 adipocytes. Figures of the (a) untreated cells (DMSO), (b) 10 nM oligomycin-treated cells, (c) oligomycin-treated cells with 5 nM celastrol treatment and (d) celastrol-treated cells were taken at 40X magnification using fluorescence inverted microscope. 94

4.9 Representative images of the oligomycin and celastrol treatment on human myotubes. Figures of the (a) untreated cells (DMSO), (b) 30 nM AMA-treated cells, (c) AMA-treated cells with 15 nM celastrol treatment and (d) celastrol-treated cells were taken at 40X magnification using fluorescence inverted microscope (40X magnification). 95

4.10 Representative images of the oligomycin and celastrol treatment on C3A human liver cells. Figures of the (a) untreated cells (DMSO), (b) 30 nM AMA-treated cells, (c) AMA-treated cells with 30 nM celastrol treatment and (d) celastrol-treated cells were taken at 40X magnification using fluorescence inverted microscope (40X magnification). 96

4.11 Representative images (a) of western blot analysis for the relative expression level of (b) NF-κB and (c) IKKa/β protein phosphorylation activity in adipocytes after oligomycin with or without addition of celastrol. 98
4.12 The representative images of western blot analysis (a) for the relative expression level of NF-κB (b) and IKKα/β (c) protein phosphorylation activity in human myotubes after AMA and celastrol treatment.

4.13 The representative images of western blot analysis (a) for the relative expression level of NF-κB (b) and IKKα/β (c) protein phosphorylation activity in hepatocytes after AMA and celastrol treatment.

4.14 Effects of celastrol on mitochondrial activities of 3T3-L1 adipocytes with mitochondrial dysfunction was assessed via (a) intracellular ATP concentration; (b) MMP; (c) mitochondrial superoxide production and (d) citrate synthase activity.

4.15 The measurement of (a) intracellular ATP concentration, (b) MMP, (c) mitochondrial superoxide production and (d) citrate synthase activity in human myotubes.

4.16 The C3A human liver cells were assayed to measure (a) intracellular ATP concentration, (b) MMP, (c) mitochondrial superoxide production and (d) citrate synthase activity.

4.17 Oxidative profiles of 3T3-L1 adipocytes were determined via (a) measurement of DNA oxidative damage (8-OHdG), (b) protein carbonylation and (c) lipid peroxidation (MDA).

4.18 The quantification of (a) 8-OHdG DNA, (b) protein carbonyls and (c) lipid peroxidation levels in human skeletal muscle cells.

4.19 The quantification of (a) 8-OHdG DNA, (b) protein carbonyls and (c) lipid peroxidation levels in C3A human liver cells.

4.20 Representative western blot images (a) of (b) mfn1, (c) mfn2, and (d) drp1 proteins expression from 3T3-L1 adipocytes.
4.21 Representative western blot images (a) of (b) mfn1, (c) mfn2 and (d) drp1 proteins expression from human skeletal muscle cells.

4.22 Representative western blot images (a) of (b) mfn1, (c) mfn2 and (d) drp1 proteins expression from C3A human liver cells.

4.23 The measurement of pro-inflammatory cytokine (a) IL-1β; (b) TNF-α and (c) IL-6 from conditioned media of 3T3-L1 adipocytes after oligomycin and celastrol treatment.

4.24 Effects of AMA and celastrol on the release of pro-inflammatory cytokines (a) IL-6, (b) TNF-α and (c) IL-1β from mitochondrial-induced insulin resistance in human myotubes.

4.25 Effects of AMA and celastrol on the production of pro-inflammatory cytokines (a) IL-6, (b) TNF-α and (c) IL-1β from mitochondrial-induced insulin resistance in C3A human liver cells.

4.26 Effects of celastrol on lipolysis and intracellular lipid accumulation of oligomycin-treated differentiated 3T3-L1 adipocytes. Differentiated cells were on analyzed for (a) free fatty acids and (b) glycerol release into the media.

4.27 Images of O Red Oil assay for intracellular lipid accumulation in 3T3-L1 adipocytes. Cells were treated with (a) DMSO (control), (b) oligomycin, (c) celastrol with oligomycin and (d) celastrol alone and the images were taken at 40X magnification using fluorescence inverted microscope.

4.28 Effects of celastrol on lipolysis and intracellular lipid accumulation of AMA-treated human myotubes. Differentiated cells were analyzed for (a) free fatty acids and (b) glycerol release into the media.
Images of O Red Oil assay for intracellular lipid accumulation in human myotubes. Cells were treated with (a) DMSO (control), (b) AMA, (c) celastrol with AMA and (d) celastrol alone and the images were taken at 40X magnification using fluorescence inverted microscope.

Effects of celastrol on lipolysis and intracellular lipid accumulation of AMA-treated C3A human liver cells. Differentiated cells were analyzed for (a) free fatty acids and (b) glycerol release into the media.

Images of O Red Oil assay for intracellular lipid accumulation in C3A human liver cells. Cells were treated with (a) DMSO (control), (b) AMA, (c) celastrol with AMA and (d) celastrol alone and the images were taken at 40X magnification using fluorescence inverted microscope.

Analysis of insulin signaling protein activity for (a) western blotting images, (b) tyrosine 612 phosphorylation of IRS1, (c) serine 473 phosphorylation of Akt, and (d) threonine 642 phosphorylation of AS160 in 3T3-L1 adipocytes.

Analysis of insulin signaling protein activity for (a) western blotting images, (b) tyrosine 612 phosphorylation of IRS1, (c) serine 473 phosphorylation of Akt, and (d) threonine 642 phosphorylation of AS160 in human skeletal muscle cells.

Analysis of insulin signaling protein activity for (a) western blotting images, (b) tyrosine 612 phosphorylation of IRS1, (c) serine 473 phosphorylation of Akt, and (d) threonine 642 phosphorylation of AS160 in C3A human liver cells.
4.35 Mechanism of mitochondrial dysfunction-induced insulin resistance in adipocytes. Adapted from Wang et al. [127] 154

4.36 Representative western blot images of 3T3-L1 adipocytes (a). Effects of AMA and celastrol treatments on the protein expression of (b) AMPK and (c) PKC θ phosphorylation in 3T3-L1 adipocytes. 159

4.37 Representative western blot images of human skeletal muscle cells (a). Effects of AMA and celastrol treatments on the protein expression of (b) AMPK and (c) PKC θ phosphorylation in human skeletal muscle-derived myoblast. 160

4.38 Representative western blot images of C3A human liver cells (a). Effects of AMA and celastrol treatments on the protein expression of (b) AMPK and (c) PKC δ phosphorylation in C3A human liver cells. 162

4.39 Representative of western blot images from 3T3-L1 adipocytes (a). Effect of celastrol on GLUT4 and GLUT1 protein expressions (b) plasma membrane (PM) and cell lysates (CL) of oligomycin-treated differentiated 3T3-L1 adipocytes. Results were normalized over cell lysates ratio. 166

4.40 Representative of western blot images for glucose transporter from human skeletal muscle cells (a). Effect of celastrol on (b) GLUT4 and (c) GLUT1 protein expressions (b) PM and CL of AMA-treated human skeletal muscle cells. Results were normalized over cell lysates ratio. 168

4.41 Representative of western blot images from C3A human liver cells (a). Effect of celastrol on and GLUT2 protein expression (b) from plasma membrane (PM) of AMA-treated C3A human liver cells. Results were normalized over cell lysates ratio. 169
| 4.42 | General schematic representation of the mechanistic action of celastrol on mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells. | 175 |
LIST OF ABBREVIATIONS

8-OHdG - 8-hydroxydeoxyguanosine
ADP - adenosine diphosphate
AMA - antimycin A
AMPK - adenosine monophosphate-activated protein kinase
ATP - adenosine triphosphate
BSA - bovine serum albumin
CaCl₂ - calcium chloride
CO₂ - carbon dioxide
CoA - coenzyme A
CPT-1 - carnitine palmitoyltransferase 1
DAG - diacylglycerols
DCFDA - 2’,7’ –dichlorofluorescin diacetate
DMEM - Dulbecco’s modified eagle’s medium
DNA - deoxyribonucleic acid
ETC - electron transport chain
FADH₂ - flavin adenine dinucleotide
FBS - fetal bovine serum
GLUT - glucose transporter
H₂O - water
H₂O₂ - hydrogen peroxide
HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HSF1 - heat shock factor protein 1
HSP - heat shock protein
IKK - IκB kinase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>interleukin-1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>interleukin-6</td>
</tr>
<tr>
<td>IRS</td>
<td>insulin receptor substrate</td>
</tr>
<tr>
<td>IkBα</td>
<td>inhibitor of kappa B</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>monopotassium phosphate</td>
</tr>
<tr>
<td>MDA</td>
<td>malondialdehyde</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>magnesium sulfate</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MRS</td>
<td>magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondrial DNA</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-kappa B</td>
</tr>
<tr>
<td>O₂⁻•</td>
<td>superoxide radical</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer saline</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphatidylinositol-3-kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PPARγ</td>
<td>peroxisome proliferator-activated receptor gamma</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor-α</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\%
\mu g
\text{cm}
g
g
\text{g/mol}
h
\text{L}
\text{mg/L}
\text{min}
\text{mL}
\text{mm}
nM
\text{\degree C}
\text{rpm}
t
\text{\alpha}
\text{\beta}
\text{\gamma}
\delta
\Delta \Psi m
\theta
\kappa
\mu L

- percent
- microgram
- centimeter
- gram
- relative centrifugal force
- gram per mol
- hour
- liter
- milligram per liter
- minutes
- milliliter
- millimeter
- nano molar
- degree Celsius
- revolution per minute
- time
- alpha
- beta
- gamma
- delta
- mitochondrial membrane potential
- theta
- kappa
- microliter
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Certificate of analysis for human myotubes</td>
<td>215</td>
</tr>
<tr>
<td>B</td>
<td>List of reagents, materials and equipments</td>
<td>216</td>
</tr>
<tr>
<td>C</td>
<td>Effect of DMSO on glucose uptake of the cells</td>
<td>221</td>
</tr>
<tr>
<td>D</td>
<td>Standard curves</td>
<td>223</td>
</tr>
<tr>
<td>E</td>
<td>List of publications and paper presentations</td>
<td>229</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Type 2 diabetes mellitus is a devastating metabolic disorder characterized by insulin resistance and linked to various metabolic syndromes such as hormonal imbalance, hypertension, hyperglycemia and excess fatty acids in blood circulation [1]. The biological determinant such as genetic factors is involved in the pathogenesis of type 2 diabetes [2,3]. One of the first-degree relatives who had family history suffered from type 2 diabetes is conferred to have been three-fold increased risk of developing the disease [3–5]. On the other side of the scale, during the last few decades, the dramatic increases in incidence and prevalence rates of this disorder are intimately observed in developed and developing countries [6]. Undoubtedly, it is becoming increasingly difficult to ignore the influence of environmental factors in the onset of such disease. It can be signified that the concerted actions of both genetic and environmental factors such as malnutrition, psychological stresses, smoking, alcohol intake, aging and sedentary lifestyles are considerably linked together towards the development of type 2 diabetes and its co-morbidities [7].

In the following years, the roles of mitochondrial dysfunction-induced inflammation towards progression of insulin resistance, the forerunner of type 2 diabetes mellitus, have acquired important new dimensions [8–10]. Indeed, a
multitude of studies have discovered that the impairments of mitochondrial functions in skeletal muscles, liver and adipose tissues of both human and animal diseased subjects are etiologically associated with low-grade chronic inflammation [11,12]. In light of data indicating a pathophysiologic role of mitochondrial dysfunction in the occurrence of inflammation and insulin resistance, it is intriguing to hypothesize that the metabolic adaptations observed in these target tissues may affect the whole-body metabolism as a whole. To a smaller extent, it is now becoming clear that the derangements of cellular inflammatory mediators are inextricably linked to oxidative stress and reduced mitochondrial functions in insulin resistance state [9]. Although the molecular details of such signaling remain enigmatic, extensive data advocated that several destructive activators can lead to the intense oxidation of mitochondrial DNA, lipid and protein, resulting in the advancement of pro-inflammatory cytokines production via activation of nuclear factor-kappa B (NF-κB) signaling pathways in a number of metabolic tissues [8,11,13]. Thus, further therapeutic research targeting these regulatory pathways and its ameliorative mechanisms in these peripheral tissues may provide an insight towards effective treatments of such disorders.

The concerted understanding of the pathogenesis of type 2 diabetes and insulin resistance persists to drive personalized approaches to treatment with the minimized side effects. Aside from new synthesized drugs, the search for more effective and safe anti-diabetic agents continues to be an area of research interest to expand the therapeutic armamentarium. The use of active compounds derived from plants for use as drugs and medicines in alleviating various metabolic diseases is attracting increasing attention. Celastrol is an established active ingredient of natural quinone methide triterpenoid isolated from plant family Celastraceae (Tripterygium wilfordii Hook F.), the traditional Chinese medicine called “Thunder of God Vine”. This compound exhibits a number of biological activities including anti-oxidant, anti-inflammatory and anti-cancer properties [14]. The mechanistic actions of celastrol on the cellular targets are poorly understood, thereby impeding its application in clinical studies. Though, mounting evidences documented that celastrol has its own unique capability to inhibit NF-κB transcription factors and its downstream targets in various cell types without affecting DNA-binding activity of activator protein 1 (AP-1) [15–17]. Numerous studies to define its pharmacological mechanism showed that it
suppresses many steps of oxidative stress induction via NF-κB inhibition and modulates several inflammatory responses in peripheral tissues. Hence, subsequent experimental approaches in evaluating the attributive roles of this compound in hindering the activation of inflammatory pathways relative to mitochondrial functions and insulin signaling activities in metabolic diseases are of great interest [18]. On the basis of recent evidence, the search for more effective and safer natural anti-inflammatory agents with multiple ameliorative properties in enhancing insulin sensitivity should be recognized to be an important area of investigation.

1.2 Problem Statement

Mitochondria have a plethora of physiological and pathological functions in several signaling pathways including regulation of calcium (Ca2+) homeostasis, orchestration of apoptosis, and mitochondrial superoxide production [19]. Presumably through its ability to regulate innumerable biological functions, any perturbation in these central processes may greatly alters the cellular and systemic functions of the organisms with dire consequences. Correspondingly, the multitude of studies revealed that the specific perturbations of mitochondrial oxidative phosphorylation including changes in mRNA levels of mitochondrial markers, enzymatic activities and substrate oxidation are allied to the progression of insulin resistance, hepatic steatosis and type 2 diabetes [9,20–22]. Among these, it is now acceptable that the reduced oxidations of several important fuels such as glucose and fatty acids can exacerbate the disease along with impaired oxidative metabolism.

Accumulating evidence suggests that skeletal muscle, liver and adipose tissues are among the primary target tissues for various metabolic activities relative to cellular mitochondrial energy homeostasis and functions [9]. Functional disturbances in these tissues can, therefore, theoretically contribute to several metabolic impairments. The substantial evidence from previous literatures pointed out that the impaired activity of Complex I and III in the mitochondrial electron transport chain and reduced adenosine
triphosphate (ATP) synthase proteins are major contributors to oxidative stress in rat fatty liver and diabetic patients [22–24]. These tissues are significantly affected in the progression of insulin resistance and type 2 diabetes, advocating that these tissues can be one of the promising targets for development of new diabetes drugs [25]. It is also important to note that current modern therapies in this field are extensively engaged towards the development of new therapeutic intervention of the disease rather than prevention. The exploration of new preventive strategies involving food and drink-containing bioactive compounds remains a priority in order to mitigate the severity of such disease progression.

In recent years, emerging evidence has been gathered to support the notion that an increase of oxidative stress, mitochondrial damage and exacerbated inflammation are among the key features of obesity and type 2 diabetes [8,10]. The concerted actions of both acute and chronic inflammation with augmented superoxide free radicals productions can lead to further reduce the ATP generation, consequently impeding insulin signaling activities in some peripheral tissues. In that sense, activations of redox-sensitive inflammatory pathways via NF-κB and c-Jun N-terminal kinase (JNK) signaling by mitochondrial dysfunction have been postulated as an adaptive system of cellular stresses towards overwhelmed generation of reactive oxygen species (ROS) [26]. To a lesser extent, the chronic stimulation of these inflammatory pathways have been recognized as the “main culprits” that contribute to the progression of type 2 diabetes. Still, the precise mechanisms linking inflammation and mitochondrial dysfunction in metabolic tissues are still rather ambiguous. Although it is broadly appreciated that oxidative stress and inflammation lead to development of insulin resistance, the therapeutic interventions in modulating these mitochondrial dysfunction-induced inflammations that lead to insulin resistance are relatively scarce. Hence, further therapeutic strategy and prevention should be modulated towards inhibition of these detrimental pathways while boosting the metabolic pathways that promote enhanced cellular bioenergetics.

In the search for novel treatments, the present study was designed to establish the in-vitro disease model of mitochondrial dysfunction-mediated insulin resistance
and inflammation in insulin responsive cells using mitochondrial inhibitors. As mitochondrial dysfunction is strongly associated with the activation of NF-κB inflammatory signaling pathways in these disease models, the therapeutic treatment in modulating these pathways is imperatively needed. The use of celastrol in ameliorating such metabolic impairments related to mitochondrial dysfunction and inflammation in these *in-vitro* disease models was undertaken.

1.3 Objective

The central objective of this study was to investigate the functional roles of celastrol upon mitochondrial dysfunction-induced insulin resistance in insulin responsive cells.

1.4 Scopes of the Study

In order to achieve this objective, three research scopes were carried out:

1. To establish the *in vitro* disease models of mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells.
2. To evaluate the attributive roles of celastrol in modulating glucose uptake, inflammatory signaling, mitochondrial functions, lipolysis and intracellular lipid accumulation in these mitochondrial inhibitor-treated cells.
3. To explore the metabolic effects of celastrol on the phosphorylation sites of insulin signaling pathways, AMP-activated protein kinase (AMPK), protein kinase C (PKC) isoform activations and glucose transporters protein expression in the *in vitro* disease models.
1.5 Significances and Original Contributions of the Study

This investigation offers several contributions in the area of preventive and personalized medicine in treating mitochondrial dysfunction associated with insulin resistance and type 2 diabetes. The contributions are as follows:

i. To the best of current knowledge, this study is one of the first reports towards specific establishment of the \textit{in vitro} disease models for mitochondrial dysfunction-induced insulin resistance in insulin responsive cells. Currently, a number of studies in these areas are mainly focused using high level of glucose and free fatty acids in the media to induce insulin resistance in the cells. However, increasing evidence shows that the onsets of mitochondrial dysfunction, oxidative stress and peripheral insulin resistance in human and animal disease models are mainly triggered by the impaired mitochondrial respiratory chain activity (complex I and III) and reduced ATP-oxidative phosphorylation. Thus, there are compelling reasons to establish the \textit{in vitro} disease models through specific inhibition of mitochondrial respiratory chain activity and ATP synthase to mediate insulin resistance in the cells in order to unravel the exact metabolic associations between insulin resistance and impaired oxidative metabolism.

ii. Although mitochondrial dysfunction is strongly associated with inflammation, the roles of several key intracellular signaling cascades in regulating mitochondrial functions have not been fully characterized. Therefore, an exploration of \textit{in vitro} functional roles of celastrol, an anti-inflammatory compound, in the event of mitochondrial dysfunction-induced insulin resistance may provide beneficial insight on the novel understanding of the therapeutic intervention and cellular mechanisms underlying deteriorated mitochondrial functions, inflammation and insulin resistance.
iii. Celastrol has been reported to possess a potent anti-oxidant, anti-inflammatory and anti-cancer in a number of disease models. New emerging *in vivo* data suggest that celastrol exercises its beneficial properties through amelioration of insulin resistance, weight gain and attenuation of numerous detrimental occasions in animal models. In contrast to its emerging role in various animal models of such diseases, there is a paucity of information regarding the *in vitro* effects of celastrol on insulin sensitivity and no comparative studies that relate to the use of celastrol in treating inflammation with reduced mitochondrial functions in the disease settings. To date, the specific studies on the mechanistic actions of celastrol in the peripheral tissues relative to mitochondrial dysfunction and insulin resistance have not been verified, hindering the current status of celastrol usage at the clinical trials. Thus, there seems to be great potential of further therapeutic intervention to study these mechanistic actions. To this end, the present study contributes to the new findings on the use of celastrol against the development of mitochondrial dysfunction and insulin resistance.

1.6 Thesis Structure and Organization

This thesis is divided into five chapters. Chapter 1 covers a brief overview of the research backgrounds, problems statement, central objective, scopes of analyses, originality and significant contributions of the study.

Chapter 2 offers an overview of type 2 diabetes, insulin resistance and inflammation with the inclusion of the roles of mitochondrial dysfunction and NF-κB signaling pathways in the settings of such disorders. The literature also highlight the
current mechanistic roles of celastrol in the development of various metabolic diseases.

Chapter 3 covers the overall methodologies used for the cell-based assays in investigating and evaluating the attributive roles of celastrol on mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells.

Chapter 4 presents the comprehensive results and discussions on the ameliorative properties of celastrol treatment on glucose uptake activity, mitochondrial functions, lipolysis, lipid distribution, pro-inflammatory cytokines release, intracellular insulin signaling pathways and its downstream target proteins in these in vitro disease models. The general proposed mechanisms of celastrol in 3T3-L1 adipocytes, human skeletal muscle and C3A human liver cells were also presented.

Chapter 5 provides the overall summary of the research findings and specific future recommendations for the upcoming works.
REFERENCES

81. Gruzman, A., Babai, G., Sasson, S. Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on

