Universiti Teknologi Malaysia Institutional Repository

Electronic and optical properties of Bi2Se3 topological insulator: a promising absorbing layer for broadband photodetector

Lawal, A. and Shaari, A. and Ahmed, R. and Ali, M. H. and Jarkoni, N. (2017) Electronic and optical properties of Bi2Se3 topological insulator: a promising absorbing layer for broadband photodetector. ARPN Journal of Engineering and Applied Sciences, 12 (21). pp. 5880-5886. ISSN 1819-6608

[img]
Preview
PDF
321kB

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Bismuth selenide (Bi2Se3) is a van der Waals compound which has been excellently reported as thermoelectric material. Linear dispersion near Fermi energy level is an exciting feature to consider, a promising candidate for photonic device within broadband wavelengths. For this application, detailed knowledge of its structural, electronic and optical properties is very essential. The electronic properties were determined by density functional theory (DFT) calculations implemented in Quantum-Espresso simulation package which uses plane wave basis and pseudopotential for the core electrons. Optical properties are computed by solving Bethe-Salpeter equation of many-body perturbation theory (MBPT) as implemented in Yambo code. The band structure results show the semiconducting behaviour of Bi2Se3. Taken into account the effects of electron-hole interaction by solving Bethe-Salpeter equation, the calculated optical properties are in better agreement with available experimental results. The exciton energy shows that the title material can absorb light within infrared region.

Item Type:Article
Uncontrolled Keywords:Bi2Se3, BSE, DFT
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:75372
Deposited By: Widya Wahid
Deposited On:22 Mar 2018 19:05
Last Modified:22 Mar 2018 19:05

Repository Staff Only: item control page