SEISMIC HAZARD ASSESSMENT OF PENINSULAR MALAYSIA BASED ON NEW GROUND-MOTION PREDICTION EQUATIONS FOR SUBDUCTION EARTHQUAKES

ABDOLLAH VAEZ SHOUSHTARI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

FEBRUARY 2016
Librarian
Perpustakaan Sultanah Zanariah
UTM, Skudai
Johor

Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

SEISMIC HAZARD ASSESSMENT OF PENINSULAR MALAYSIA BASED ON NEW GROUND-MOTION PREDICTION EQUATIONS FOR SUBDUCTION EARTHQUAKES

BY

ABDOLLAH VAEZ SHOUSHTARI

Please be informed that the above mentioned thesis entitled “SEISMIC HAZARD ASSESSMENT OF PENINSULAR MALAYSIA BASED ON NEW GROUND-MOTION PREDICTION EQUATIONS FOR SUBDUCTION EARTHQUAKES” be classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are as follow:

(i) The proposed new empirical Ground-Motion Prediction Equations (GMPEs) have not published yet.

(ii) The products of the thesis as the probabilistic seismic hazard maps as well as the recommended elastic and design acceleration response spectra for the Peninsular Malaysia region may be used for Malaysian National Annex for Eurocode 8.

Thank you.
Sincerely Yours,

Name of Supervisor: Professor Dr. Azlan Bin Adnan,
Faculty of Civil Engineering, UTM, 81310 Skudai, Johor
07-5531695

[Signature]

PROF. DR. AZLAN ADNAN
Professor of Structural Earthquake Engineering
Department of Structure and Materials
Faculty of Civil Engineering
Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Johor, Malaysia
DEDICATION

To my beloved father, mother, wife, and sisters

Thanks for all the love, support, motivation and always being there whenever I need you
ACKNOWLEDGMENT

Praise to God almighty, the compassionate and the merciful, who has created mankind with wisdom and given them knowledge.

At first, I would like to thank my main supervisor and advisor, Prof. Dr. Azlan bin Adnan, for his kind encouragement, earnest guidance, appreciative advices, and friendly motivations. I also wish to thank my co-supervisor Prof. Dr. Mehdi Zare from the International Institute of Earthquake Engineering and Seismology (IIEES) in Tehran, Iran, for his grateful advices and impetus. Without continuous support from my main supervisor and my co-supervisor, this research would not be the same as presented in this thesis.

I wish to thank Universiti Teknologi Malaysia (UTM) and Ministry of Science, Technology, and Innovation (MOSTI) of Malaysia for their financially supporting under the project with Vote number 4S043.

I would like to thank the National Research Institute for Earth Science and Disaster Prevention (NIED), Malaysian Metrological Department (MMD), Building and Housing Research Center (BHRC), and the National Environment Agency (NEA) seismological networks of Japan, Malaysia, Iran and Singapore, respectively for their contribution in providing the ground-motion data used in the present study. I extend my thanks to U.S. geological survey (USGS) and the international seismological center (ISC) for providing the historical earthquake data used in this research.

I also wish to express my sincere thanks to Prof. Dr. David M. Boore for his kind responses to many enquiries about the use of his Time Series Processing Programs (TSPP) for processing the ground-motion recordings used in this study.

In second, I would like to thank the Dean, head of structure and materials department and all lecturers and staff of the faculty of civil engineering UTM for the facilities provided by them that support me to do this research. I extend my sincere thanks to the members of engineering seismology and earthquake engineering research (e-SEER) group, specially, Dr. Mohammadreza Vafaei, Dr. Noor Sheena Herayani Binti Harith, Dr. Mariyana Aida Ab Kadir, Dr. Hamid Pesaran Behbahani, Reza Aghlara, Dr. Hossein Shad, Sk Muiz Bin Sk Abd Razak, and Mohd Zamri Ramli, who has provided me the supports at various occasions. In addition, I thank Dr. Suhatril Meldi (Universiti of Malaya), Dr. Nabilah Abu Bakar (Putra Universiti), and Dr. Danial Jahed Armaghani (Universiti Teknologi Malaysia) for his kind contributions. I also thank Mr. Jack Wynker and his colleagues for their contributions by editing the thesis to ensure the appropriateness of the language.

Last but not least, I want to express grateful thanks to my family; my father and mother, my father and mother-in-law, my dear wife, and my sisters and brother-in-law for their unlimited supports. Without their consistent supports and encouragement, it was impossible for me to accomplish this work.
ABSTRACT

On the basis of regional economic growth, most cities in Southeast Asia have seen rapid development over the past forty years. In general, seismic design has not been taken into account in Southeast Asia regions with low to moderate seismicity, as these areas have not experienced disaster caused by earthquakes. Peninsular Malaysia is an example of these regions. Although the main cities of this region are located in a low seismicity area, they may be vulnerable to distant earthquakes generated by active seismic sources located more than 300 km along and off the west coast of Sumatra Island. Since 2007, several earthquakes due to the local faults within the Peninsular Malaysia region with the maximum moment magnitude (M_{max}) of 4.4 have occurred. Even though the local earthquakes were small in size, the epicenters were as close as 20 km to Kuala Lumpur, which could have remarkable effects on seismic hazard of the region. After understanding this fact that Peninsular Malaysia could be affected by either the large magnitude, distant Sumatran earthquakes or the local earthquakes, an appropriate seismic hazard maps and a set of desirable elastic response spectral acceleration for seismic design purposes would be required. Despite the earlier seismic hazard studies for this region, which were proposed based on only the far-field Sumatran earthquakes, this study has presented new maps and elastic response spectra using the combination of the local and Sumatran seismic sources. Ground-Motion Prediction Equations (GMPEs) are the main inputs in any seismic hazard assessment. This study has attempted first to derive new empirical spectral GMPEs for distant subduction earthquakes (the both interface and intraslab events). The proposed GMPEs are for peak ground acceleration (PGA), peak ground velocity, and 5% damped pseudo-acceleration for four site classes (i.e., National Earthquake Hazards Reduction Program (NEHRP) site class B, C, D, and E, corresponding to rock, stiff soil, medium soil, and soft soil site conditions). The response spectra database has been compiled from hundreds of ground-motion recordings from subduction earthquakes of moment magnitude (M) 5.0 to 9.1, hypocentral distance (R_{hyp}) of 120 to 1300 km and M 5.0 to 7.7, R_{hyp} 120 to 1400 km for interface and intraslab events, respectively. The probabilistic seismic hazard maps for PGA are presented over a 12.5 km grid for 10% and 2% Probabilities of Exceedance (PE) in 50 years corresponding to 475 and 2,475 years return periods, respectively. The proposed new hazard maps give the expected ground motions based on the extended earthquake catalogue, consideration of the both Sumatran and local seismic sources, upgraded seismic source parameters, and more compatible GMPEs. The maximum estimated PGAs on rock site condition across the Peninsular Malaysia region for 10% and 2% PE in 50-year are 11 %g and 20 %g, respectively. In final, the horizontal elastic and design acceleration response spectra following the principles of Eurocode 8, on four soil site conditions with soil factors of 1, 1.45, 2, and 2.35 for rock, stiff soil, medium soil, and soft soil ground types, respectively, have been presented for the Peninsular Malaysia region based on the computed uniform hazard spectra with 475 and 2,475 years return period.
ABSTRAK

Atas dasar pertumbuhan ekonomi serantau, kebanyakan bandar di Asia Tenggara telah pesat membangun sejak empat puluh tahun yang lalu. Secara umumnya, reka bentuk sismik tidak diambil kira di rantau Asia Tenggara yang mempunyai aktiviti sismik berskala rendah dan sederhana, kerana rantau tersebut tidak pernah mengalami bencana yang disebabkan oleh gempa bumi. Rantau Semenanjung Malaysia merupakan salah satu contoh sedemikian. Walaupun kebanyakan bandar utama terletak di kawasan sismik berskala rendah, rantau tersebut mungkin terdedah kepada gempa bumi berjarak jauh yang dijana oleh sumber sismik berskala aktif terletak lebih dari 300 km di sepanjang mahupun di luar pantai barat Pulau Sumatera. Sejak tahun 2007, beberapa gempa bumi yang berpunca daripada sesar tempatan di rantau Semenanjung Malaysia dengan magnitud maksimum (M_{max}) berukuran 4.4 telah berlaku. Walaupun gempa bumi tempatan berskala kecil, jarak pusat gempa adalah hampir 20 km dari Kuala Lumpur dan hal ini menunjukkan bahawa pendedahan kepada bencana sismik membawa kesan yang tinggi. Berikut pengetahuan ini, Semenanjung Malaysia boleh terjejas disebabkan gempa bumi berskala besar dan berjarak jauh yang berpunca dari Sumatera dan gempa bumi tempatan, oleh itu peta bencana sismik dan tindak balas pecutan spektrum anjal untuk tujuan reka bentuk sismik adalah diperlukan. Disamping kajian bencana sismik sebelum ini, yang telah dibuat berdasarkan gempa bumi berjarak jauh dari Sumatera, kajian ini telah menyediakan peta baru dan spektrum gerak balas elastik dengan menggunakan gabungan sumber sismik tempatan dan Sumatera. Persamaan ramalan gerakan tanah (GMPEs) merupakan intipati utama dalam mana-mana penilaian bencana sismik. Kajian pertama adalah untuk memperolehi empirikal spektrum GMPEs yang baru untuk gempa bumi tempatan berjarak jauh dari Sumatera, dan gempa bumi tempatan (untuk kedua-dua tujahan permukaan dan dalaman). GMPEs yang dicadangkan adalah untuk tanah pecutan puncak (PGA), halaju tanah pecukan, dan 5% teredam pseudo-pecutan pada empat klas (berdasarkan National Earthquake Hazards Reduction Program (NEHRP) klas B, C, D, dan E, masing-masing bersamaan dengan batu, tanah keras, tanah keras sederhana, dan keadaan tapak tanah lembut). Pangkalan data spektrum gerak balas telah dikumpulkan daripada ratusan data gelinciran tanah daripada gempa bumi benam dengan magnitud (M) 5.0-9.1, jarak pusat tumpuan (R_{hyp}) daripada 120 hingga 1300 km dan M 5.0-7.7, R_{hyp} 120 hingga 1400 km, masing-masing pada tujahan permukaan dan dalaman. Kebarangkalian peta bencana sismik untuk PGA yang dibahagikan kepada grid-grid berjarak 12.5 km untuk 10% dan 2% kebarangkalian terlampau (PE) dalam tempoh 50 tahun masing-masing dengan 475 dan 2,475 tahun tempoh ulangan. Peta bencana sismik yang baru untuk gelinciran tanah adalah berdasarkan katalog gempa bumi lanjutan dengan mengambil kira kedua-dua gempa bumi dari Sumatera dan sismik tempatan, parameter sumber sismik yang dinaik taraf dan GMPEs yang lebih serasi. Anggaran maksimum PGA pada batuan di seluruh rantau Semenanjung Malaysia untuk 10% dan 2% PE pada 50 tahun masing-masing adalah 11 %g dan 20 %g. Akhir sekali, anjalan mendatar dan tindak balas pecutan spektrum anjal dengan merujuk kepada prinsip-prinsip Eurocode 8 untuk empat jenis tapak tanah dengan faktor 1, 1.45, 2, dan 2.35 masing-masing untuk batu, tanah keras, tanah sederhana, dan lembut jenis tanah tanah telah dibentangkan bagi rantau Semenanjung Malaysia berdasarkan spektrum bencana seragam pada 475 dan 2,475 tahun tempoh ulangan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 General
1.2 Background and Problem Statement
1.3 Objectives of the Study
1.4 Scope and Limitations
1.5 Significance of the Study
1.6 Research Methodology
1.7 Orientation of Thesis

2 LITERATURE REVIEW
2.1 Introduction
2.2 Seismology and Earthquake Genesis
2.2.1 Seismic Waves
2.2.2 Earthquake Epicenter
2.2.3 Earthquake Size
2.3 Site Classification

2.4 Ground-Motion Prediction Equations (GMPEs)
2.4.1 Existing GMPEs for Peninsular Malaysia
2.4.2 Overview of Global and Overseas Regional GMPEs

2.5 Seismic Hazard Assessment

2.6 Peninsular Malaysia and its Surrounding Tectonic Settings
2.6.1 Sumatra Island Tectonic Setting
2.6.2 Local Tectonic Setting of Peninsular Malaysia

2.7 Previous PSHA Studies for Peninsular Malaysia

2.8 Elastic and Design Response Spectrum
2.8.1 Elastic and Design Response Spectrum of Eurocode 8 (EC8)

2.9 Earthquake Engineering Studies in Malaysia
2.9.1 Seismic Guideline Proposed by Jabatan Kerja Raya (JKR) 2007
2.9.2 Earthquake Loading Model for Peninsular Malaysia Recommended by the Institution of Engineers, Malaysia (IEM)
2.9.2.1 Recommended Acceleration Response Spectra for Peninsular Malaysia in 2013
2.9.2.1 Recommended Acceleration Response Spectra for Peninsular Malaysia in 2014

2.10 Summary

3 GROUND-MOTION PREDICTION EQUATIONS (GMPEs)

3.1 Introduction
3.2 Methodology
3.3 Ground-Motion Databases for Regression Analysis
3.4 Data and Resources
3.5 Attenuation Model and Regression Analysis
3.5.1 Evaluation of Regression Results 83
3.6 Discussion 87
3.6.1 Evaluation of the Present Study and Existing Subduction GMPEs 88
3.6.2 Response Spectral Accelerations of the Sumatran Subduction Earthquakes 104
3.7 Summary 109

4 SEISMIC HAZARD ASSESSMENT 112
4.1 Introduction 112
4.2 Methodology 113
4.3 Earthquake Catalogue 115
4.3.1 Magnitude Conversion 117
4.3.2 Declustering 118
4.3.3 Completeness Analysis 119
4.4 Data and Resources 121
4.5 Earthquake Source Modelling 122
4.5.1 Sumatran Fault (SF) Zone 125
4.5.2 Sumatran Subduction Interface (SSIF) and Intraslab (SSIS) Zones 126
4.5.3 Local Faults (LF) 127
4.6 Seismic Source Parameters 128
4.7 Ground-Motion Prediction Equations (GMPEs) 131
4.8 Probabilistic Seismic Hazard Assessment 134
4.9 Logic Tree 136
4.10 PSHA Results 139
4.11 Uniform Hazard Spectrum (UHS) 142
4.12 Elastic and Design Acceleration Response Spectra for Peninsular Malaysia 145
4.13 Discussion 147
4.13.1 Evaluation of the Resulted Macrozonation Maps 148
4.13.2 Evaluation of the Proposed Elastic and Design Response Spectral Acceleration 155
4.14 Summary 160
CONCLUSIONS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Conclusions</td>
<td>163</td>
</tr>
<tr>
<td>5.1.1 Ground-Motion Prediction Equations (GMPEs)</td>
<td>163</td>
</tr>
<tr>
<td>5.1.2 Macrozonation Maps</td>
<td>165</td>
</tr>
<tr>
<td>5.1.3 Elastic and Design Response Spectral Acceleration</td>
<td>166</td>
</tr>
<tr>
<td>5.2 Recommendations</td>
<td>167</td>
</tr>
</tbody>
</table>

REFERENCES

- Appendices A-C | 184-196 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Modified Mercalli Intensity (MMI) scale of 1931</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Site classification identified by NEHRP</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(Building Seismic Safety Council, 2003)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Site classification identified by Eurocode 8</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(BS EN 1998-1:2004)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Summary characteristics of the existing GMPEs for Peninsular Malaysia</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary characteristics of global and overseas regional GMPEs for</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>active crustal regions (ACRs)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Summary characteristics of global and overseas regional GMPEs for</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>stable continental regions (SCRs)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Summary characteristics of global and overseas regional GMPEs for</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>subduction zones (SZs)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Values of the parameters describing the recommended Type 1 horizontal</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>elastic acceleration response spectrum</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Values of the parameters describing the recommended Type 2 horizontal</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>elastic response spectrum</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Values of the parameters describing the recommended elastic</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>acceleration response spectra derived for Peninsular Malaysia by JKR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007 guideline</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Calculated parameters for Penang, Klang, and Melaka cities</td>
<td>62</td>
</tr>
<tr>
<td>2.12</td>
<td>Values of the parameters describing the elastic displacement</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>response spectrum</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Response spectral parameters for Peninsular Malaysia on three soil</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>types</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>The reference and design PGA (in unit g) together with the important</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>factors considered for the entire Peninsular Malaysia</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Subduction interface earthquakes used in the present study</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Subduction intraslab earthquakes used in the present study</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Site class definitions used in the present study and the approximate</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>corresponding Eurocode 8 site classes</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Regression coefficients for distant subduction interface GMPEs</td>
<td>83</td>
</tr>
</tbody>
</table>
3.5 Regression coefficients for distant subduction intraslab GMPEs 84
3.6 Summary characteristics of this study, global, existing Peninsular Malaysia, and overseas regional GMPEs for subduction earthquakes 89
3.7 Factors used to convert either hard rock or soil amplitudes to equivalent values for NEHRP B (rock site) for subduction interface earthquakes 97
3.8 Factors used to convert either hard rock or soil amplitudes to equivalent values for NEHRP B (rock site) for subduction intraslab earthquakes 98
3.9 List of ground-motion recordings in Peninsular Malaysia due to 12 main Sumatran subduction interface earthquakes 105
3.10 List of ground motions recorded at long distances in Peninsular Malaysia due to five Sumatran/Java subduction intraslab earthquakes 105
4.1 Magnitude conversion equations used in the present study 118
4.2 Data from the provided local earthquake catalogue 120
4.3 Seismic source parameters of the Sumatran and local faults 131
4.4 Descriptions of the selected spectral GMPEs for PSHA of Peninsular Malaysia 133
4.5 Comparison between the PSHA results by Adnan et al. (2006) and the developed Excel application 136
4.6 PGA values on rock site condition for several main cities in Peninsular Malaysia 141
4.7 Soil site conditions considered by this study in reference to the site classification proposed by NEHRP and the approximate corresponding Eurocode 8 site classes 143
4.8 Calculated soil factor (S) parameter for the considered soil site conditions 147
4.9 Values of the parameters describing the recommended elastic RSA for Peninsular Malaysia 147
4.10 Recommended PGA values with 10 and 2% PE in 50 years on rock site for Kuala Lumpur by the present study, JKR-2007, and IEM-2014 156
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Total collapse of a 22-story steel frame building in Pino Suárez</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Complex during the Michoacán earthquake that affected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mexico City in 1985 (Villaverde, 2009)</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Collapse of middle rise building during the Chi-Chi earthquake</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>in 1999, Taiwan (Villaverde, 2009)</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Settlement of a building in Mexico City due to ground subsidence</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>phenomenon during the 1985 Michoacán earthquake (Villaverde, 2009)</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>The overall schematic methodology of the present study</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Structure of the earth (U.S. Geological Survey, 1999b)</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>The major tectonic plates of the earth together with the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mid-oceanic ridges, trenches, and transform faults. The arrows show</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>the general directions of their movement (Fowler, 1990)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>The three types of plate boundaries (U.S. Geological Survey, 1999a)</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Main types of faulting mechanisms (Villaverde, 2009)</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Earthquake-generation mechanism based on the elastic rebound</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>theory (Villaverde, 2009)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Characteristics of an earthquake to describe its location together</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>with the geometric specifications of a fault (Villaverde, 2009)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Illustration of motion due to body waves. (a) p-wave and</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>(b) s-wave (Bolt, 1993)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Illustration of motion due to surface waves. (a) Rayleigh wave</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>and (b) Love wave (Bolt, 1993)</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Located earthquake epicenter by intersection of three circles with</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>center in each seismograph and radius equal to hypocentral distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Villaverde, 2009)</td>
<td></td>
</tr>
</tbody>
</table>
2.10 The relationship between the different magnitude scales and their saturation points. The magnitude scales are M or M_W (moment magnitude), M_L (Richter or local magnitude), M_S (surface-wave magnitude), m_b (short-period body-wave magnitude), and M_{JMA} (Japanese Meteorological Agency magnitude based on long-period waves to determine a local magnitude scale) (Idriss, 1985).

2.11 Tectonic setting of Sumatra Island, together with the epicenters of 3 recent significant Sumatran subduction interface earthquakes – modified figure from Megawati and Pan (2010).

2.12 Local tectonic framework of Peninsular Malaysia (Minerals and Geoscience Department Malaysia, 2012).

2.13 PGA values with 10 and 2% PE in 50 years on rock site for Kuala Lumpur calculated by the previous PSHA studies for Peninsular Malaysia.

2.14 Shape of elastic acceleration response spectrum.

2.15 Recommended Type 1 horizontal elastic acceleration response spectra for ground types A to E with 5% damping.

2.16 Recommended Type 2 horizontal elastic acceleration response spectra for ground types A to E with 5% damping.

2.17 Seismic hazard map (PGA) with 10% PE in 50 years (RP 475 years) on rock site condition for Peninsular Malaysia due to far-field Sumatran earthquakes by Adnan et al. (2006) presented in JKR 2007 guideline.

2.18 Seismic hazard map (PGA) with 2% PE in 50 years (RP 2,475 years) on rock site condition for Peninsular Malaysia due to far-field Sumatran earthquakes by Adnan et al. (2006) presented in JKR 2007 guideline.

2.19 Proposed normalized horizontal elastic acceleration response spectrum for Peninsular Malaysia on rock site (soil type A) by JKR 2007 seismic guideline (JKR, 2007).

2.20 Original UHS for Kuala Lumpur on rock site (RP 475 years) based on the Pappin et al. (2011) study (reproduced figure).

2.21 Arup UHS for Kuala Lumpur on rock site (RP 2,475 years) based on the Pappin (2012) study (reproduced figure).

2.22 Modified UHS for Kuala Lumpur on rock site (RP 2,475 years) by Looi et al. (2013) together with Arup UHS by Pappin (2012) (reproduced figure).

2.23 Acceleration response spectra due to the selected local earthquake scenarios for Kuala Lumpur on rock site by Looi et al. (2013) (reproduced figure).
2.24 Recommended elastic RSA model for Kuala Lumpur on rock site (RP 2,475 years) by Looi et al. (2013) along with Arup UHS, Modified UHS, and the RSA of the selected local earthquake scenario (reproduced figure) 62

2.25 Elastic displacement response spectrum on rock site for Peninsular Malaysia (RP 2,475 years) by IEM-July 2014 (Lam et al., 2014) 64

2.26 Elastic acceleration response spectrum on rock site for Peninsular Malaysia (RP 2,475 years) by IEM-July 2014 (Lam et al., 2014) 65

3.1 The schematic methodology to derive the empirical spectral GMPEs for distant subduction interface and intraslab earthquakes 71

3.2 Ground-motion recording stations (filled green circles) and epicenters (open red squares) of (a) Sumatran subduction interface earthquakes recorded by MMD stations located in Peninsular Malaysia. The epicenter of 2004 M 9.0 Aceh earthquake is indicated with a large black star – modified figure from Megawati and Pan (2010) and (b) Japan subduction interface earthquakes recorded by K-NET and KiK-net stations in Japan. The epicenter of 2011 M 9.1 Tohoku earthquake is indicated with a large black star - modified figure from Ghofrani and Atkinson (2014). The sizes of the open red square symbols are based on the magnitudes 73

3.3 Ground-motion recording stations (filled green circles) and epicenters (open red squares) of (a) Sumatran/Java subduction intraslab earthquakes recorded by MMD stations located in Peninsular Malaysia - modified figure from Megawati and Pan (2010), (b) Japan subduction intraslab earthquakes recorded by K-NET and KiK-net stations in Japan – modified figure from Ghofrani and Atkinson (2014), and (c) Saravan-Iran M 7.7 earthquake on 16 April 2013 due to Makran subduction zone recorded by BHRC stations in Iran – modified figure from Musson (2009). The sizes of the open red square symbols are based on the magnitudes 75

3.4 Distribution of the subduction interface database in terms of (a) moment magnitude-hypocentral distance for data from K-NET and KiK-net of Japan and MMD of Peninsular Malaysia; (b) moment magnitude-hypocentral distance for the data recorded on NEHRP B, C, D, and E site classes; (c) moment magnitude-focal depth; and (d) hypocentral distance-focal depth 79

3.5 Distribution of the subduction intraslab database in terms of (a) moment magnitude-hypocentral distance for data from K-NET and KiK-net of Japan, MMD of Peninsular Malaysia, and BHRC of Iran; (b) moment magnitude-hypocentral distance for the data recorded on four NEHRP B, C, D, and E site classes; (c) moment magnitude-focal depth; and (d) hypocentral distance-focal depth 80
3.6 Residuals of horizontal log(PGA, PGV, and PSA) based on the derived empirical GMPEs for interface earthquakes considering all soil types and distinguished by magnitude

3.7 Residuals of horizontal log(PGA, PGV, and PSA) based on the derived empirical GMPEs for intraslab earthquakes considering all soil types and distinguished by magnitude

3.8 Resulted PGA attenuation curves by the GMPEs of this study for subduction interface earthquakes with different magnitudes for (a) NEHRP B - rock sites and (b) NEHRP D - soil sites

3.9 Resulted PGA attenuation curves by the GMPEs of this study for subduction intraslab earthquakes with different magnitudes for (a) NEHRP B - rock sites and (b) NEHRP D - soil sites

3.10 Comparison of the selected subduction interface equations and the present study GMPE for PGA plotted together with observed interface data correspond to NEHRP B (rock site) over a range of moment magnitudes

3.11 Comparison of the selected subduction interface equations and the present study GMPE for 0.2 s PSA plotted together with observed interface data correspond to NEHRP B (rock site) over a range of moment magnitudes

3.12 Comparison of the selected subduction interface equations and the present study GMPE for 1.0 s PSA plotted together with observed interface data correspond to NEHRP B (rock site) over a range of moment magnitudes

3.13 Comparison of the selected subduction interface equations and the present study GMPE for 5.0 s PSA plotted together with observed interface data correspond to NEHRP B (rock site) over a range of moment magnitudes

3.14 Comparison of the selected subduction intraslab GMPEs and the present study ground-motion attenuation relation for intraslab events for PGA plotted together with observed intraslab data correspond to NEHRP B (rock site), over a range of moment magnitudes

3.15 Comparison of the selected subduction intraslab GMPEs and the present study ground-motion attenuation relation for intraslab events for 0.2 s PSA plotted together with observed intraslab data correspond to NEHRP B (rock site), over a range of moment magnitudes

3.16 Comparison of the selected subduction intraslab GMPEs and the present study ground-motion attenuation relation for intraslab events for 1.0 s PSA plotted together with observed intraslab data correspond to NEHRP B (rock site), over a range of moment magnitudes
3.17 Comparison of the selected subduction intraslab GMPEs and the present study ground-motion attenuation relation for intraslab events for 5.0 s PSA plotted together with observed intraslab data correspond to NEHRP B (rock site), over a range of moment magnitudes

3.18 Recorded and predicted acceleration response spectra of the 12 significant Sumatran subduction interface earthquakes listed in Table 3.9 by the present study and selected GMPEs for subduction interface earthquakes

3.19 Recorded and predicted acceleration response spectra of the five Sumatran/Java subduction intraslab earthquakes listed in Table 3.10 by the present study and selected spectral global and overseas regional ground-motion attenuation relations for subduction intraslab earthquakes

4.1 Schematic methodology of PSHA

4.2 Peninsular Malaysia and its surrounding seismicity from 1900 to 2014

4.3 Seven segments of Sumatran seismic sources together with the area and background sources considered for modelling the local faults within Peninsular Malaysia

4.4 Classified Sumatran earthquakes into the Sumatran fault (blue triangles), Sumatran subduction interface (red circles), and Sumatran subduction intraslab (green squares) seismic sources based on their identified faulting mechanisms using the Harvard Centroid Moment Tensor (CMT) database (Ekström et al., 2012)

4.5 Considered area source (yellow rectangular) covering the major local faults such as Bukit Tinggi, Kuala Lumpur, and Batang Padang faults as well as the considered background source (large yellow circle) to model the random earthquakes in the whole study region with and without mapped seismic faults (The black dots represent the epicenters of the historical local earthquakes within Peninsular Malaysia)

4.6 Basic steps of probabilistic seismic hazard assessment (PSHA) (modified figure from Hendriyawan (2006))

4.7 Logic tree for the Sumatran fault zone

4.8 Logic tree for the Sumatran subduction interface zone

4.9 Logic tree for the Sumatran subduction intraslab zone

4.10 Logic tree for the local faults within Peninsular Malaysia

4.11 Recommended macrozonation map with 10% PE in 50 years (RP 475 years) on rock site condition (NEHRP B or EC8 A) for Peninsular Malaysia

4.12 Recommended macrozonation map with 2% PE in 50 years (RP 2,475 years) on rock site condition (NEHRP B or EC8 A) for Peninsular Malaysia
4.13 Computed seismic hazard curves for PGA in Kuala Lumpur that show the contribution of each sub-source on the seismic hazard of the city 142

4.14 Uniform hazard spectra (UHS) on four site conditions (i.e., NEHRP B (EC8 A), NEHRP C (EC8 B), NEHRP D (EC8 C), and NEHRP E (EC8 D)) for the six selected districts within Peninsular Malaysia, corresponding to a probability of exceedance of 10% PE in 50 years (RP 475-year) 143

4.15 Uniform hazard spectra (UHS) on four site conditions (i.e., NEHRP B (EC8 A), NEHRP C (EC8 B), NEHRP D (EC8 C), and NEHRP E (EC8 D)) for the six selected districts within Peninsular Malaysia, corresponding to a probability of exceedance of 2% PE in 50 years (RP 2,475-year) 144

4.16 Normalized average-plus-one standard deviation UHS with 10 and 2% PE in 50 years together with the fitted elastic response spectral acceleration (RSA) following the principles of EC8 146

4.17 Recommended horizontal 5%-damped elastic response spectral acceleration (S_e) on ground types A to D following the principles of Eurocode 8 for Peninsular Malaysia 148

4.18 Probabilistic seismic hazard map with 10% PE in 50-year (RP 475 years) on rock site condition for Peninsular Malaysia due to only distant Sumatran earthquakes 149

4.19 Probabilistic seismic hazard map with 2% PE in 50-year (RP 2,475 years) on rock site condition for Peninsular Malaysia due to only distant Sumatran earthquakes 150

4.20 Seismic hazard map (%g) of Southeast Asia on rock site with 10% PE in 50-year (RP 475 years) by Petersen et al. (2008) 151

4.21 Seismic hazard map (%g) of Western Indonesia with a 10% PE in 50-year (RP 475 years) by USGS (2008) 152

4.22 Influence of the different maximum magnitudes on the probabilistic estimated PGAs on rock site for Kuala Lumpur due to the only long-distant Sumatran seismic sources (The maximum magnitudes inside the black rectangular are the ones considered by this study to propose the hazard maps) 154

4.23 Influence of the different maximum magnitudes on the probabilistic estimated PGAs on rock site for Kuala Lumpur due to the combination of the Sumatran and local faults (The maximum magnitudes inside the black rectangular are the ones considered by this study to propose the hazard maps) 155

4.24 The recommended elastic RSA for seismic design of the buildings located on rock site in Kuala Lumpur by this study, Jabatan Kerja Raya (JKR) in 2007 (JKR, 2007), and the Institution of Engineers, Malaysia (IEM) (Lam et al., 2014) 157
4.25 The design acceleration response spectra for seismic design of the ordinary and important buildings located on rock site in Kuala Lumpur proposed by this study and the Type 2 design spectra recommended by Eurocode 8 (BS EN 1998-1:2004) together with the notional ultimate lateral design load (1.5 %g or 0.015 g) stipulated by BS 8110
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_g)</td>
<td>Design ground acceleration on rock site</td>
</tr>
<tr>
<td>(a_{gr})</td>
<td>Reference peak ground acceleration on rock site</td>
</tr>
<tr>
<td>ANSS</td>
<td>Advanced National Seismic System</td>
</tr>
<tr>
<td>Avg</td>
<td>Average</td>
</tr>
<tr>
<td>BHRC</td>
<td>Building and Housing Research Center (Iran)</td>
</tr>
<tr>
<td>(c)</td>
<td>Shallow crustal events</td>
</tr>
<tr>
<td>CAM</td>
<td>Component Attenuation Model</td>
</tr>
<tr>
<td>CMT</td>
<td>Harvard Centroid Moment Tensor database</td>
</tr>
<tr>
<td>DSHA</td>
<td>Deterministic Seismic Hazard Assessment</td>
</tr>
<tr>
<td>E</td>
<td>East direction</td>
</tr>
<tr>
<td>EC8</td>
<td>Eurocode 8</td>
</tr>
<tr>
<td>(f_c)</td>
<td>Law-cut frequency filter</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravitational acceleration (~ 9.81 m/s²)</td>
</tr>
<tr>
<td>(gal)</td>
<td>Acceleration unit (cm/s²)</td>
</tr>
<tr>
<td>GMPE</td>
<td>Ground-Motion Prediction Equation</td>
</tr>
<tr>
<td>GSN</td>
<td>Global Seismographic Network</td>
</tr>
<tr>
<td>ISC</td>
<td>International Seismological Center</td>
</tr>
<tr>
<td>KiK-net</td>
<td>Kiban Kyoshin network (Japan)</td>
</tr>
<tr>
<td>KL</td>
<td>Kuala Lumpur (Capital of Malaysia)</td>
</tr>
<tr>
<td>K-NET</td>
<td>Kyoshin network (Japan)</td>
</tr>
<tr>
<td>Lat.</td>
<td>Latitude (geographic coordinate)</td>
</tr>
<tr>
<td>Long.</td>
<td>Longitude (geographic coordinate)</td>
</tr>
<tr>
<td>(M(M_w))</td>
<td>Moment magnitude</td>
</tr>
<tr>
<td>(M_0)</td>
<td>Seismic moment in dyne-cm</td>
</tr>
<tr>
<td>(m_b)</td>
<td>Body-wave magnitude</td>
</tr>
<tr>
<td>(M_L)</td>
<td>Local magnitude/ Richter magnitude</td>
</tr>
<tr>
<td>(M_{max})</td>
<td>Maximum moment magnitude</td>
</tr>
<tr>
<td>MMD</td>
<td>Malaysian Meteorological Department (Malaysia)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>M_{min}</td>
<td>Minimum moment magnitude</td>
</tr>
<tr>
<td>M_S</td>
<td>Surface-wave magnitude</td>
</tr>
<tr>
<td>N</td>
<td>North direction</td>
</tr>
<tr>
<td>n</td>
<td>Subduction intraslab event</td>
</tr>
<tr>
<td>NEA</td>
<td>National Environment Agency (Singapore)</td>
</tr>
<tr>
<td>NEHRP</td>
<td>National Earthquake Hazards Reduction Program</td>
</tr>
<tr>
<td>NEIC</td>
<td>National Earthquake Information Center</td>
</tr>
<tr>
<td>NGA</td>
<td>Next Generation Attenuation</td>
</tr>
<tr>
<td>PDE</td>
<td>Preliminary Determination of Epicenters</td>
</tr>
<tr>
<td>PE</td>
<td>Probability of Exceedance</td>
</tr>
<tr>
<td>PEER</td>
<td>Pacific Earthquake Engineering Research Center</td>
</tr>
<tr>
<td>PGA</td>
<td>Peak Ground Acceleration</td>
</tr>
<tr>
<td>PGV</td>
<td>Peak Ground Velocity</td>
</tr>
<tr>
<td>PNG</td>
<td>Penang (Malaysian state)</td>
</tr>
<tr>
<td>PSA</td>
<td>pseudo-acceleration / pseudo-acceleration response spectrum</td>
</tr>
<tr>
<td>PSHA</td>
<td>Probabilistic Seismic Hazard Assessment</td>
</tr>
<tr>
<td>q</td>
<td>Structural behavior factor</td>
</tr>
<tr>
<td>R</td>
<td>Source to site distance</td>
</tr>
<tr>
<td>R_{cd}</td>
<td>Closest distance to the fault</td>
</tr>
<tr>
<td>R_{epi}</td>
<td>Epicentral distance</td>
</tr>
<tr>
<td>R_{hyp}</td>
<td>Hypocentral distance</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>Closest distance to the surface projection of the ruptured area</td>
</tr>
<tr>
<td>RP</td>
<td>Return Period</td>
</tr>
<tr>
<td>R_{rup}</td>
<td>Closest distance to the ruptured area</td>
</tr>
<tr>
<td>RSA</td>
<td>Response spectral acceleration/acceleration response spectrum</td>
</tr>
<tr>
<td>S</td>
<td>Soil factor</td>
</tr>
<tr>
<td>S</td>
<td>South direction</td>
</tr>
<tr>
<td>S_d</td>
<td>Horizontal design acceleration spectrum</td>
</tr>
<tr>
<td>sd/σ</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>S_{de}(T)</td>
<td>Elastic horizontal displacement response spectrum</td>
</tr>
<tr>
<td>S_{de}(T)</td>
<td>Elastic horizontal acceleration response spectrum</td>
</tr>
<tr>
<td>SF</td>
<td>Sumatran Fault</td>
</tr>
<tr>
<td>SHA</td>
<td>Seismic Hazard Assessment</td>
</tr>
<tr>
<td>SSIF</td>
<td>Sumatran Subduction Interface</td>
</tr>
<tr>
<td>SSIS</td>
<td>Sumatran Subduction Intraslab</td>
</tr>
</tbody>
</table>
T - Natural structural period
T_B - The lower limit of the period of the constant spectral acceleration
T_C - The upper limit of the period of the constant spectral acceleration
T_D - The value defining the beginning of the constant displacement response range of the spectrum
t - Subduction interface event
T_c low - Low-cut period filter
T_{max} - Maximum usable period
TSPP - Time Series Processing Programs
UHS - Uniform Hazard spectrum
USGS - U.S. Geological Survey
V_S - Shear wave velocity
V_{S30} - Average shear wave velocity in the upper 30 m of the soil profile
γ_I - Importance factor
λ - Mean annual rate of exceedance
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of the seismic stations operated by Malaysian Meteorological Department (MMD) and National Environment Agency (NEA) of Singapore</td>
<td>184</td>
</tr>
<tr>
<td>B</td>
<td>Peak Ground Acceleration (PGA) data recorded in Peninsular Malaysia and Singapore due to Sumatran subduction interface and intraslab earthquakes</td>
<td>186</td>
</tr>
<tr>
<td>C</td>
<td>Least-squares method for nonlinear regression</td>
<td>196</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

Earthquake is one of the world’s most destructive natural hazards. In the last 30 years alone, earthquakes have caused destroyed cities and villages around the world and thousands of people have been injured or lost their lives, with many more left homeless. The unexpected and immediate devastation characteristics of earthquakes produce a unique psychological impact and a fear in modern civilization unsurpassed by any other natural hazards. This devastation, however, is entirely due to the effects of earthquakes on civil engineering structures and the ground that supports the structures. In essence, with the operational application of scientific and engineering principles and construction methods, the impact of catastrophic earthquake could be minimized, if not completely eliminated (Villaverde, 2009).

Usual earthquake damage includes ground shaking, ground failure, and indirect effects. Ground shaking could be considered as the most damaging effect of earthquakes. During an earthquake, as is well known, the ground moves violently in two horizontal and vertical directions. The generated ground-motion makes the structure oscillate back and forth and up and down causing the structure to undergo major stress and deformation. Moreover, since an earthquake is able to shake the ground over extensive areas of the ground surface, the generated ground shaking may simultaneously affect a large number of structures (Figures 1.1 and 1.2). It goes without saying that ground shaking is the main concern of structural engineers in low, moderate, and active seismic regions of the world.
The possible effects of ground failure are (a) ground cracking, (b) surface faulting, (c) landslides, (d) soil liquefaction, and (e) ground subsidence. Ground cracking occurs when the soil at the surface is transported to a different location, or it sinks as a result of losing its support. When the two sides of an earthquake fault slip relative to one another, surface faulting occurs that may cause severe damage to structures which lie across the fault. Landslides are the failure of marginally stable
slopes before the earthquake, which become unstable due to the shaking induced by the earthquake. Soil liquefaction is phenomenon that involves the temporary change of fine saturated soils from a solid to a liquid state, thus removing from the soil its ability to remain stable or carry loads. Ground subsidence is possible when the ground surface of a site settles due to the compaction generated by earthquake vibrations (Figure 1.3).

![Image](image.png)

Figure 1.3 Settlement of a building in Mexico City due to ground subsidence phenomenon during the 1985 Michoacán earthquake (Villaverde, 2009)

The indirect effects of earthquakes are (a) fires, (b) tsunamis, and (c) seiches. Fire may be considered as the most devastating indirect effect of earthquakes. Fires start when, for instance, an earthquake destroys oil-storage tanks or breaks gas pipes or overturns stoves and heaters. Tsunamis are massive sea waves generated by a sudden vertical dislocation of the ocean floor as a result of the slippage of an earthquake fault under the ocean. Seiches are temporary long-period oscillating waves in enclosed bodies of water such as lakes, reservoirs, bays, and even swimming pools caused by distant earthquakes. When the water body resonates with the earthquake waves, that is, when the natural frequency of the water body matches the frequency of the incoming earthquake waves, the phenomenon of seiches occur (Elnashai and Di Sarno, 2008; Villaverde, 2009).
As mentioned above, in order to minimize the earthquake catastrophes, an effective application of scientific and engineering principles should be followed to control earthquake-induced forces. An elaborate process with participation of architects, seismologist, geologists, geotechnical engineers, foundation engineers, and structural engineers is required to design an earthquake-resistant structure. That this required an elaborate process is due to the unpredictability of earthquake forces, the uncertainty of their occurrence, and their probabilistic devastating effects.

Thus, earthquake engineering which could be considered as one of the civil engineering branches, provides the principles and procedures for the planning, analysis, and design of structures with the capability of resisting the earthquake effects. In the other words, the principles and procedures provided by earthquake engineering are for (a) the selection of an appropriate location for the structures in order to minimize their exposure to earthquake hazards; (b) the estimation of the earthquake forces that may affect the structures in a given time interval; (c) the analysis of structures based on the estimated earthquake forces to determine the maximum stresses and deformations; (d) the detailing of the different components of the structures to make them resist the determined stresses and deformations without any failure or collapse; and (e) confirming the stability of the structures supported on weak soils or slopes with improvement of soils and the stabilization of natural slopes. All the mentioned principles are based on the concepts from seismology, geology, seismic hazard analysis, geotechnical engineering, structural dynamics, and structural engineering (Villaverde, 2009).

As the parameters of future earthquake ground motions (i.e., peak ground acceleration, peak ground velocity, and response spectrum ordinates) are unpredictable and also radically different from one earthquake to another and from one site to another, the selection of such parameters for structural design purposes needs a difficult and elaborate procedure. This procedure involves the use of historical, statistical and geological data, probabilistic models, empirical correlations and engineering judgment. The mentioned elaborated procedure for the purpose of seismic design based on the likely parameters of future earthquake ground motions in a given region is an essential step in the seismic design of the structures and is called
seismic hazard assessment. Seismic hazard analysis as the early stages of seismic design procedure results in the macrozonation maps that present the estimation of the peak ground acceleration, peak ground velocity, or response spectrum ordinates due to the expected earthquakes in the vicinity of a given region within a specific time interval. These maps could be important from the point of view that they give an overview of the seismicity of a given region. They are also valuable for site selection and land-use planning as well as specifying the earthquake intensity that structures should be designed for in different zones of a geographical region.

The first simple approach, in the early days of earthquake engineering, by which such an analysis could be made, was deterministic approach (i.e., called deterministic seismic hazard assessment (DSHA)). This method was made without consideration of the uncertainties in the estimation of source to site distances and the magnitudes of future earthquakes. But today, these analyses are being performed through the probabilistic approach (i.e., called probabilistic seismic hazard assessment (PSHA)) by considering random characteristic of all variables that are defined in terms of given probability distributions (Kramer, 1996; Villaverde, 2009).

Ground-motion prediction equations (GMPEs) sometimes referred to as attenuation laws, attenuation relationships, or ground-motion attenuation relations are the most critical key factors in any seismic hazard analysis. In the past fifty years many hundreds of GMPEs have been developed in order to relate ground-motion parameters to a set of independent variables such as magnitude, source-to-site distance, focal depth, local site condition, and often focal mechanism (e.g., strike-slip, reverse, and normal mechanism). Where earthquake ground-motion recordings are abundant, these equations are being developed empirically by a regression analysis using data from the recorded ground motions. In contrast, where recordings are limited, the equations are often derived from seismological models based on the simulated earthquake ground motions using stochastic and theoretical methods. However, the calculation of absolute values of the ground motions simulated by seismological models have a large degree of uncertainty in the regions where data are sparse (Campbell, 2003).
1.2 Background and Problem Statement

On the basis of regional economic growth, most cities in Southeast Asia have seen rapid development over the past forty years. In general, seismic design has not been taken into account in Southeast Asia regions with low to moderate seismicity, as these areas have never experienced disaster caused by earthquakes. Peninsular Malaysia is an example of these regions. Although the main cities of this region (such as Kuala Lumpur-capital of Malaysia, Putrajaya, Penang, and Johor Bahru), are located in a low seismicity region, they may be vulnerable to distant earthquakes generated by active seismic sources located more than 300 km along and off the west coast of Sumatra Island. These seismic sources have generated many earthquakes, some of which have shaken medium to high rise buildings in Kuala Lumpur, capital of Malaysia. The number of felt events is being increased due to the rapid construction of medium to high rise buildings in this region (Pan, 1997). Although earthquakes have never caused any severe structural damages in Kuala Lumpur, the effects of even a moderate level of ground-motion can be huge because of the population and many major business activities in the buildings that are not designed for earthquake-induced forces (Megawati et al., 2005).

Large-magnitude earthquakes, occurring several hundred kilometers away, are capable of causing substantial damage, especially to medium- and high-rise buildings, due to the long period wave trains generated by the rupture of long fault systems. Experimental evidence of this well-known physical fact has been extensively reported in Bormann (2002) and a remarkable recent example was provided by the 2011 Tohoku earthquake in Japan with moment magnitude (M or \(M_W \)) 9.1. It was reported that most of the super high-rise buildings in major cities in Japan such as Tokyo and Osaka with epicentral distances of about 385 and 760 km away, respectively, were harshly shaken by long-period ground motions (Takewaki et al., 2011).

On the other hand, soil amplification is another factor that could cause serious damage by amplifying the low amplitude, long-period ground motions. The 1985 Michoacán earthquake with a surface-wave magnitude (\(M_S \)) of 8.1 could be a
remarkable example. This earthquake caused serious damage in Mexico City, which was 300–450 km from the epicenter, due to the amplification of incoming earthquake waves by the soft soil on the ground surface (Seed et al., 1988).

The mentioned concepts have been also seen in Peninsular Malaysia and Singapore. For instance, an earthquake in February 1994 (M_S 7.0) occurred near Liwa in southern Sumatra, 700 km from Singapore. This earthquake affected some buildings in densely populated areas of Singapore (Pan, 1995). Another earthquake occurred in May 1994, when the vibrations of the earthquake with the magnitude of 6.2 on the Richter scale (M_L), near the island of Siberut were felt 570 km from Kuala Lumpur and Singapore (Pan and Sun, 1996). In October 1995, stronger and more extensive ground tremors were felt in Singapore, Kuala Lumpur, and Johor Bahru, the southern state of Peninsular Malaysia. The earthquake with M_S 7.0 took place 450 kilometers away from these areas. Bengkulu earthquake of June 2000 had a moment magnitude of 7.7. Although its epicenter was around 700 km southwest of Singapore, it produced heavy tremors in the city (Pan et al., 2001). More recently, the major earthquakes in Aceh, 2004 (M 9.0) and Nias Island in 2005 (M 8.6) occurred in the Sumatran subduction interface area. Although the movements caused by these earthquakes were offset by distances up to 1000 km, they still resulted in ground-motion that was felt by the occupants of high-rise buildings built on the soft ground in Kuala Lumpur and Singapore (Nabilah and Balendra, 2012). Even though there have never been severe earthquake-induced damages in Peninsular Malaysia, the increasing number of felt tremors shows this fact that the seismic hazard may not be negligible for this region, especially its potential to damage the medium to high rise buildings built on soft sedimentary deposits or reclaimed lands (Megawati and Pan, 2002).

Since 2007, several earthquakes due to local faults with the maximum moment magnitude (M_{max}) of 4.4 have occurred within Peninsular Malaysia. Even though the local earthquakes were small, the epicenters were as close as 20 km to Kuala Lumpur, which could have remarkable effects on seismic hazard of the region. A local earthquake with moment magnitude (M) of about 5 to 7 rupturing within 50 km would cause a significant base shear demand on low-rise buildings (Lam et al.,
2015). Current design code for building structures in Peninsular Malaysia widely adopts the British Standard (BS) 8110 code (BS 8110-1:1997), which has no provisions for earthquake-induced forces. The fact that the earthquakes have not yet inflicted any serious damage in Peninsular Malaysia historically, should not be taken as an excuse for not considering the effects of earthquakes on the existing and future structures. In the interest of public safety, it is reasonable to comprehensively assess the seismic hazard of the region, where there are main metropolises with high concentrations of high-rise buildings, complex infrastructure systems and large populations.

After understanding the fact that the Peninsular Malaysia region could be affected by either large magnitude, distant Sumatran earthquakes or the earthquakes due to the local faults, an appropriate seismic hazard assessment and a set of desirable elastic acceleration response spectra for seismic design purposes would be required. These basic criteria have been required by the well-known seismic design codes such as international building code (IBC) 2012, Iranian seismic code (standard No. 2800) 2015, and Eurocode 8 (BS EN 1998-1:2004). In order to assess the seismic hazard and construct the design spectra, representative ground-motion prediction equations (GMPEs) as the essential factor in any seismic hazard assessment, compatible with the region are required.

Most of the existing proposed empirical GMPEs for subduction earthquakes (reviewed in Chapter 2) are not tuned to a suitable magnitude-distance range compatible with the Peninsular Malaysia region. In addition, the previous probabilistic seismic hazard assessment studies done for the study region were only based on the far-field Sumatran seismic sources and the seismic effects of the local faults within Peninsular Malaysia were not taken to be considered.

1.3 Objectives of the Study

This research has attempted to achieve the following three (3) primary objectives:
1. To derive new empirical spectral ground-motion prediction equations (GMPEs) for distant subduction earthquakes (the both interface and intraslab events) using the recorded ground motions by the Malaysian Meteorological Department (MMD), Kyoshin network (K-NET) and Kiban Kyoshin network (KiK-net), and Building and Housing Research Center (BHRC) seismic stations located in Peninsular Malaysia, Japan, and Iran, respectively.

2. To improvise the macrozonation maps of Peninsular Malaysia with 10 and 2% probabilities of exceedance in 50 years corresponding to 475 and 2,475 years return period, respectively, through the probabilistic approach of seismic hazard assessment, based on the more appropriate and compatible sets of GMPEs, and due to both the Sumatran seismic sources (i.e., Sumatran subduction and Sumatran fault zones) and the local faults within the Peninsular Malaysia region.

3. To propose new elastic and design acceleration response spectra on four different soil site conditions (i.e., rock, stiff soil, medium soil, and soft soil) for seismic design purposes for the Peninsular Malaysia region following the principles of the Eurocode 8 seismic design code.

Referring to the mentioned objectives, it is sincere hoped that this study could be able to provide the necessary science and engineering principles to guide future seismic hazard studies and provisions for the regions which are subjected to the large-magnitude, distant earthquakes such as Peninsular Malaysia.

1.4 Scope and Limitations

As there are so many parameters that may affect the final results of this study, the following scope and limitations have been considered for analysis:

1. New empirical spectral ground-motion prediction equations (GMPEs):
a) Identifying the subduction earthquakes, including both interface and intraslab events, occurred mainly in Sunda and Japan trenches (i.e., Sumatran and Japan subduction zones) as well as the trench in South-East of Iran, based on their location, focal depth, and faulting mechanisms introduced by Harvard Centroid Moment Tensor catalogue (Ekström et al., 2012).

b) Collection of the raw recorded ground-motion data on four different soil site conditions as B, C, D, and E, based on National Earthquake Hazard Reduction Program (NEHRP) site classification, due to the identified subduction interface and intraslab earthquakes.

c) Preparation of an exhaustive response spectra ground-motion database containing the ground-motion parameters as peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped pseudo-acceleration response spectrum (PSA).

d) Selection an appropriate ground-motion attenuation model and performing regression analysis using least-square method in order to derive the regression coefficients.

e) The GMPEs proposed by this study are considered to be valid for estimating ground motions for subduction earthquakes of moment magnitude (M) 5.0–9.1, hypocentral distance (Rhyp) of 120–1300 km and M 5.0–7.7, Rhyp 120–1400 km for interface and intraslab events, respectively.

2. Macrozonation study:

a) Updating the previous earthquake catalogue (i.e., including the earthquake events from 1900 to late 2008) up to 2014, by compiling the reliable earthquake catalogues with minimum moment magnitude (Mmin) of 5.0.

b) Preparing an earthquake catalogue from the earthquakes induced by the local faults within the Peninsular Malaysia with Mmin 2.1.
c) Obtaining the new macrozonation maps of Peninsular Malaysia with 10 and 2% probabilities of exceedance in 50-year corresponding to 475 and 2,475 years return period, respectively.

3. New elastic and design acceleration response spectra:

a) Computing uniform hazard spectra (UHS) of the main regions of Peninsular Malaysia on four different soil site conditions (i.e., rock, stiff soil, medium soil, and soft soil).

b) Proposing new elastic and design acceleration response spectra on four soil site conditions for seismic design purposes for the Peninsular Malaysia region following the principles of the Eurocode 8 seismic design code.

1.5 Significance of the Study

The proposed new sets of spectral ground-motion prediction equations (GMPEs) would be expected to be more compatible with the Peninsular Malaysia region due to the consideration of real ground-motion data recorded in the region. This study will be significant in terms of estimating the seismic hazard of Peninsular Malaysia more accurately and realistically based on the much more compatible ground-motion attenuation relations, consideration of the local intraplate earthquakes, and updated seismic source parameters. The design-basis acceleration maps and the elastic acceleration response spectra presented by this study will be also significant as a future reference for the application of seismic design. Moreover, this study will be helpful in the society of civil engineers in training and informing them in the area of earthquake engineering.
1.6 Research Methodology

The overall methodology in order to achieve the defined objectives has been depicted in two phases in Figure 1.4. The comprehensive descriptions of the phases I and II are presented in Chapters 3 and 4, respectively.

Figure 1.4 The overall schematic methodology of the present study
1.7 Orientation of Thesis

The title and contents of each chapter have been described briefly as follows:

Chapter 1: Introduction This chapter presents a brief description of earthquake-induced direct and indirect effects and importance of earthquake engineering at the first parts. In the next parts, the background and problem statement, objectives, scope and limitations, significance, and the research methodology of the study are described.

Chapter 2: Literature Review This chapter firstly presents a precise explanation about seismology and earthquake genesis in terms of plate tectonics, interplate and intraplate earthquakes, faulting mechanisms, seismic waves, and earthquake size measurements. A review about the previously proposed ground-motion prediction equations for the region of interest as well as other regions of the world is also reported in this chapter. In the next parts, seismotectonic setting of Peninsular Malaysia and a complete review of previously conducted seismic hazard studies of the Peninsular Malaysia region have been presented. Finally, previously presented elastic acceleration response spectra for the study region are also reviewed and presented in this chapter.

Chapter 3: Ground-Motion Prediction Equations (GMPEs) This chapter gives a complete explanation about the considered methodology in order to prepare a response spectra database to derive the new empirical spectral ground-motion prediction equations (GMPEs) for distant subduction interface and intraslab earthquakes. Then, a comprehensive comparison between the proposed GMPEs and the existing ones is discussed and presented at the end of the chapter.

Chapter 4: Seismic Hazard Assessment The first part of this chapter presents the methodology identified to do probabilistic seismic hazard assessment (PSHA) for the Peninsular Malaysia region. Then, the new resulted seismic hazard maps of the region have been proposed. In addition, the uniform hazard spectra using probabilistic approach of seismic hazard assessment have been achieved and
described in this chapter. Referring to the obtained uniform hazard spectra, the elastic and design acceleration response spectra on different soil site conditions for the Peninsular Malaysia region have been presented in this chapter. Finally, the obtained results are evaluated by comparing with the results derived previously by other researchers. As the different input parameters could cause different final results, the influence of various input parameters have been also discussed in this chapter.

Chapter 5: Conclusions and Recommendations This chapter discusses the conclusions of the study and the recommendations for further related researches.
REFERENCES

Campbell, K. W. and Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. *Earthquake Spectra*. 24(1), 139-171.

Internatl. Seis. Cent., Thatcham, United Kingdom. Available at: http://www.isc.ac.uk.

Lam, N. T. K. (1999). Program GENQKE user’s guide: program for generating synthetic earthquake acceleration based on stochastic simulations of seismological models. *Civil & Environmental Engineering, the University of Melbourne, Australia*.

Pappin, J. W. (2012). *Arup Hong Kong lecture note to Institution of Engineers, Malaysia (IEM).*

Zare, M., Ansari, A., Heydari, H., Shahvar, M. P., Daneshdust, M., Mahdian, M., Sinaeian, F., Farzanegan, E., and Mirzaei-Alavijeh, H. (2013). "A Reconnaissance Report on two Iran, Makran Earthquakes; 16 April 2013, Mw7. 8, Gosht (Saravan) and 11 May 2013 Irar (Goharan), Bashagard, SE of Iran."