Universiti Teknologi Malaysia Institutional Repository

Development of a surrogate-based vehicle dynamic model to reduce computational delays in a driving simulator

Fouladinejad, N. and Fouladinejad, N. and Abdul Jalil, M. K. and Mohd. Taib, J. (2016) Development of a surrogate-based vehicle dynamic model to reduce computational delays in a driving simulator. Simulation, 92 (12). pp. 1087-1102. ISSN 0037-5497

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The development of a real-time driving simulator involves highly complex integrated and interdependent subsystems that require a large amount of computational time. When advanced hardware is unavailable for economic reasons, achieving real-time simulation is challenging, and thus delays are inevitable. Moreover, computational delays in the response of driving simulator subsystems reduce the fidelity of the simulation. In this paper, we propose a technique to decrease computational delays in a driving simulator. We used approximation techniques, sensitivity analysis, decomposition, and sampling techniques to develop a surrogate-based vehicle dynamic model (SBVDM). This global surrogate model can be used in place of the conventional vehicle dynamic model to reduce the computational burden while maintaining an acceptable accuracy. Our results showed that the surrogate model can significantly reduce computing costs compared to the computationally expensive conventional model. In addition, the response time of the SBVDM is nearly five times faster than the original simulation codes. Also, as a method to reduce hardware cost, the SBVDM was used and the results showed that most of the responses were accurate and acceptable in relation to longitudinal and lateral dynamics. Based on the results, the authors suggested that the proposed framework could be useful for developing low-cost vehicle simulation systems that require fast computational output.

Item Type:Article
Uncontrolled Keywords:Automobile simulators, Costs, Dynamic models, Fuel additives, Hardware, Sensitivity analysis, Simulators, Vehicles, Computational delays, Driving simulator, Multi-disciplinary systems, Surrogate model, Vehicle dynamic model, Cost reduction
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:71802
Deposited By: Narimah Nawil
Deposited On:16 Nov 2017 05:50
Last Modified:16 Nov 2017 05:50

Repository Staff Only: item control page