SAMARIA ACTIVATED ABSORPTION AND EMISSION OF ZINC TELLURIUM GLASS

Y.A. Tanko, M.R. Sahar, S.K. Ghoshal

Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Abstract

Enhanced absorption and emission cross-sections of rare earth doped binary glasses are highly demanding for various photonic applications. Determining the right glass compositions with appropriate rare earth dopants remain challenging. Different microscopic mechanisms responsible for optical enhancement and quenching are not fully understood. In this view, we prepare a series of glasses with composition (80-x)TeO2-20ZnO-(x)Sm2O3, where 0 ≤ x ≤ 1.5 mol% using melt quenching technique. X-ray diffraction (XRD), Photoluminescence (PL) and Ultraviolet Visible Near-Infrared (UV-Vis-NIR) spectroscopic measurements are carried out to inspect the samarium concentration dependent absorption and emission features of the prepared glasses. Physical properties such as glass density and molar volume are found to be in the range 5.57-5.61 g cm−3 and 25.84-26.15 cm3 mol−1, respectively. XRD pattern verifies the amorphous nature of the prepared samples. The UV-Vis-NIR absorption spectra reveal nine peaks centered at 470, 548, 947, 1085, 1238, 1385, 1492, 1550 and 1589 nm. These bands arise due to 4H9/2→4I11/2, 4G5/2, 4F7/2, 4F5/2, 4F3/2, 4F1/2, 4H15/2 and 4I11/2 transitions, respectively. PL spectra under the excitation of 452 nm display four emission bands centered at 563, 600, 644 and 705 nm corresponding to 4G5/2→4H9/2, 4H7/2, 4H9/2 and 4H11/2 transitions of samarium ions. The mechanism of photoluminescence enhancement is identified, analyzed, and understood. A correlation between samarium concentration and optical response is established. This composition may be useful for fabricating various optical devices.

Keywords: Tellurite glass, samarium oxide, optical absorption, photoluminescence

© 2016 Penerbit UTM Press. All rights reserved

Graphical abstract

Enhanced absorption and emission cross-sections of rare earth doped binary glasses are highly demanding for various photonic applications. Determining the right glass compositions with appropriate rare earth dopants remain challenging. Different microscopic mechanisms responsible for optical enhancement and quenching are not fully understood. In this view, we prepare a series of glasses with composition (80-x)TeO2-20ZnO-(x)Sm2O3, where 0 ≤ x ≤ 1.5 mol% using melt quenching technique. X-ray diffraction (XRD), Photoluminescence (PL) and Ultraviolet Visible Near-Infrared (UV-Vis-NIR) spectroscopic measurements are carried out to inspect the samarium concentration dependent absorption and emission features of the prepared glasses. Physical properties such as glass density and molar volume are found to be in the range 5.57-5.61 g cm−3 and 25.84-26.15 cm3 mol−1, respectively. XRD pattern verifies the amorphous nature of the prepared samples. The UV-Vis-NIR absorption spectra reveal nine peaks centered at 470, 548, 947, 1085, 1238, 1385, 1492, 1550 and 1589 nm. These bands arise due to 4H9/2→4I11/2, 4G5/2, 4F7/2, 4F5/2, 4F3/2, 4F1/2, 4H15/2 and 4I11/2 transitions, respectively. PL spectra under the excitation of 452 nm display four emission bands centered at 563, 600, 644 and 705 nm corresponding to 4G5/2→4H9/2, 4H7/2, 4H9/2 and 4H11/2 transitions of samarium ions. The mechanism of photoluminescence enhancement is identified, analyzed, and understood. A correlation between samarium concentration and optical response is established. This composition may be useful for fabricating various optical devices.
1.0 INTRODUCTION

In the past, optical properties of rare-earth doped glasses have been extensively studied for their numerous application in optical switching, solid state lasers, optical data storage, display monitor, sensors, etc. [1]. Lately, tellurite glasses became attractive due to their exceptional properties such as low phonon energy, high refractive index, low melting point, as well as good chemical and thermal stability [2-5]. When heavy metal oxides such as Pb, Mg, and Zn are being added to tellurite glass it shows reasonable changes in the physical and optical properties of the host. These glasses are promising optical material for luminescence in lasers and nonlinear optical materials.

The optical properties of Sm³⁺-doped glasses are of special interest to many researchers including us. Trivalent Samarium ions known to exhibit broad absorption and emission bands due to ⁴G₅/₂→⁴Hᵢ (J = 5/2, 7/2, 9/2, 11/2) transitions in preferred host matrix. Additionally, the phonon energies of hosts are not so critical to the reddish-orange emission at ~600 nm, because of the large energy difference of ⁴G₅/₂ metastable level to its next lower lying level [6]. It is also well known that the intensities of emission bands of Sm³⁺ ion in glasses depend on its concentration and host glass composition [7]. To achieve optimum spectroscopic features, the overall composition dependent inspection is prerequisite for device applications.

In this communication, we report the careful synthesis of glasses via melt quenching method and their systematic characterizations for various physical as well as spectroscopic properties. Sm³⁺ ion concentration dependent variation in density, molar volume, refractive index, optical band gaps, and Urbach energy are presented. The absorption and emission spectral features of the prepared glasses are inspected as a function of Sm³⁺ contents. Results are analyzed, compared, and discussed using various mechanisms.

<table>
<thead>
<tr>
<th>Glass codes</th>
<th>Mole percentage</th>
<th>Density(gcm⁻³)</th>
<th>Molar volume (cm³mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZS0</td>
<td>80.0 20 0.0</td>
<td>5.571</td>
<td>25.84</td>
</tr>
<tr>
<td>TZS1</td>
<td>79.7 20 0.3</td>
<td>5.578</td>
<td>25.91</td>
</tr>
<tr>
<td>TZS2</td>
<td>79.4 20 0.6</td>
<td>5.585</td>
<td>25.98</td>
</tr>
<tr>
<td>TZS3</td>
<td>79.1 20 0.9</td>
<td>5.599</td>
<td>26.01</td>
</tr>
<tr>
<td>TZS4</td>
<td>78.8 20 1.2</td>
<td>5.608</td>
<td>26.07</td>
</tr>
<tr>
<td>TZS5</td>
<td>78.5 20 1.5</td>
<td>5.613</td>
<td>26.15</td>
</tr>
</tbody>
</table>

2.0 EXPERIMENTAL

Following melt-quenching method glass samples having composition (80-x)TeO₂-20ZnO-xSm₂O₃, where x = 0, 0.3, 0.6, 0.9, 1.2 and 1.5 mol% are synthesized. About 15 grams of the analytical grade raw materials of tellurium dioxide (Sigma-Aldrich 99%), zinc oxide (ACROS 99%) and samarium oxide (Sigma-Aldrich 99.99%) were weighted and thoroughly grounded. Then, the powders are melted into a porcelain crucible by a raising heat electronic furnace at 800°C for 30 minutes before the melt was poured between two preheated steel molds in an alternative furnace and kept for 3 hours at 250°C. Finally, the samples were cooled down slowly to the room temperature. Samples were cut into desired sizes and polished for superior transparency. The glass compositions and corresponding labels together with their physical properties are summarized in Table 1.

The amorphous nature of the glasses was identified via x-ray diffraction (XRD) using a Burker D8 Advanced diffractometer with CuKα radiation source at 40 kV and 100 mA. Glass densities were measured using Archimedes principle with toluene as immersion liquid. The UV-Vis-IR absorption spectra of the samples were recorded using a Shimadzu UV-PC103 spectrophotometer with a resolution of 1 nm. PL measurements were performed by a Perkin-Elmer LS55 photoluminescence spectrometer with a resolution of 1 nm.

3.0 RESULTS AND DISCUSSION

Figure 1(a) displays the Sm₂O₃ concentration dependent variation of density. For all the glasses, the densities (ρ) are found to vary between 5.571-5.613 g/cm³ with an estimated error of ±0.001 g/cm³. The measured values of density and molar volume are in agreement with other reports [8, 9]. The increase in glass density with the increase of Sm³⁺ ion concentration is attributed to the occupation of Sm²O₃ (higher molecular weight) in the tellurium matrix. Figure 1(b) shows the increase in molar volume with
the increase of Sm$_2$O$_3$ contents is interpreted in terms of the elongation in the bond length or the interatomic spacing between the atoms [10].

Figure 1 shows the XRD pattern of the samples with and without samarium oxide. The glasses do not reveal any discrete or continuous sharp peak but show a broad hump in the diffraction pattern. The absence of any sharp peaks between 2θ = 10-80° and the presence of a broad hump between 20° and 35° confirms the amorphous nature of the glass as observed by others [11, 12].

Figure 3 presents the UV-Vis-NIR absorption spectra of all samples. The appearance of nine absorption bands centered at 470, 548, 947, 1085, 1385, 1492, 1550 and 1589 nm are assigned to the excitations from 4H$_{5/2}$ ground state to 4H$_{11/2}$, 4G$_{5/2}$, 4F$_{11/2}$, 4F$_{7/2}$, 4F$_{5/2}$, 4F$_{3/2}$, 4H$_{15/2}$ and 4F$_{1/2}$ exited states of Sm$^{3+}$ ions, respectively. Our results are in conformity with others observation [13-15].

Figure 4 displays the room temperature luminescence spectra of all samples in the region of 550 – 700 nm under 452 nm excitation wavelengths. The emission spectra exhibit four significant emission bands centered at 563, 600, 644 and 705 nm ascribed to 4G$_{5/2}$ \rightarrow 4H$_{7/2}$, 4H$_{9/2}$ and 4H$_{11/2}$ transitions, respectively as reported earlier [12, 16, 17]. The band at 600 nm corresponding to 4G$_{5/2}$ \rightarrow 4H$_{7/2}$ transition manifests strong orange luminescence followed by 4G$_{5/2}$ \rightarrow 4H$_{9/2}$ transition at 644 nm with strong red emission. However, the peak at 563 nm corresponding to 4G$_{5/2}$ \rightarrow 4H$_{5/2}$ displays weak green luminescence. Lastly, 4G$_{5/2}$ \rightarrow 4H$_{11/2}$ (705 nm) is assigned to the weak red luminescence.
Different mechanisms involved in the luminescence process are explained via the partial energy level diagram in Figure 5. For the ground state $^4H_{5/2}$, absorption occurs which is referred to as ground state absorption (GSA) for which electrons is lifted to the excited energy level. Some energy (nonradioactive) is released as a result of electronic vibrational relaxation between the excited energy levels. From there, internal conversion (transition to the lowest excited energy level $^4I_{5/2}$) occurs and excited electrons returns back to $^4H_{5/2}$, $^4H_{7/2}$, $^4H_{9/2}$ and $^4I_{11/2}$ transitions thereby emitting green, intense orange and red fluorescence.

4.0 CONCLUSION

We demonstrated the effects of Sm$^{3+}$ ion concentration on the absorption and the luminescence features of zinc tellurite glasses. A correlation between Sm$^{3+}$ contents and physical properties is established. The absorption spectra exhibited nine absorption bands corresponding to the transition from ground level $^4H_{5/2}$ to the various excited state of Sm$^{3+}$ ions in the range 400-1800 nm. The luminescence spectra displayed four emissions peaks centered at 563, 600, 644, and 705 nm which are assigned to $^4G_{5/2} \rightarrow ^4H_{5/2}$, $^4H_{7/2}$, $^4H_{9/2}$ and $^4I_{11/2}$ transitions, respectively. The excellent features of the results suggest that Sm$^{3+}$ doped zinc tellurite glasses of the present composition are suitable for the development of solid state lasers and other photonic devices.

Acknowledgement

The authors gratefully acknowledge the financial support from UTM and Malaysian Ministry of Education through Vo.05H36, 05H45 (GUP) and 4F319, 4F424 (FRGS).

References