IDENTIFICATION OF AUDIO AND ROOM PARAMETERS FOR OPTIMUM SPEECH INTELLIGIBILITY IN ROOM

NG TSING CHUN

UNIVERSITI TEKNOLOGI MALAYSIA
I declare that this thesis entitled “Identification of Audio and Room Parameters for Optimum Speech Intelligibility in Room” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : NG TSING CHUN
Date : 11 May 2007
ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my thesis supervisor, Dr. Mokhtar bin Harun, for encouragement, guidance, critics, advices, motivation and mostly his patience without any haste. With his continued support and interest, this thesis would have been successfully as presented here.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Thank you.
ABSTRACT

The installation of electronic amplification system in the meeting or conference room is intended to having a louder, clear and an even sound propagation. Furthermore the conversation exchanged will be at ease, since speakers do not have to raise their voice to be heard. However, the interaction between amplified sound waves in the room and the characteristics of the room may not produce desirable results, which is clarity of the speech. The aim of this project is to identify room and audio parameters in meeting room, which influence conversation so that optimum speech intelligibility can be achieved in that room. The room and audio parameters such as room shape and size, room furnishes, reverberation time and background noise, these characteristics will be studied so as to evaluate their effects on speech intelligibility. CARA program is used to simulate room samples to determine which acoustic design can achieve the optimum speech intelligibility. From the simulation results it is found that 17 out of 18 of the room design model within the range of acceptable speech intelligibility. The proper selection of acoustical materials for the surfaces of ceiling, wall and floor in these meeting room models provide optimum acoustical properties and meet the design requirements.
ABSTRAK

Pemasangan sistem pembesaran elektronik di dalam bilik mesyuarat atau bilik perjumpaan adalah bertujuan untuk menghasilkan perbualan yang lebih kuat, jelas and sama nyata di semua sudut bilik. Lagipun perbualan itu akan menjadi lebih mudah, kerana orang yang cakap tidak perlu meninggikan suaranya supaya orang lain boleh dengar. Tetapi, interaksi antara gelombang bunyi di dalam bilik dan juga kelakuan bilik itu mungkin tidak dapat menghasilkan keputusan yang diingini, iaitu kejelasan ucapan. Tujuan projek ini adalah untuk mengenalpasti ciri-ciri bilik dan bunyi di dalam bilik mesyuarat, di mana mereka menghasilkan kesan kepada ucapan, supaya kepandaian ucapan yang optimum dapat dicapai di dalam bilik tersebut. Ciri-ciri bilik dan bunyi seperti rupabentuk dan saiz bilik, perhiasan bilik, masa gemaan dan kebisingan persekitaran, kesemua kelakuan ini akan dipelajari supaya mengenali kesan-kesan mereka terhadap kepandaian ucapan. Program CARA digunakan untuk simulasi terhadap model bilik tersebut dan mengenali rekabentuk akustik yang mana satu dapat mencapai kepandaian ucapan yang optimum. Daripada keputusan simulasi yang telah dilakukan di projek ini, 17 daripada 18 rekabentuk bilik terletak di dalam lingkungan kepandaian ucapan yang boleh diterima. Dengan pemilihan yang menyempurnakan bagi bahan akustik permukaan untuk siling, dinding and lantai di dalam model bilik mesyuarat tersebut, kandungan akustik yang optimum dapat dicapai dan memenuhi keperluan rekabentuk itu.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background Study</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of Project</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Project</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Layout of Thesis</td>
<td>4</td>
</tr>
</tbody>
</table>

2	LITERATURE REVIEW	6
2.1	Speech Intelligibility in Room	6
2.1.1	Room Acoustical Design	7
2.1.2	Speech Signal	8
2.2	Speech Intelligibility Evaluation	10
2.2.1	STI (Speech Transmission Index)	10
2.2.2 Percentage Articulation Loss of Consonants (%ALCons) 11
2.3 Reverberation 13
 2.3.1 Reverberation Time 14
 2.3.2 Optimum Reverberation Time 15
 2.3.3 Sabine Equation 17
 2.3.4 Critical Distance 18
 2.3.5 Directivity 18
 2.3.6 Relationship between Reverberation Time (RT) and %ALCons 19
2.4 Room’s Acoustical Treatment 20
 2.4.1 Acoustical Comfort 20
 2.4.2 Ergonomics and Room Layouts 21
 2.4.3 Reverberation Time and Room Acoustics 21
2.5 Surface Applied Acoustic Treatments 22
 2.5.1 Sound Absorption and Absorbers 23
 2.5.2 Sound Diffusion and Diffusers 24
 2.5.3 Reverberation Time and Sound Absorption 25
 2.5.4 Meeting Room Acoustical Treatment 26
 2.5.4.1 Offices 26
 2.5.4.2 Conference Rooms 27
2.6 Background Noise 27
 2.6.1 Noise Reduction 28
 2.6.2 Noise Reduction by Sound Absorption 29
 2.6.3 Ambient Noise Level and Reverberation Time Design Goals 30

3 METHODOLOGY 31
3.1 Introduction to CARA Program 31
 3.1.1 Reverberation Time in DIN 18041 Standard 34
 3.1.2 Room Usage, Shape and Size of Room 35
 3.1.3 Ceiling, Floor and Walls 36
3.1.4 Room Furnishes and Absorber Type 37
3.1.5 Graph of CARA Simulation 38
3.2 Room Design by CARA Program 41
 3.2.1 Absorbers Type 41
 3.2.2 Floor Coverings 43
 3.2.3 Room Size and Furnishes 44
 3.2.4 Reverberation Time, Noise Reduction and Average Absorption Coefficient 45
 3.2.5 Simulation Models of Room Design 45

4 RESULTS

5 ANALYSIS OF RESULTS 66
 5.1 Summary 1 67
 5.2 Summary 2 70

6 CONCLUSION AND RECOMMENDATION 73
 6.1 Recommendations for Future Work 74

REFERENCES 75
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Maximum ambient noise levels and optimum reverberation time (RT) for good speech intelligibility</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Maximum allowable background noise levels in accordance with DIN 18041</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Example of room properties</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Three types of absorbers use in simulation</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Room dimension and number of places occupied of simulation model</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Simulation models of room design</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Mineral wool ceilings without absorber, carpet floor</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Mineral wool ceilings with 50% absorber covered, carpet floor</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Mineral wool ceilings with 100% absorber covered, carpet floor</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Mineral wool ceilings without absorber, tiled floor</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Mineral wool ceilings with 50% absorber covered, tiled floor</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Mineral wool ceilings with 100% absorber covered, tiled floor</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Gypsum board ceilings without absorber, carpet floor</td>
<td>54</td>
</tr>
<tr>
<td>4.8</td>
<td>Gypsum board ceilings with 50% absorber covered, carpet floor</td>
<td>55</td>
</tr>
<tr>
<td>4.9</td>
<td>Gypsum board ceilings with 100% absorber covered, carpet floor</td>
<td>56</td>
</tr>
<tr>
<td>4.10</td>
<td>Gypsum board ceilings without absorber, tiled floor</td>
<td>57</td>
</tr>
</tbody>
</table>
4.11 Gypsum board ceilings with 50% absorber covered, tiled floor 58
4.12 Gypsum board ceilings with 100% absorber covered, tiled floor 59
4.13 Gypsum tile ceilings without absorber, carpet floor 60
4.14 Gypsum tile ceilings with 50% absorber covered, carpet floor 61
4.15 Gypsum tile ceilings with 100% absorber covered, carpet floor 62
4.16 Gypsum tile ceilings without absorber, tiled floor 63
4.17 Gypsum tile ceilings with 50% absorber covered, tiled floor 64
4.18 Gypsum tile ceilings with 100% absorber covered, tiled floor 65
5.1 Sorted results of all design stages 67
5.2 Reverberation time and value of %ALCons in each design stages 71
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of meeting or conference room</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Frequency ranges for hearing and for room acoustics</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Sound in frequency domain</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Relationship between STI (straight line) and %ALCons (dotted line) obtained over a wide variety of conditions comprising combinations of various S/N ratios, reverberation times and echo-delay times. The %ALCons score refers to the mean loss of consonants in phonetically balanced monosyllabic (CVC) nonsense words embodied in neutral carrier phases.</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationship between STI and %ALCons</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>The concept of reverberation time</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>The preferred reverberation time values for various Applications</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>The preferred ranges of reverberation time at mid-frequency (average of reverberation at 500 and 1000 Hz) for a variety of activities</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Recommended reverberation times for different listening rooms specified by the volume and kind of usages of the room.</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Sketch of frequency dependence of the sound absorption coefficient for different materials</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Sound absorption coefficient</td>
<td>26</td>
</tr>
<tr>
<td>2.11</td>
<td>An example of mounting of sound absorbing mineral wool coated plates in the ceiling</td>
<td>26</td>
</tr>
</tbody>
</table>
2.12 Illustration about achieving the audible improvement, the absorption within a room has to be increased by a factor of 2

2.13 Equal speech intelligibility contours for 300 m3 room and reverberation time (RT) design goals

3.1 A snapshot of the CARA program

3.2 A snapshot of the CARA program

3.3 Optimum reverberation time for occupied instruction rooms for the octave bands 500 Hz and 1000 Hz (above) and band of tolerance for the recommended reverberation time as a function of frequency (below) according to DIN 18041. RTo = optimal reverberation time according to the upper diagram, RT = reverberation time.

3.4 Example of room properties

3.5 CARA program of furniture’s entry field

3.6 Gypsum tile ceilings manufactured by Rigips

3.7 Example of the graph of reverberation time over frequency

3.8 Example of the graph of noise reduction and average absorption coefficient over frequency

3.9 Examples of the layout of the places in meeting room

4.1 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.1.1

4.2 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.1.2

4.3 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.1.3

4.4 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.2.1

4.5 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.2.2

4.6 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 1.2.3

4.7 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.1.1
4.8 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.1.2 55
4.9 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.1.3 56
4.10 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.2.1 57
4.11 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.2.2 58
4.12 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 2.2.3 59
4.13 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.1.1 60
4.14 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.1.2 61
4.15 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.1.3 62
4.16 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.2.1 63
4.17 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.2.2 64
4.18 Simulation graph of reverberation time, noise reduction and average absorption coefficient of Design 3.2.3 65
5.1 Room no.1 with its acoustical properties 68
5.2 Room no.2 with its acoustical properties 69
5.3 Room no.3 with its acoustical properties 70
5.4 Reverberation time and value of %ALCons in each design stages 72
LIST OF SYMBOLS

RT, T - Reverberation time
V - Volume
S, A - Total room surface
$\dot{\alpha}$ - Average absorption coefficient
ΔL - Noise reduction
D - Critical distance
Q - Directivity
r - Distance
k - Constant
l - Length
b - Width
h - Height
CHAPTER 1

INTRODUCTION

This chapter will discuss briefly about problem statement, background study and objectives of the project.

1.1 Problem Statement

Rooms such as meeting or conference room is intended for speech, but most of them are often not designed to meet this intended use. Meeting room can be as small as just consist of a few seats with a table in the center of the room with one whiteboard in the front, and as large as consist of a few ten of seats with more tables, projector, and some of them with sound reinforcement system. Conversation in a small room is much more clear and ease to understand since the talker and listener are seated face to face. They do not need to raise their voice when speaking to each other.

In the case of larger meeting room, the installation of sound reinforcement system is intended to having a louder, clear and bigger coverage of conversation in the room, since speakers do not have to raise their voice to be heard. When the acoustical design issues are ignored, inaccurate communication can result. Both the excessive noise and inappropriate room acoustics can degrade the intelligibility of speech in room, which will affect clarity of the speech.
1.2 Background Study

This project identifies the room and audio parameters that will affect the degree of speech intelligibility. The room parameters that will discuss in this project are regarding to the shape and size of the room and its room’s furnishes. This usage of the room that will be analyzed is a meeting or conference room with rectangular shape. Different sizes of the room will be analyzed since the volume and surface area of the room are important parameters to determine the reverberation time. The pictures on Figure 1.1 show some example of meeting or conference room.
1.3 Objectives of Project

The objectives of this project are:

i. To identify parameters that influence speech intelligibility
ii. To select suitable audio and room parameters for analysis
iii. To manipulate these parameters so as to achieve optimum speech intelligibility in the room

1.4 Scope of Project

The scope of this project included the design of proper meeting room to achieve optimum speech intelligibility and fulfill the acoustical design requirements.
One of the important criteria when designing room acoustics is the reverberation time. The reverberation time is influenced by room size and sound absorption. Therefore, in this project, three different room size with small, medium and large size are modeling with different absorption coefficient respectively. There are total eighteen room models differ in dimension, surface material and furnishing.

The simulation is done by using CARA program. The reverberation time, average absorption coefficient and noise reduction level are shown on simulation. Based on the simulation results, the %ALCons is use as method to evaluate degree of speech intelligibility, and also which kinds of room acoustical design much fulfill the design requirements.

The limit of this project is room acoustical designs are analyzed by using the components given in the CARA program only. Only simulation by computer but no any experiments has been carried out for actual audio measurements. The recommended requirement by the DIN 18041 standard, where stated in the program, is not necessary to be met. Furthermore, the ventilation issue, lighting, cost of acoustical design and etc. are not included in the project as well.

1.5 Layout of Thesis

The first chapter of this project thesis discusses the introduction and background of the project. Problem statement and scope of the project also has been mentioned.

Second chapter having the detailed researches on the theories of the room and audio parameters that have been chosen. The equations of calculating reverberation time and %ALCons also stated.

The more discussion about the usage of the CARA program to analyzed speech intelligibility is located on the chapter three that is the project methodology. The various room acoustical designs for analysis are also mentioned here.
The results of room acoustical design and analysis are discussed on chapter four and chapter five. The conclusion and the recommendations for further study will be made on the last chapter.