CASE-BASED RETRIEVAL
ON QUESTION ITEMS GENERATION

IMAM MUCH IBNU SUBROTO

A project report submitted fulfilment of
the requirements for the award of the degree of
Master of Science (Computer Science)

Faculty Of Computer Science And Information System
Universiti Teknologi Malaysia

July 2007
DEDICATION

This thesis is dedicated to my beloved family and UNISSULA
ACKNOWLEDGEMENT

First and foremost, I would like to thank ALLAH SWT, for all the achievements that I have gained today. Then, I would like to extend my deeply appreciation for those who have contributed directly and indirectly to my project. I would like to thank my supervisor Dr. Norazah Yusof for her assistance, support and encouragement which have contributed to the success of this project.

I would like to thank my institution UNISSULA (Universitas Islam Sultan Agung) for the chance and the financial support throughout the length of my study. For all the professors, lecturers, staff and my colleagues in Faculty of Computer Science and Information System, I would like to thank you all for your help and support in every step during my study in UTM.

At last, I would like to dedicate this thesis to my beloved family, for my wife Wiwiek and my son Azka, my parents, Jogja big family and Solo big family. Thank you for your prayer, love, patience and spirit throughout the course of this study.
ABSTRACT

In the education, the purpose of the conducting test is to determine whether the instructional objectives have been achieved or not. It is a challenge to build a learning system that meet pedagogical aspect of learning. Test items should match to the learning outcomes and the conditions determine by the instructional objectives. Taxonomy Bloom’s known is as the standard of the instructional objective level on the cognitive domain. This work is to study how effective the Case-based Reasoning (CBR) method is to solve the generation of question items problem. CBR is the artificial intelligent method that is suitable to solve the problem by finding similar cases from the past. Based on the similar case, the solution is to reuse the similar case and to revise its similar case solution. It is the fact that some question items or some test may be reused or revised for future situation. This work has been successfully implementing the CBR method on question items generation. Some retrieval techniques (Rule Base Reasoning and CBR) and similarity measure (Nearest neighborhood and Euclidean distance) has been experimented. From these experiments is that, CBR retrieval technique using Euclidean distance similarity and inductive indexing approach is the best performance. The experiment has given the similarity tolerance 0.7 is acceptable because it categorizes to high similarity and the recall is enough to give suggestion solution (in this experiment about 3 or 4 similar cases). Finally the overall results show that the complete task of CBR method has successfully solved the problem of matching the learning outcomes with the instructional objectives.

Keyword: Case-based Reasoning, Case Retrieval, question item generation, similarity measure
ABSTRAK

Dalam pendidikan, tujuan melaksanakan ujian adalah untuk menentukan sama ada objektif pengajaran telah dicapai atau tidak. Adalah suatu cabaran untuk membangunkan suatu sistem pembelajaran yang memenuhi aspek pedagogi dalam pendidikan. Item-item ujian yang disediakan sepatutnya berpadanan dengan hasil pembelajaran dan syarat-syarat yang ditentukan oleh objektif pengajaran. Taksonomi Bloom telah dikenali sebagai suatu piawaian dalam membahagikan aras objektif pengajaran bagi domain kognitif. Tujuan pendidikan ini ialah untuk mengkaji keberkesan kaedah Case Based Reasoning (CBR) untuk menyelesaikan masalah penjanaan item-iten soalan. CBR ialah suatu kaedah kepintaran buatan yang sesuai untuk menyelesaikan masalah dengan cara mencari kes-kes yang serupa dan boleh diguna semula dan boleh dinilai semula untuk penyelesaian pada situasi akan datang. Penyelidikan ini telah berjaya melaksanakan kaedah CBR untuk menjana item-iten soalan. Beberapa teknik capaian seperti Rule Based Reasoning (RBR) dan CBR dan pengukuran keserupaan telah diujikaji. Hasil daripada ujikaji ini, didapati teknik capaian CBR menggunakan Euclidien distance similarity dan pendekatan memberikan hasil yang terbaik. Ujikaji ini memberikan nilai toleransi keserupaan 0.7 ialah boleh diterima kerana boleh dikategorikan keserupaan tinggi dan memberikan cadangan jawapan yang cukup (3 atau 4 kes). Semua fasa pengekalan, didapati rumus purata telah berjaya mengemaskini pengetahuan. Akhirnya, keputusan keseluruhannya menunjukkan pelaksanaan semua tugas-tugas dalam kaedah CBR telah berjaya menyelesaikan masalah memadanikan hasil pembelajaran dengan objektif pengajaran.
Table of Content

<table>
<thead>
<tr>
<th>TITLE</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

Chapter 1: Project Overview

1.1 Introduction 1
1.2 Background of problem 2
1.3 Statement of the problem 3
1.4 Research objective 3
1.5 Scope 3
1.6 Importance of Research Study 4
1.7 Organization Report 4

Chapter 2: Literature Review

1.1 Introduction 5
1.2 Case Based Reasoning (CBR) 5
 1.2.1 Background and motivation 6
1.2.2. Case-based Problem Solving 6
1.2.3. CBR Life Cycle 8
1.2.4. A hierarchy of CBR tasks 10
1.2.5. Case Representation 10
1.2.6. Case Retrieval 12
1.2.7. Case Adaptation 13
1.2.8. Case-Base Maintenance 14
1.2.9. CBR Common Application 15

1.3. Case Retrieval 17
 1.3.1. Introduction 17
 1.3.2. Retrieval Technique 17
 1.3.2.1. Nearest-neighbor retrieval 17
 1.3.2.2. Inductive approaches 18
 1.3.2.3. Knowledge-guided approaches 18
 1.3.2.4. Template Retrieval 19
 1.3.3. Similarity Measure 19
 1.3.3.1. Weighted Euclidean Distance 19
 1.3.3.2. Hamming and Levenshtein Distance 20
 1.3.3.3. Cosine Coefficient 20
 1.3.3.4. K-Nearest Neighbor Principle 21
 1.3.4. Case Indexing 21
 1.3.5. Recall and Precision 22

1.4. Bloom’s Taxonomy 24
 1.4.1. The Six Levels of Bloom’s Taxonomy 25
 1.4.2. Levels of Objectives Writing 25

1.5. Testing and e-Learning 28
 1.5.1. E-Learning System 28
 1.5.2. Classroom measurement 28
1.5.3. Type of test 30
1.5.4. Question Items Bank and Test generator 30
1.5.5. Test Blueprint and Case Identification 31
1.5.6. CBR in e-Learning 33

1.6. Chapter Summary 33

Chapter 3: Research Methodology 34

3.1 Introduction 34
3.2 System Framework 34
3.3 Planning Phase 37
3.4 Case Representation 37
 3.4.1 Case: A pair of Problem and Solution 37
 3.4.2 Test Blueprint and Case Identification 39
 3.4.3 Case Storage 40
3.5 Data Collection 41
3.6 Case Similarity Measure 42
3.7 Retrieval Evaluation 46
 3.8.1 Similarity Measure Characteristics 46
 3.8.2 Case Indexing based on Similarity Measure 46
 3.8.3 Execution time 47
 3.8.4 Retrieved Cases, Retrieved Question Items, Precision and Recall 48
3.8 Simulation of Question Items Generation 48
 3.9.1 Phase 1: Case Retrieval 49
 3.9.2 Phase 2: Reuse/ New Case 49
 3.9.3 Phase 3: Revise 50
 3.9.4 Phase 4: Retain/ Case Maintenance 50
Chapter 4: Experiment Result and Discussion

4.1 Introduction 55
4.2 Case Representation 55
4.3 Case Identification 58
4.4 Retrieval Evaluation Result 59
 4.4.1 Similarity Measure Characteristics 59
 4.4.1.1 Distance and similarity measure using Euclidean distance 59
 4.4.1.2 Distance and similarity measure using nearest neighborhood similarity 64
 4.4.1.3 Bloom’s Level characteristics using Euclidean distance similarity 65
 4.4.1.4 Bloom’s Level characteristics using nearest neighborhood similarity 67
4.4.2 Case Indexing base on similarity measure 69
4.4.3 Execution Time Result 72
4.4.4 Question items retrieved, Precision, and Recall 75

4.5 Simulation Result 78
 4.5.1 Retrieve 78
 4.5.2 Reuse 79
 4.5.3 Revise 82
 4.5.4 Retain 83

4.6 Result Analysis 84

4.7 Discussion 85

4.8 Chapter Summary 86
Chapter 5: Conclusion

5.1 Introduction 88
5.2 Findings 88
5.3 Contribution of Study 89
5.4 Conclusion 89
5.5 Suggestion for Future Work 90

Reference

Appendix
List of Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1 Taxonomy of Educational Objectives</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.2: An example test blueprint (Kubiszyn, 1995).</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.1 Test Blueprint example</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.1 Feature of case combinations</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.2 Possibility value combination of case features</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.3 Distance and Similarity from some cases using Euclidian distance</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.4 Bloom’s level similarity characteristic using Euclidean distance</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.5 Bloom’s level similarity characteristic using nearest neighborhood</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.6 Number of retrieved cases in similarity constraint</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.7: Execution Time vs. number of data using nearest neighborhood similarity</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.8 Precision vs. Recall using nearest neighborhood similarity</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.9 Precision vs. Recall using nearest Euclidean distance similarity</td>
<td>77</td>
</tr>
</tbody>
</table>
List Figure

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>How case-based problem-solving generates a new solution.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>CBR Life Cycle</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Task method structure</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Structured case representation</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Flat representation: Patient case records.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>CBR entries into a learning state</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Precision and Recall for a given example information request</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Bloom’s Taxonomy Level</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The three stages classroom measurement model</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>System framework of question items generator</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Operational Framework</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Case Representation Record of Test</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>A question example</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>(a) Dummy question generator, (b) Question example that been generated randomly by dummy generator</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Case distance in Euclidean space</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Case Indexing Hierarchy</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Test blueprint form</td>
<td>58</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Case Query from test blueprint</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Distances vs. Similarity Characteristics Measure using Euclidean Distance</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Similarity characteristic using some differences of a constant</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Distances vs. Similarity Characteristics Measure using nearest neighborhood</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Bloom’s level characteristics using Euclidean distance similarity</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 4.7 Bloom’s level characteristics using Nearest Neighborhood similarity 68
Figure 4.8 Case Similarity Index examples in this experiment 69
Figure 4.9 Number of similar cases in minimum similarity constraint 71
Figure 4.10 Number of question items vs. Execution time 74
Figure 4.11 Recall vs. Precision on question items retrieval using nearest neighborhood similarity 77
Figure 4.12 Recall vs. Precision on question items retrieval using Euclidean distance 78
Figure 4.13 Retrieve Phase in CBR simulation 79
Figure 4.14 Question item selections to REUSE 80
Figure 4.15 Add new question as the new solution adaptation 81
Figure 4.16 CBR Simulation Revise solution by manually 82
Figure 4.17 CBR Simulation: Updating knowledge 83
Table of Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Representation of the cases</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Data Collection: Question Items</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Similarity measure using nearest neighborhood similarity</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Similarity measure characteristic using Euclidean distance</td>
</tr>
<tr>
<td></td>
<td>similarity</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>Case Indexing using Euclidean Distance</td>
</tr>
<tr>
<td>APPENDIX F</td>
<td>Execution Time Measure</td>
</tr>
<tr>
<td>APPENDIX G</td>
<td>Project Plan</td>
</tr>
</tbody>
</table>
CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

E-learning is recently growth to optimizing education process. An important part in the modern e-learning is intelligent system inside the e-learning system. Every class in education process has some certain cognitive aspect of instructional objectives and those ones must be measurable. Assessment system in the e-learning should support cognitive measurement by the test. This work related to education application to generate question items, which have related with the certain instructional objectives. The taxonomy of educational objectives for cognitive domain helps categorize objectives at different levels of cognitive complexity.

Conventional method to generate questions from questions banks is random generator method. However, random method is not appropriate to generate question items from question bank, because each question has various objectives, and random method cannot analyze some items which are related to certain objective.

Case-Based Reasoning (CBR) is a method in artificial intelligent (AI) that suitable to cognitive problems. This work related to the CBR method to generate items question.
1.2 Background of problem

In education, the purpose of test is to collect objective information that may be used in conjunction with subjective information to make better educational decision. Test is one of ways to determine that the objective has been achieved (Kubiszyn, Borich, 1995).

It has been realized that the process of constructing and designing questions for the various purpose of test is always time consuming, redundant and not an easy task. Although there are e-learning systems that contain test bank, the method usually used is the random generation approach (Tecuci and Keeling 1998). The drawback of this approach is that, it does not have the capability of selecting questions that meet the user’s specific need, especially for evaluating the student’s specific understanding or skills. Therefore, there’s a need to find other approaches to generate question items that meet the user’s need. The generator must have intelligent which it gotten from the knowledge and experiences.

The most popular knowledge base that usually used is rule base system or called by rule-based reasoning, and another one is case-based reasoning. They have different method to solve the problem. First one use inference to find the solution and the second one is by finding the similar problem from the past experiences and reuse or revise the solution of that problem.
1.3 Statement of the problem

It is a challenge to build learning system that meet pedagogical aspect of learning. Test items should match the learning outcomes and conditions determined by the instructional objectives. Therefore there is a need to study on CBR methodology to find out it can effectively solve the problem.

1.4 Research objective

a. To analyze the performance of the case retrieval of CBR method based on instructional objectives, question type and difficulty level on question items generation

b. To study the feasibility of Case-Based Reasoning (CBR) method on question item generation based on Bloom’s Taxonomy.

1.5 Scope

1. Case-Based Reasoning (CBR) is applied Artificial Intelligent (AI) to generate the question items.

2. This project focus on the case retrieval as the basic to study the feasibility of CBR method on question items generation.

3. Case similarity measure to analyze the characteristic of question items generation based on Bloom’s taxonomy.
4. This work focus on the Bloom’s level. Taxonomy Bloom is being considered as the pedagogical aspect of learning that classifies the levels of cognitive domain in learning.

5. Multiple choice type of question is chosen as the sample for experiment.

6. Instructional objectives, question type, and difficulty level are the features chosen for case representation of this experiment.

1.6 Importance of Research Study

This study gives the result of the intelligent system for question items generator, in this case using CBR method. This is usefully for e-learning development to achieve the educational cognitive objectives in education process. Future work from this study is how to measure each question or test for quality and estimation completion time of them based on the student answer.

1.7 Organization Report

Chapter 2 discusses the literature review. Chapter 3 discusses on the methodology used to build up thus project. Chapter 4 discusses result. Chapter 5 presents the conclusion of this study.