INTEGRATION OF THE FREE LIQUID MEMBRANE INTO ELECTROKINETIC SUPERCHARGING - CAPILLARY ELECTROPHORESIS FOR THE DETERMINATION OF PARAQUAT AND DIQUAT IN ENVIRONMENTAL WATER SAMPLES

CHUI MEI QI

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Philosophy

Faculty Science
Universiti Teknologi Malaysia

JUNE 2017
To my Family, for their patience, support, love, and for enduring the ups and downs during the completion of this thesis.
ACKNOWLEDGEMENT

I wish to express my deepest appreciation to all those who helped me, in one way or another, to complete this project. First and foremost I thank God almighty who provided me with strength, direction and purpose throughout the project. Special thanks to my project supervisor Dr. See Hong Heng, all his patience, guidance and support during the execution of this project. Through his expert guidance, I was able to overcome all the obstacles that I encountered in these enduring ten months of my project. In fact, he always gave me immense hope every time I consulted with her over problems relating to my project. I also wish to thanks the Ministry of Higher Education, Malaysia for MyMaster scholarship.
A new approach based on the integration of the free liquid membrane (FLM) into electrokinetic supercharging (EKS) was demonstrated to be a new powerful tool used in order to enhance online preconcentration efficiency in capillary electrophoresis (CE). A small plug of water immiscible organic solvent was used as a membrane interface during the electrokinetic sample injection step in EKS in order to significantly enhance the analyte stacking efficiency. The new online preconcentration strategy was evaluated for the determination of paraquat and diquat present in the environmental water samples. The optimised FLM-EKS conditions employed were as follows: hydrodynamic injection (HI) of 20 mM potassium chloride as leading electrolyte at 50 mbar for 75 s (3% of the total capillary volume) followed by the HI of tris(2-ethylhexyl) phosphate (TEHP) as FLM at a 1 mm length (0.1% of the capillary volume). The sample was injected at 10 kV for 360 s, followed by the HI of 20 mM cetyl trimethylammonium bromide (CTAB) as terminating electrolyte at 50 mbar for 50 s (2% of the total capillary volume). The separation was performed in 12 mM ammonium acetate and 30 mM NaCl containing 20% MeOH at +25 kV with UV detection at 205 nm. Under optimised conditions, the sensitivity was enhanced between 1500- and 1866-fold when compared with the typical HI at 50 mbar for 50 s. The detection limit of the method for paraquat and diquat was 0.15–0.20 ng/mL, with RSDs below 5.5%. Relative recoveries in spiked river water were in the range of 92–100%. A comparison was also made between the proposed approach with sole preconcentration of the field-enhanced sample injection (FASI) and EKS in the absence of the FLM.
Pendekatan baru yang berdasarkan kepada integrasi membran cecair bebas (FLM) dengan superpengecasan elektrokinetik (EKS) telah dibuktikan sebagai kaedah yang sangat berguna untuk meningkatkan keberkesanan prakepekatan dalam talian dalam elektroforesis kapilari (CE). Penyumbat yang terdiri daripada pelarut organik yang tak terlarutkan di dalam air telah digunakan sebagai membran antara muka dalam langkah penyuntikan sampel elektrokinetik ke dalam EKS supaya secara signifikan meningkatkan keberkesanan penindanan analit. Strategi prakepekatan dalam talian yang baru telah dinilai untuk penentuan parakuat dan dikuat di dalam sampel air alam sekitar. Keadaan FLM-EKS optimum yang telah digunakan adalah seperti yang berikut: suntikan hidrodinamik (HI) kalium klorida 20 mM sebagai elektrolit yang utama pada 50 mbar selama 75 saat (3% daripada jumlah keseluruhan isipadu kapilari) dan diikuti dengan HI menggunakan tris (2-etilheksil) fosfat (TEHP) sebagai FLM pada kepanjangan 1 mm (0.1% daripada jumlah isipadu kapilari). Sampel telah disuntik pada 10 kV selama 360 saat, diikuti dengan HI menggunakan setiltrimetilammonium bromida (CTAB) 20 mM sebagai elektrolit penamat pada 50 mbar selama 50 saat (2% daripada jumlah keseluruhan isipadu kapilari). Pemisahan telah dilakukan dalam ammonium asetat 12 mM dan natrium klorida (NaCl) 30 mM yang mengandungi 20% MeOH pada +25 kV dengan pengesanan UV pada 205 nm. Dalam keadaan optimum, kepekaan telah meningkat antara 1500 dan 1866 kali ganda berbanding dengan HI yang biasa pada 50 mbar selama 50 saat. Had pengesanan kaedah ini untuk parakuat dan dikuat adalah antara 0.15 – 0.2 ng/mL, dan RSD kurang daripada 5.5%. Pemulihan relatif sampel air sungai yang ditambah analit adalah dalam julat 92 - 100%. Satu perbandingan turut dilakukan antara pendekatan yang dicadangkan iaitu semata-mata prakepekatan suntikan sampel medan dipertingkatkan (FESI) dan EKS tanpa penglibatan FLM.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objectives of the Study 4
1.4 Scope of the Study 4
1.5 Significance of the Study 5

2 LITERATURE REVIEW

2.1 Capillary Electrophoresis 6
2.1.1 Principles of Capillary Electrophoresis 8
2.1.2 Sample Injection 9
2.1.3 Transport Processes in CE 10
2.1.4 Separation in CE 11
2.1.5 Detection Methods in CE 12

2.2 Online Preconcentration Techniques in CE 14
2.2.1 Field Amplify Sample Injection (FASI) 15
2.2.2 Field Amplified Sample Stacking (FASS) 16
2.2.3 Large Volume Sample Stacking (LVSS) 17
2.2.4 Transient Isotachophoresis (tITP) 19
2.2.5 Dynamic pH Junction 21
2.2.6 Sweeping 23
2.2.7 Micelle to Solvent Stacking 26

2.3 Hybrid Preconcentration 27
2.3.1 FESI-Sweeping 28
2.3.2 Dynamic pH Junction–Sweeping 29
2.3.3 FESI-MSS 30
2.3.4 Electrokinetic Supercharging Technique 31

2.4 Solvent Plug 36
2.4.1 Head Column-Field Amplified Sample Stacking (HC-FASS) 36
2.4.2 Free Liquid Membrane 38

2.5 Quaternary Ammonium Herbicides 40
2.5.1 Paraquat (PQ) 40
2.5.2 Diquat (DQ) 41
2.5.3 Methods Used to Determine PQ and DQ 42
3 RESEARCH METHODOLOGY

3.1 Chemicals and Reagents 46

3.2 Apparatus and Procedures 47

3.3 Separation of PQ and DQ by Using CZE 47

3.3.1 Typical Hydrodynamic Injection 48

3.3.2 Field Amplified Sample Injection (FASI) 49

3.3.3 Electrokinetic Supercharging (EKS) 50

3.3.4 Free Liquid Membrane – Electrokinetic Supercharging (FLM-EKS) 51

3.4 Method Validation 52

3.5 River Water Sample 53

4 RESULT AND DISCUSSION

4.1 Introduction 54

4.2 Separation of PQ and DQ by Using Typical HI 55

4.3 Separation of PQ and DQ by Using Online Preconcentration-CE-UV 59

4.3.1 Field Amplified Sample Injection (FASI) 60

4.3.2 Electrokinetic Supercharging (EKS) 64

4.3.3 Free Liquid Membrane-Electrokinetic Supercharging (FLM-EKS) 68

4.4 Comparison of Typical HI, FASI-CE, EKS-CE and FLM-EKS-CE Techniques By Using PQ and DQ as analytes 74

4.5 Analysis of River Water Samples 77

5 CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion 80
5.2 Future Direction

REFERENCES
Appendices A - B
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different Sample Matrix Determined By FASI Technique</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Different Sample Matrix Determined By Using Lvss Technique</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>FESI-Sweeping</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>FESI-MSS Technique</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Different Sample Matrix Determined By EKS Technique</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of Extraction Technique</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>Paraquat And Diquat Determined By Different Preconcentration Techniques</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Quantitative Results Of Typical HI For Herbicides In River Water Sample</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear Range, Regression Data, Limits Of Detection (LODs), Limits Of Quantification (LOQs), Method Repeatability, And Sensitivity Enhancement Factors (SEF) For Paraquat And</td>
<td>63</td>
</tr>
</tbody>
</table>
Diquat In Spiked River Water Samples By Using FASI-CE

4.3 Linear Range, Regression Data, Limits Of Detection (LODs), Limits Of Quantification (LOQs), Method Repeatability, And Sensitivity Enhancement Factors (SEF) For Paraquat And Diquat In Spiked River Water Samples By Using EKS-CE

4.4 Linear Range, Regression Data, Limits Of Detection (LODs), Limits Of Quantification (LOQs), Method Repeatability, And Sensitivity Enhancement Factors (SEF) For Paraquat And Diquat In Spiked River Water Samples By Using FLM-EKS-CE

4.5 Relative recoveries and repeatabilities for the paraquat and diquat extracted from spiked river water samples using optimum FLM-EKS-CE-UV
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic Representation of Electrophoresis</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic Diagram of CE</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic Diagram of EOF</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic Diagram of CZE</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>The Window of A Capillary</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic Diagram of tITP</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic Diagram of Dynamic pH Junction</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic Diagram of Sweeping</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic Diagram of Micelle to Solvent Stacking</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Procedures of tITP</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic Diagram of head-column FASS (HC-FASS)</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic Diagram of FLM</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Structure of Paraquat and Diquat</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic Diagram of Typical HI</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic Diagram of FASI</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic Diagram of EKS</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic Diagram of FLM-EKS-CE technique</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Separation of Paraquat And Diquat With Typical Hydrodynamic Injection–CE-UV By Using Different Buffer Concentration</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Separation of Paraquat And Diquat With Typical Hydrodynamic Injection–CE-UV With Different Time</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Separation of Paraquat And Diquat With Typical Hydrodynamic Injection–CE-UV With Different Pressure</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of The Injection Voltage At A Fixed Time of 180 S And Injection At Voltage</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects Of The Injection Voltage At A Fixed Time of 180 S (A) And Injection Time At A Fixed Voltage of 10 kV (B) On Plate Number, Peak Area, Peak Height And Peak Width For Paraquat In The FASI-CE-UV System</td>
<td>62</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Separation of Paraquat And Diquat With 1% of CTAB (A), 2% of CTAB (B) And 3% of CTAB (C)</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Separation of Paraquat And Diquat With 0% of KCl (A), 1% of KCl (B), 2% of KCl (C), 3% of KCl (D) And 4% of KCl (E)</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Effects of Different Types of FLM Injections On The Plate Number, Peak Area, Peak Height And Peak Width For Paraquat In The FLM-EKS-CE-UV System</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Drawback Of Flms. 0% of FLM Drawback (A), 1% of FLM Drawback (B), 2% of FLM Drawback (C), 3% of FLM Drawback (D), 4% of FLM Drawback (E)</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Separation of Paraquat And Diquat With Typical Hydrodynamic Injection–CE-UV (A), FASI-CE-UV (B), EKS-CE-UV (C), And FLM-EKS-CE-UV</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Electropherograms For The Separation Of Paraquat And Diquat In (A) Blank River Water Sample And (B) Spiked River Water Sample Containing 10 ng/mL After A Ten-Fold Dilution</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-Ac</td>
<td>Ammonium Acetate</td>
</tr>
<tr>
<td>BGE</td>
<td>Background Electrolytes</td>
</tr>
<tr>
<td>C^4D</td>
<td>Contactless Conductivity Detector</td>
</tr>
<tr>
<td>CGE</td>
<td>Capillary Gel Electrophoresis</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium Bromide</td>
</tr>
<tr>
<td>CZE</td>
<td>Capillary Zone Electrophoresis</td>
</tr>
<tr>
<td>DI</td>
<td>Ultrapure Deionised</td>
</tr>
<tr>
<td>DQ</td>
<td>Diquat</td>
</tr>
<tr>
<td>EE</td>
<td>Three-Phase Electroextraction</td>
</tr>
<tr>
<td>EKI</td>
<td>Electrokinetic Injection</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assays</td>
</tr>
<tr>
<td>EME</td>
<td>Electro-Membrane Extraction</td>
</tr>
<tr>
<td>EOF</td>
<td>Electro-Osmotic Flow</td>
</tr>
<tr>
<td>FASI</td>
<td>Field Amplified Sample Injection</td>
</tr>
<tr>
<td>FASS</td>
<td>Field Amplified Sample Stacking</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>HC-FASS</td>
<td>Head Column Field-Amplified Sample Stacking</td>
</tr>
<tr>
<td>HCB</td>
<td>High Conductivity Buffer</td>
</tr>
<tr>
<td>HI</td>
<td>Hydrodynamic Injection</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>LVSS</td>
<td>Large Volume Sample Stacking</td>
</tr>
<tr>
<td>LE</td>
<td>Leading Electrolyte</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>LOQs</td>
<td>Limit of Quantitation</td>
</tr>
<tr>
<td>LLE</td>
<td>Liquid-Liquid Phase Extraction</td>
</tr>
<tr>
<td>LPME</td>
<td>Liquid-Phase Micro-Extraction</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MEKC</td>
<td>Micellar Electrokinetic Chromatography</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MSS</td>
<td>Micelle To Solvent Stacking</td>
</tr>
<tr>
<td>NACE</td>
<td>Nonaqueous Capillary Electrophoresis</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NPOE</td>
<td>2-Nitrophenyl Octyl Ether</td>
</tr>
<tr>
<td>PQ</td>
<td>Paraquat</td>
</tr>
<tr>
<td>PSP</td>
<td>Pseudostationary Phase</td>
</tr>
<tr>
<td>SEF</td>
<td>Sensitivity Enhancement Factor</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SPME</td>
<td>Solid-Phase Micro-Extraction</td>
</tr>
<tr>
<td>TE</td>
<td>Terminating Electrolyte</td>
</tr>
<tr>
<td>TEHP</td>
<td>Tris(2-Ethylhexyl) Phosphate</td>
</tr>
<tr>
<td>tITP</td>
<td>Transient Isotachophoresis</td>
</tr>
<tr>
<td>μ-EME</td>
<td>Micro-Electromembrane Extraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[k \] - Retention factor
\[kV \] - Kilovolts
\[mL \] - Millilitre
\[ng \] - Nanogram
\[r^2 \] - Repeatability
\[s \] - Seconds
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publication</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>List of Presentation Related to this Study</td>
<td>121</td>
</tr>
</tbody>
</table>
1.1 Background of Study

Capillary electrophoresis (CE) is electrophoresis that occurs in a capillary tube [1]. Accomplishments in CE began from the late 1800s. In the experiment, a glass U-tubes and trials of both gel and free solutions was used [2]. According to Arnes Tiselius, in 1930, he successfully shows the ability of electrophoresis by separate of proteins in free solutions [3]. His work went overlooked until the capillaries were introduced by Hjerten proposed in the 1960s. Nonetheless, this technique was not widely recognised until Jorgenson and Lukacs successfully published some papers which showing the ability of CE to employ a capillary in electrophoresis solves some common problems in traditional electrophoresis. For instance, the surface to volume ratio successfully increases by decrease the dimensions of the capillaries, which avoids the problem of overheating by high voltages. The increased efficiency and the remarkable separating capabilities of CE encouraged a raising interest in the scientific community to implement additional growths in the technique.

The online sample preconcentration is a practical method to enhance the concentration sensitivity of the detector by using only a small sample volume requirement in CE. As discussed in several reviews, there are a lot of online sample preconcentration techniques that have been proposed [4-7]. Online sample
preconcentration techniques can easily improve the detection sensitivity of CE when compared with off-line pretreatments. Online sample preconcentration only need to inject a large volume of sample solution alone which means the sample without alteration of the instrument, and the analyte can be focused into a smallest amount of volume inside the capillary.

Besides, recently, the combination of two or more online preconcentration methods has been implemented in various CE applications. The synergistic effect of two or more online preconcentration methods leads to significant enhancements regarding detection sensitivity compared to sole online preconcentration. For example, Hirokawa et al. [8] introduced a powerful and noteworthy online preconcentration method featuring the combination of field-amplified sample injection (FASI) and t-ITP, termed electrokinetic supercharging (EKS). In the EKS, analytes are introduced electrokinetically between the leading electrolyte (LE) and the terminating electrolyte (TE) prior to the capillary zone electrophoresis (CZE).

The introduction of a solvent plug prior to sample injection is an ordinary practice in CE analyses. Zhang and Thormann [9] described head column field-amplified sample stacking (HC-FASS), in which a low conductivity solvent plug was introduced prior to the electrokinetic injection (EKI) of the analytes. This method yielded an improved sensitivity enhancement with reproducible results as the analytes introduced into the capillary under the amplified electric field showed rapid stacking at the boundary between the low conductivity solvent plug and the running buffer.

Later, Kubáň and Boček [10, 11] reported an interesting integration of the immiscible organic solvent plug, described as a FLM into a micro-electromembrane extraction (µ-EME) approach. The FLM acts as a selective phase interface between the aqueous donor and the acceptor solution and facilitates the electrically induced transfer of charged species in the transparent tubing. This offline three-phase extraction showed feasibility in efficiently retreating samples with complex matrices, e.g. high concentrations of salts and
proteins and allowing the resulting acceptor solutions to be analyzed directly using CE techniques. Various applications, including the quantification of basic drugs in undiluted biological samples [10], as well as perchlorate in drinking water samples [12], were successfully implemented. In the present work, the unique features of FLM were adopted and directly integrated into the existing EKS method in order to further enhance the detection sensitivity in CE.

On the other hand, the herbicides were used aggressively in agriculture will caused a serious health risks and hazards in animal and human life. Some herbicides are unrelenting organic pollutants. Hence, they will be absorbed into the soil and accumulate in the trophic food chain. However, the use of herbicides is important in modern agricultural production in order to control weeds.

Paraquat (PQ) and diquat (DQ) are toxins and often cause poisoning [13]. Hence, these two herbicides are on the priority list of pesticides for a monitoring program in the USA’s national pesticide survey. Quats can be detected in water, soil and biological samples. However, due to the low concentration of analytes in environmental and biological samples, a preconcentration step is necessary before the samples can be detected using capillary zone electrophoresis. According to the United States Environmental Protection Agency, the maximum contaminant level is 3 ppb of paraquat and 20 ppb of diquat [14].

1.2 Problem Statement

The determination of paraquat and diquat using CE coupling with various offline preconcentration techniques has been focused on recently. However, to the best of our knowledge, there is still no single step high sensitivity “sample-to-answer” analysis protocol available. The use of herbicides is important in modern agricultural production in order to control weeds. Due to the low concentration of herbicides present in environmental water samples, a preconcentration method is needed before these analytes can be detected by CE. Many of the existing
preconcentration methods are carried out offline in order to reduce systematic mistakes. Nevertheless, these procedures are normally tedious and time-consuming. Therefore, a new analytical approach that combines a preconcentration method with CE is desired that allows for the direct analysis of environmental water samples without the need for any sample pretreatment step.

1.3 Objectives

The objectives of this study are:

1. To evaluate the performance of conventional preconcentration techniques coupled with CE in determining paraquat and diquat levels in river water samples.
2. To develop and investigate the performance of a new online preconcentration technique by introducing an FLM plug into the existing EKS method coupled to CE for the determination of paraquat and diquat in river water samples.
3. To validate and compare the newly established FLM-EKS-CE technique with conventional online preconcentration techniques for the determination of paraquat and diquat in river water samples.

1.4 Scopes of Study

In this study, a new direct coupling of a EKS technique with the unique feature of an FLM to capillary zone electrophoresis was demonstrated to determine cationic herbicides in environmental water. Several important parameters, including background electrolyte concentration, injection mode and the effect of separation length were optimized and thoroughly investigated using conventional CE instrumentation.

Buffer system optimization to separate the targeted herbicides using the conventional CE method was carried out by testing different buffer concentrations.
Additionally, the FASI optimization parameters such as the injection time and injection voltage were investigated. EKS optimization, such as the type of leading electrolyte (LE) and terminating electrolyte (TE), the plug length of the LE and TE and the sample injection time were tested. For the EKS-FLM technique, the type of FLM, the plug length of the FLM and the drawbacks of FLM were investigated. Finally, the new method was validated and subsequently applied to the rapid determination of environmental water samples.

1.5 Significance of Study

Paraquat and diquat are extensively used as agricultural herbicides to manage the weeds of crop and aquatic. Hence, the pollution of drinking and environmental water with paraquat and diquat was trusted as a risk for liver, heart, lung and kidney diseases [15]. Besides, diquat and paraquat are poisonous to algae, fish and other aquatic organisms such as crayfish and insects. When humans consume these foods, this might have negative effects on the human body.

The aim of this work was to develop a rapid and cost-effective method for the rapid and direct determination of paraquat and diquat using CE with integration of the unique features of FLM with EKS to further enhance the detection sensitivity of PQ and DQ, which are normally present at ultra-trace levels in environmental water samples. This will significantly improve the safety of our agricultural products and ensure the high quality of the water supply for all people, and subsequently improve the quality of health among inhabitants. This study is also expected to create a new sample-to-answer analytical approach without any offline sample pretreatment steps, which can be directly employed for a wider range of applications including food and pharmaceutical analysis.
REFERENCES

48. Puig, P., F. Borrull, M. Calull, F. Benavente, V. Sanz-Nebot, J. Barbosa, and C. Aguilar. Improving the sensitivity of the determination of ceftiofur by capillary electrophoresis in environmental water samples: In-line solid phase

106. Dawod, M., M.C. Breadmore, R.M. Guijt, and P.R. Haddad. Electrokinetic supercharging-electrospray ionisation-mass spectrometry for separation and

115. Meighan, M.M., M. Dawod, R.M. Guijt, M.A. Hayes, and M.C. Breadmore. Pressure-assisted electrokinetic supercharging for the enhancement of non-

