Universiti Teknologi Malaysia Institutional Repository

Identification of source to sink relationship in deregulated power systems using artificial neural network

Mustafa, Mohd. Wazir and Khairuddin, Azhar and Shareef, Hussain and Khalid, S. N. (2007) Identification of source to sink relationship in deregulated power systems using artificial neural network. In: Power Engineering Conference, 2007. IPEC 2007. International, 3-6 Dec 2007, Singapore.

[img] PDF
Restricted to Repository staff only

393kB

Official URL: http://ieeexplore.ieee.org/document/4509992/

Abstract

This paper suggests a method to identify the relationship of real power transfer between source and sink using artificial neural network (ANN). The basic idea is to use supervised learning paradigm to train the ANN. For that a conventional power flow tracing method is used as a teacher. Based on solved load flow and followed by power tracing procedure, the description of inputs and outputs of the training data for the ANN is easily obtained. An artificial neural network is developed to assess which generators are supplying a specific load. Most commonly used feedforward architecture has been chosen for the proposed ANN power transfer allocation technique. Almost all system variables obtained from load flow solutions are utilised as an input to the neural network. Moreover, log-sigmoid activation functions are incorporated in the hidden layer to realise the non linear nature of the power flow allocation. The proposed ANN provides promising results in terms of accuracy and computation time. The IEEE 14-bus network is utilised as a test system to illustrate the effectiveness of the ANN output compared to that of conventional methods.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:ANN power transfer allocation technique, IEEE 14-bus network, artificial neural network, deregulated power systems, log-sigmoid activation functions, power flow tracing method, power tracing procedure, supervised learning paradigm
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:7665
Deposited By: Norhafizah Hussin
Deposited On:19 Jan 2009 00:58
Last Modified:29 Aug 2017 02:34

Repository Staff Only: item control page