Entropy analysis in electrical magnetohydrodynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction

Yahaya Shagaiya Daniel, Zainal Abdul Aziz, Zuhaila Ismail, Faisal Salah

Abstract

The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations. The resultant system of equations is then solved numerically using implicit finite difference method. The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Magnetic nanofluid is a colloidal suspension of carrier magnetic nanoparticles and liquid. Diverse kinds of physical features of these fluids can be tuned through the varying magnetic field. The magnetic nanofluids are controlled by an external magnetic field, which has been used for different investigations. The investigation of the MHD flow of an electrically conducting fluid over a stretching sheet is important in modern metallurgy and metal working mechanism. Investigation by Hayat et al. [5] have shown that the rate of heat transfer is enhanced by increasing the strength of magnetic field. Reduction of Nusselt number as result of magnetic field dependent (MFD) viscosity influence are more sensible for low Hartmann number and high Rayleigh [5]. It will be appropriate to consider not only the single phase model but the two-phase approach discussed by Sheikholeslami and Ganji [7], which seems a better model to show nanofluid flow due to slip velocity mechanism between the base fluid and the nanoparticle which play a vital role in the heat transfer performance of nanofluid. Das et al. [8] indicate that magnetic field enhances the nanofluid velocity in the channel. Farooq et al. [9] showed that skin friction rises for higher magnetic fields. Enhancement in heat transfer have a direct relationship with the Hartmann and Reynolds numbers, but an inverse relationship with the magnetic field [10]. Also, the Nusselt number is an increasing function of nanoparticle volume fraction and magnetic field. Nanoparticle fraction rises as the rate of mass transfer from the sheet reduces and thermophoresis increases [11]. Sheikholeslami and Ellahi’s [12] work revealed that applying magnetic field results in a force opposite to the flow direction which leads to a drag in the flow and decrease in the convection currents by reducing the velocity. Some others researchers did interesting investigations in this direction [13–19].

The thermal radiation influence plays a key role in the industrial and engineering processes. These processes involve performance at an extreme temperature under different non-isothermal conditions and instances where convective heat transfer coefficients are lower. Radiative heat transfer is used in the model of pertinent, equipment, hypersonic flights, nuclear reactors, nuclear power plants, space vehicles, gas turbines, etc. The temperature field enhanced for rising temperature ratio and radiation in copper–water nanofluid as presented by Hayat et al. [20], silver nanofluid dominant for skin friction as copper nanofluid dominant over silver nanofluid for the local Nusselt number. The higher range of values of non-linear thermal radiation seen by Hayat et al. [21] resulted in the enhancement of temperature field. The numerical results of Sheikholeslami et al. [22] showed that coefficient of skin friction enhances with increasing magnetic field whereas decreases with the rise in velocity ratio. The Nusselt number has a direct dependence on the temperature index and velocity ratio but reverse dependence for radiation and magnetic fields. Hayat et al. [23] showed that heat transfer rate enhances when temperature and radiation increase.

The application of magnetic field in electric conducting nanofluid has drawn the attention of researchers currently. The results of Sheikholeslami et al. [24] showed that electric field on heat transfer is more pronounced at smaller Reynolds number. Sheikholeslami and Chamkha [25] indicate that the impact of electric field on heat transfer is as a result of the predominance of the conduction mechanism, which makes it more pronounced. Suction/blowing of nanofluid by the boundary mass transfer can significantly alter the flow field. Suction tends to increase the skin friction, as blowing behave in reserve manners. The process of suction/blowing plays a dominant role in the design of radial diffusers and thrust bearing, thermal oil recovery, etc., which is of importance to the areas of engineering. Suction/injection has (blowing) been reported by many other researchers in Refs. [26–30].

Entropy generation minimization approach, as a thermodynamic is used to optimize the thermal engineering devices for
Continuity equation

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \] (1)

x-momentum equation

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho_l} \frac{\partial P}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{\sigma}{\rho_l} (EB - B^2 u) \\
+ \frac{1}{\rho_l} \left[(1 - \varphi_\infty) \rho_{\infty} \beta (T - T_\infty) \right] g \\
+ \left[(\rho_p - \rho_{\infty}) (\psi - \varphi_\infty) \right] g.
\] (2)

y-momentum equation

\[
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho_l} \frac{\partial P}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{\sigma}{\rho_l} (EB - B^2 v) \\
+ \frac{1}{\rho_l} \left[(1 - \varphi_\infty) \rho_{\infty} \beta (T - T_\infty) \right] g \\
+ \left((\rho_p - \rho_{\infty}) (\psi - \varphi_\infty) \right] g.
\] (3)

Energy equation

\[
\frac{\partial T}{\partial t} + \frac{u}{\partial x} T + \frac{v}{\partial y} \frac{\partial T}{\partial y} = \frac{k}{\rho c_p T} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) - \frac{1}{\rho c_p T} \left(\frac{\partial q_l}{\partial y} \right) + \frac{\mu}{\rho c_p T} \left(\frac{\partial u}{\partial y} \right)^2 \\
+ \tau \left(D_b \left(\frac{\partial \varphi_T}{\partial x} + \frac{\partial \varphi_T}{\partial y} \right) + D_l \frac{T}{T_\infty} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] \right)
\] (4)

Concentration equation

\[
\frac{\partial \varphi}{\partial t} + u \frac{\partial \varphi}{\partial x} + v \frac{\partial \varphi}{\partial y} = D_b \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) \\
+ D_l \frac{\varphi}{T_\infty} \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) - k_1 (\psi - \varphi_\infty).
\] (5)

The boundary conditions on the sheet for the physical model are presented by

\[
y = 0: \quad u = u_w(x, t), \quad v = v_w(x, t), \\
T = T_w(x, t), \quad \varphi = \varphi_w(x, t), \\
y \rightarrow \infty: \quad u \rightarrow 0, \quad T \rightarrow T_\infty, \quad \varphi \rightarrow \varphi_\infty.
\] (6)
material and the heat capacity of the fluid. $B = B_0/\sqrt{T - \alpha t}$ is the strength of magnetic field, $E = E_0/\sqrt{T - \alpha t}$ denotes the strength of electric field, and $k_1 = k_0/(1 - \alpha t)$ represents the rate of chemical reaction.

The radiative heat flux q_r via Rosseland approximation [13] is applied to Eq. (4), such that

$$q_r = -\frac{4\sigma^* \partial T^4}{3k^* \partial y} = \frac{238}{Y.S.Danieletal./Theoretical&AppliedMechanicsLetters7(2017)235–242}$$

where σ^* represents the Stefan–Boltzmann constant and k^* denotes the mean absorption coefficient. Expanding T^4 by using Taylor's series about T_∞ and neglecting higher order terms, we have

$$T^4 = 4T_\infty^4 - 3T_\infty^2.$$

Using Eq. (8) into Eq. (7), we get

$$\frac{\partial q_r}{\partial y} = -\frac{16T_\infty^4 \sigma^* \partial^2 T}{3k^* \partial y^2}.$$

Using Eq. (9) in Eq. (4), we obtain

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{(\rho c)_T} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{1}{(\rho c)_T} \left(\frac{16T_\infty^4 \sigma^* \partial^2 T}{3k^* \partial y^2} \right) + \frac{\mu}{(\rho c)_T} \left(\frac{\partial u}{\partial y} \right)^2 + \tau \left[D_B \left(\frac{\partial \psi}{\partial y} \right) + D_t \left(\frac{\partial \theta}{\partial y} \right) + D_{\psi\psi} \left(\frac{\partial \psi}{\partial x} \right)^2 + D_{\psi\theta} \left(\frac{\partial \psi}{\partial y} \right) \right].$$

Using the order of magnitude analysis for the y-direction momentum equation which is normal to the stretching sheet and boundary layer approximation [41], such as

$$u \gg v,$$

$$\frac{\partial u}{\partial y} \gg \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial u}{\partial x} = 0,$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho U} \frac{\partial p}{\partial x} + \frac{\partial^2 u}{\partial y^2} + \frac{\sigma}{\rho U} \left(EB - B^2 u \right)$$

$$+ \frac{1}{\rho U} \left[(1 - \psi) \rho_{\infty} \beta (T - T_\infty) - (\rho_{\psi} - \rho_{\infty}) (\psi - \psi_{\infty}) \right].$$

$$\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} = \frac{k}{(\rho c)_T} \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} \right) + \frac{1}{(\rho c)_T} \left(\frac{16T_\infty^4 \sigma^* \partial^2 \theta}{3k^* \partial y^2} \right) + \frac{\mu}{(\rho c)_T} \left(\frac{\partial \theta}{\partial y} \right)^2$$

$$+ \tau \left[D_B \left(\frac{\partial \psi}{\partial y} \right) + D_t \left(\frac{\partial T}{\partial y} \right) + D_{\psi\psi} \left(\frac{\partial \psi}{\partial x} \right)^2 + D_{\psi\theta} \left(\frac{\partial \psi}{\partial y} \right) \right],$$

$$\frac{\partial \psi}{\partial t} + u \frac{\partial \psi}{\partial x} + v \frac{\partial \psi}{\partial y} = D_B \left(\frac{\partial^2 \psi}{\partial y^2} \right) + D_t \left(\frac{\partial^2 T}{\partial y^2} \right) - k_1 (\psi - \psi_{\infty}).$$

The resulting equations are reduced to the dimensionless form by introducing the following dimensionless quantities.

$$\psi = \sqrt{\frac{b v}{1 - \alpha t}} \left(\frac{xf}{\eta} \right), \quad \eta = y \sqrt{\frac{b}{v (1 - \alpha t)}}, \quad \theta = \frac{T - T_\infty}{T_W - T_\infty},$$

$$\phi = \frac{\psi - \psi_{\infty}}{\psi_W - \psi_{\infty}},$$

$$T_W(x, t) = T_\infty + T_0 \frac{b x}{2v (1 - \alpha t)^2},$$

$$\psi_W(x, t) = \psi_{\infty} + \psi_W \frac{b x}{2v (1 - \alpha t)^2}.$$

Using Eq. (15), the equations of momentum, energy, and nanoparticle concentration in dimensionless form become:

$$f'' + f'f - f^2 - \delta \left(f' + \frac{\eta}{2} f'' \right) + M \left(E_1 - f' \right)$$

$$+ \lambda (\theta + N \psi) = 0,$$

$$\frac{1}{\psi} \left(1 + \frac{4}{3} \frac{\psi}{\theta} \right) \theta'' + f'' \theta - 2f' \theta - \delta \left(\frac{\eta}{2} f' + 2\theta \right)$$

$$+ N b \psi' + N t \theta^2 + E c (f'')^2 = 0,$$

$$\phi'' + \frac{N t}{N b} \phi'' + \frac{L e f \phi'}{2 L e f \psi} - \frac{L e \delta}{\frac{\eta}{2} \phi'} = 0.$$

The boundary conditions are given as:

$$f = s, \quad f' = 1, \quad \theta = 1, \quad \phi = 1,\at\eta = 0.$$

$$f' = 0, \quad \theta = 0, \quad \phi = 0, \quad \eta \to \infty.$$

Here f, θ, ϕ are the dimensionless velocity, temperature, and concentration, respectively. As $\delta = \alpha/\beta$ represents the unsteadiness parameter, $Nt = (\rho_{\psi} - \rho_{\infty}) / (\rho_{\psi} - \rho_{\infty}) (T_W - T_\infty)$ is the buoyancy ratio parameter, $\lambda = Gr/RRe$ denotes the mixed convection parameter (where $\lambda > 0$ associate with heated surface, $\lambda > 0$ denotes cold surface, and $\lambda = 0$ is the force convection state), $Gr = gB (1 - \psi) \rho_{\infty} (T_W - T_\infty)/(\nu^2 \mu)$ is the Grashof number, $Re = bx^2/\nu (1 - \alpha t)$ is the Reynolds number, $Pr = \nu/\alpha$ stands for Prandtl number, $Nb = (\rho c)_P D_{\psi} (\psi_W - \psi_{\infty}) / [(\rho c)_P v]$, $B = (\rho c)_T (B_0/\rho B_0)$ is the Brownian motion parameter, $Le = \nu D/Le$ is the Lewis number, $Nt = (\rho c)_T (D_t (T_W - T_\infty)) / [(\rho c)_P v T_\infty]$ is the thermophoresis parameter, $M = \sigma B_0/(b\rho)$ is the magnetic field parameter, $E_1 = E_0/(u_0 B_0)$ is the electric field parameter, $Ec = u_0^2/\psi e e_0 (T_W - T_\infty)$ is the Eckert number, $s = \nu_{\infty}/\sqrt{ab}$ is the suction $(s > 0)$ injection $(s < 0)$ parameter, $Re = 4\alpha^* T^3_\infty/(k^*)$ is the radiation parameter, $\gamma = k_0/b$ is the chemical reaction ($\gamma > 0$ associates to destructive chemical reaction while $\gamma < 0$ corresponds to generative chemical reaction) respectively. Prime represents differentiation with respect to η. In our present study, the selection of non-dimensional sundry parameters of nanofluids is considered to vary in view of the works [3,8,15,17,19,41,42].

The skin friction coefficient, the local Nusselt number, and the local Sherwood number are

$$c = \frac{\tau_W}{\rho U_W (x, t)}, \quad Nu = \frac{\theta_W}{k (T_W - T_\infty)}, \quad Sh = \frac{\psi_W}{D_B (\psi_W - \psi_{\infty})}.$$
conductivity of the nanofluid. The local skin-friction coefficient, heat flux, while discussed in Refs. [13,15], the equation is presented as follows:

\[
\text{Re}^{1/2} = f''(0), \quad \text{Nu}/\text{Re}^{1/2} = -\left(1 + \frac{4}{3} \text{RD}\right) \theta'(0),
\]

\[
\text{Sh}/\text{Re}^{1/2} = -\phi'(0).
\]

Volumetric analysis due to entropy generation rate of the electrical MHD nanofluid over a stretching sheet consider thermal radiation impacts. Using Roseland approximation approach as discussed in Refs. [13,15], the equation is presented as follow:

\[
S_{gen}'' = \frac{k}{T_{\infty}} \left[\frac{(\partial T}{\partial y})^2 + \frac{16\sigma T_{\infty}^2}{3k} \right] + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \text{RD} \left(\frac{\partial \varphi}{\partial y} \right)^2 + \frac{\partial \varphi}{\partial y} \left(\frac{(\partial \varphi}{\partial x} \right) + \frac{\partial \varphi}{\partial y} \left(\frac{(\partial \varphi}{\partial x} \right) + \frac{\partial \varphi}{\partial y} \left(\frac{(\partial \varphi}{\partial x} \right) + \frac{\partial \varphi}{\partial y} \left(\frac{(\partial \varphi}{\partial x} \right) + \frac{\partial \varphi}{\partial y} \left(\frac{(\partial \varphi}{\partial x} \right)
\]

\[
+ \frac{1}{\sigma} (uB - E)^2.
\]

The equation above contains the heat transfer irreversibility (conduction effect), fluid friction irreversibility, diffusive and Joule dissipation irreversibility. The first is the entropy generation over heat transfer through finite temperature difference and thermal radiation. Second is the entropy generation due to fluid friction irreversibility, third is due to diffusion which is the total across thermal and concentration gradients and term that has only concentration gradient, and fourth is the Joule dissipation containing the magnetic and electric fields. After implementing the scaling analysis and boundary layer approximation, the dimensionless of entropy generation rate which is the entropy generation number, is the ratio of actual entropy generation \(S_{gen}'\) to the characteristic entropy generation rate \(S_{gen}''\), can be represented as [36,42]:

\[
N_{C} = \frac{S_{gen}''}{S_{0}} = \left(1 + \frac{4}{3} \text{RD}\right) \text{Re}^{1/2} + \frac{\text{Br}}{\text{Re}} \text{Re}^{1/2} \left(f'(E)^2 \right)
\]

\[
+ \text{Re} \left(\frac{\Sigma}{\Omega} \right) \phi^2 + \text{Re} \left(\frac{\Sigma}{\Omega} \right) \theta' \phi'
\]

\[
+ \text{Ha}^2 \left(\frac{\text{Br}}{\text{Re}} \right) \left(f'(E)^2 \right)
\]

where \(S_{gen}'' = k(T_{W} - T_{\infty})^2/(k^2 T_{\infty}^2)\) is the characteristic entropy generation rate, \(Q = (T_{W} - T_{\infty})/T_{\infty}\) the dimensionless temperature difference, \(\Sigma = (\varphi - 2\varphi_{\infty})/\varphi_{\infty}\) the dimensionless concentration difference, \(Br = \mu U_{w}^2/(k(T_{W} - T_{\infty}))\) the Brinkman number, \(Ha = \sigma B_{0}^2 k^2/(1 - a)\mu \) the Hartman number, and \(\zeta = \text{RD} \varphi_{\infty}/k\) is the diffusion constant parameter entropy parameters, respectively.

The domination of the irreversibility process is of significant interest since the entropy generation rate is unable to solve this problem. Looking at Bejan number, defined as the entropy generation as a result of heat transfer to the total entropy generation, is used to study the entropy generation processes. Bejan number in dimensionless is given as [33,34]:

\[
\text{Be} = \frac{(1 + \frac{4}{3} \text{RD}) \text{Re}^{1/2}}{N_{C}} \quad \text{(27)}
\]

In our study, the dimensionless form of the momentum, energy, and concentration Eqs. (18)–(20) associated with the boundary condition Eq. (21) is a system of highly nonlinear ordinary differential equations that are solved numerically using implicit finite difference method known as Keller box method [40]. This method is unconditionally stable and has second order accuracy. The grid size \(h = 0.01\) has been used so that the results are mesh independent. It was seen that satisfaction of the outer boundary conditions is obtained by taking the boundary layer thickness \(\eta_{\infty} = 7\) and the convergence tolerance \(\varepsilon = 0.00001\). The maximum value of \(\eta_{\infty}\) was found for each iteration loop by \(\eta_{\infty} = \eta_{\infty} + \Delta \eta\). The physical sundry parameters are such as magnetic field \(M\), electric field \(E\), unsteadiness parameter \(\delta\), mixed convection parameter \(\lambda\), buoyancy ratio parameter \(\text{Pr}\), thermal radiation \(\text{Ra}\), Eckert number \(\text{Ec}\), suction/blowing parameter \(\beta\), Prandtl number \(Pr\), Brownian motion parameter \(Nb\), thermophoresis parameter \(Nt\), Lewis number \(Le\) and chemical reaction \(\gamma\). Also, the entropy generation number and Bejan number see Eqs. (26) and (27) with parameters viz. dimensionless temperature difference \(\Omega\), dimensionless concentration difference \(\Sigma\), Brinkman number \(Br\), the diffusion constant parameter \(\zeta\), Reynolds number \(Re\), and Hartman number \(Ha\), respectively.

The dimensionless velocity \(f'(\eta)\) for various values of parameters such as magnetic field \(M\) and electric field \(E\) are plotted, see Figs. 2 and 3. It is noticed from Fig. 2 that the velocity of the nanofluid reduces with the intensification of the strength of the magnetic field \(M\). The influence of a transverse magnetic field to an electrically conducting nanofluid provides upsurge to a resistive type force known as the Lorentz force. This force has the propensity to slow down the movement of the nanofluid due to the sheet surface. The magnetic field exerts retarding force on the electric convection flow which tends to increase the skin friction coefficient within the boundary layer vicinity. Use of a magnetic field affecting the force stream has the inclination to encourage a motive force which reduces the motion of the nanofluid. The influence of electric field parameter is displayed in Fig. 3. As the values of electric field parameter increase, the momentum boundary layer
rises above the sheet significantly as the skin friction coefficient reduces. Due to Lorentz force rising as result of electric field acts like an accelerating force decreases the frictional resistance which causes to shift the streamline far from the linear stretching surface. This electric field contributes to the thickening of the momentum boundary layer and the accelerating body force to the flow is the cause of enhancing the nanofluid velocity.

The variation in the dimensionless temperature field $\theta (\eta)$ associated with various values of thermal radiation parameter Rd and Eckert number Ec are examined in the Figs. 4 and 5. In Fig. 4, we noticed that higher temperature and thicker thermal boundary layer are associated with larger thermal radiation parameter. The larger radiation gives a significant amount of heat to the fluid as a result of enhancement in the temperature field. The influence of Eckert number is displayed in Fig. 5. The effects of Eckert number is to increase the temperature and boundary layer thickness due to the frictional heating. For low-speed fluid, the viscous dissipation can be ignored.

The effects of chemical reaction parameter γ on the concentration field $\phi (\eta)$ are shown in Fig. 6. It is evident that stronger γ leads to the reduction in nanoparticle concentration and solutal boundary layer thickness. The description of this actions is that the destructive chemical rate ($\gamma > 0$) enhances the mass transfer rate and consequently a reduction in nanoparticle concentration.

Figs. 7 and 8 depict graphical presentations for the entropy generation number as a function of Hartmann number Ha, and dimensionless group $Br \Omega^{-1}$ (that is the ratio of the Brinkman number to the dimensionless to temperature difference). Fig. 7 depicts effects of Hartmann number on the entropy generation number. Entropy generation is sensitive to increase in Hartmann number, because the interaction and action between the electric and magnetic fields strengthen the dissipation energy to thermal diffusion and nanofluid friction. The nanofluid dynamic viscosity reduces, the inter-molecular force binding the fluid nanoparticles gets weaker. Consequently, the level of entropy generation rises as a result of heat transfer from the nanofluid to the stretching sheet and the viscous dissipation due to an interaction of the nanoparticles in the distribution. In Fig. 8, behavior of the dimensionless groups $Br \Omega^{-1}$ on entropy generation number profile is displayed. This dimensionless group is sensitive to an increase in nanofluid friction which results in enhancement in the entropy generation. They are increasing function with entropy generation number, due to mass transfer to the entropy generation number.

Figs. 9 and 10 display the effects of mixed convection parameter λ and buoyancy ratio parameter Nr on Bejann number profiles.
The influences of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile have reverse effects (see Figs. 9 and 10). Fig. 9 displays the effects of mixed convection parameter λ on the Bejan number profile. For an increase in $\lambda > 0$ associated with assisting flow reduces as the inertial forces dominate the buoyancy forces away from the sheet. The irreversibility due to mixed convection dominates over the thermal energy near the linear stretching sheet. This resulted in a reduction in the nanofluid and then decrease along the stretching sheet. $\lambda = 0$ signifies force convection flow. The effect of the buoyancy ratio parameter Nr on the Bejan number profile is illustrated in Fig. 10. Higher values of the buoyancy ratio lead to an increase and thereafter decrease near the linear stretching. The irreversibility due to buoyancy ratio dominates the heat transfer close to the wall. This is due to the result of a significant amount of thermal buoyancy forces over the concentration buoyancy forces which dominate the vicinity of the boundary layer region. Due to the dependence of nanofluid on temperature and concentration, heat and mass transfer dominate over thermal diffusion.

The unsteady electrical MHD mixed convection flow and heat transfer of nanofluid due to entropy generation with combined effects of thermal radiation, viscous dissipation, and chemical reaction alongside with wall mass transfer due to linear stretching sheet have been studied. The influences of the involved parameters on the electrical conduction of nanofluid via the velocity, temperature, nanoparticle concentration, entropy generation, and Bejan number are investigated and analyzed with graphical representations. The conclusions are as follows:

1. Velocity field rises with an increase in the electric field but decreases with magnetic field parameter.
2. Temperature field is sensitive to an increase in the thermal radiation and Eckert number.
3. Entropy generation is penetrating to an intensification in Hartmann number and dimensionless group (that is the ratio of the Brinkman number to the dimensionless to temperature difference).
4. Higher values of chemical reaction leading to a reduction in nanoparticle concentration.
5. Buoyancy ratio and mixed convection parameter exhibit an opposite behavior with Bejan number.
Acknowledgments

This research is being supported by the research grant under the Ministry of Higher Education (MOHE), the Fundamental Research Grant Scheme (FRGS) project vote number R.J 130000.7809.4F354.

References

