FRONT-END DESIGN OF LOW POWER RADIO ACCESS POINT
FOR RADIO OVER FIBER TECHNOLOGY

ABDULLAH SAAD MOHAMMED AL-AHMADI

A project report submitted in partial fulfillment of the
requirements for the award of the degree of
Master of Engineering
(Electrical-Electronics & Telecommunication)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

May, 2007
ABSTRACT

Low-cost and easily-installed RAPs grew rapidly in popularity in the early 2000s. These devices offered a way to avoid the tangled messes of category 5 cable associated with typical Ethernet networks of the day. Whereas wiring a business, home, or school often requires stringing many cables through walls and ceilings, wireless networking offers the ability to reduce - or eliminate entirely - the stringing of cables. One IEEE 802.11 RAP can typically communicate with 30 client systems located within a radius of 100 m. However, the actual range of communication can vary significantly, depending on such variables as indoor or outdoor placement, height above ground, nearby obstructions, other electronic devices that might actively interfere with the signal by broadcasting on the same frequency, type of antenna, the current weather, operating radio frequency, and the power output of devices. Network designers can extend the range of RAPs through the use of repeaters and reflectors, which can bounce or amplify radio signals that ordinarily would go un-received. In experimental conditions, wireless networking has operated over distances of several kilometers. The purpose of this study is to design and simulate a Front-end design of low power radio access point for radio over fiber technology. Many simulations were performed using Microwave Office. The mean components were Power Amplifier PA and Band-pass Filter BPF. These two components were designed and simulated on frequency of 2.4 GHz.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAKT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1
INTRODUCTION

1.1 Introduction
1.2 Objective
1.3 Scope of the work
1.4 Thesis outline

2
RADIO OVER FIBER TECHNOLOGY

2.1 Introduction
2.2 What is Radio-over-Fiber technology?
2.3 Why Radio-over-Fiber technology?
 2.3.1 Low attenuation loss
 2.3.2 Large bandwidth
 2.3.3 Immunity to radio frequency
interference

2.3.4 Easy installation and maintenance

2.3.5 Reduced power consumption

2.3.6 Operational flexibility

2.3.7 Millimeter waves

2.3.7.1 Advantages of mm-waves

2.3.7.2 Disadvantages of mm-waves

2.3.8 Radio system functionalities

2.4 Applications of Radio-over-Fiber technology

2.4.1 Cellular networks

2.4.2 Satellite communications

2.4.3 Video distribution systems

2.4.4 Mobile broadband services

2.4.5 Wireless LANs

2.4.6 Vehicle communication and control

3 RADIO ACCESS POINT

3.1 Introduction

3.2 Radio Access Point main components

3.2.1 Generating an un-modulated carrier

3.2.2 Adding data modulation

3.2.3 Imaging system

3.2.4 Combining the imaging system and the periodic filter

3.3 Basic introduction to filters

3.4 Band-pass filters

3.4.1 Elementary filter mathematics

3.4.2 Filter approximations
3.4.2.1 Filter order 34
3.4.2.2 Ultimate roll off rate 34
3.4.2.3 Attenuation rate near the cutoff frequency 34
3.4.2.4 Transient response 35
3.4.2.5 Monotonicity 35
3.4.2.6 Passband ripple 35

3.5 Power amplifiers 36
3.5.1 Introduction 36
3.5.2 Basic definitions and performance parameters 41
3.5.3 Basic concepts in PA design 58

4 METHODOLOGY

4.1 Introduction 66
4.2 Methodology 66
4.3 Bandpass filter design 69
4.3.1 Filter design using the insertion loss theory 69
4.3.1.1 Butterworth (or Maximally Flat) lowpass prototype filters 71
4.3.1.2 Chebyshev (or equal-ripple) lowpass prototype filters 72
4.3.1.3 Elliptic function lowpass prototype filters 74
4.3.2 Maximally flat time-delay lowpass prototype filters 77
4.4 Impedance and frequency scaling 78
4.4.1 Frequency scaling for lowpass 79
filters

4.4.1.1 Lowpass-to-Highpass transformation 80
4.4.1.2 Lowpass-to-Bandpass transformation 80
4.4.1.3 Lowpass-to-Bandstop transformation 81

4.5 Filter realization 83
4.5.1 Richards’ Transformation 83
4.5.2 Kuroda’s Transformations (or Identities) 86
4.5.3 Impedance and admittance inverters 87

4.6 Project implementation 92
4.6.1 Bandpass filter design 92
4.6.2 Power amplifier design 95
 4.6.2.1 Amplifier efficiency 95
 4.6.2.2 Objective 96
 4.6.2.3 PA Specifications 96
 4.6.2.4 Design methodology 97
4.6.3 Front end design 101
 4.6.3.1 Introduction 101
 4.6.3.2 Simulation results 102

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion 104
5.2 Future work 105

References 107
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Classification of PAs in Terms of Output Current.</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Output components in a two-tone test grouped by originating term in truncated series expansion.</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Single-Device PA Performance with Resistive Loading for Classes A and B Bias and Constant and Linear Transconductance</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Element values for butterworth or maximally flat response prototype filter.</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Element values for Chebyshev prototype filters</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Element values for lumped-element elliptic function lowpass prototype filters.</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Transformation Relations.</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Practical Impedance and Admittance Inverters</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Integrating the Fabry-Perot Interferometer in the Optical Imaging System</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Illustration of Optical Frequency Multiplication – Generating the fundamental frequency</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Using a Filter to reduce the effect of an undesired signal at frequency f₂, while retaining desired signal at frequency f₁</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Filter Network of Example</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Amplitude (a) and phase (b) response curves for example filter. Linear frequency and gain scales.</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Amplitude (a) and phase (b) response curves for example bandpass filter. Note symmetry of curves with log frequency and gain scales.</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Examples of Band-pass filter amplitude response</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Step response of two different filters. Curve (a) shows significant ringing, while curve (b) shows none. The input signal is shown in curve (c).</td>
<td>35</td>
</tr>
<tr>
<td>3.9</td>
<td>Single-device output power as a function of frequency for solid-state and vacuum devices</td>
<td>39</td>
</tr>
<tr>
<td>3.10</td>
<td>Energetic schematic representation of PA operation.</td>
<td>41</td>
</tr>
<tr>
<td>3.11</td>
<td>Cascade connection of two PAs</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Sample Pin–Pout power sweep (a) and corresponding</td>
<td>45</td>
</tr>
<tr>
<td>3.13</td>
<td>Typical power-added efficiency</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Class of operation defined as output current conduction angle (left) or simply by the device quiescent bias point (right)</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Output power in a single-tone test at fundamental</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>Typical AM/AM compression and AM/PM conversion</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>Frequency allocation of the output components originating in a two-tone test.</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Third-order intercept point definition</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>Definition of the spurious-free dynamic range; shaded area represents thermal output</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>Input and output power densities for adjacent-channel power ratio definitions</td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>Sample device output characteristics and physical limitations on output current and voltage.</td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>Schematic representation of the active-device output connected to an external load ZL.</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>Reduced voltage swing</td>
<td></td>
</tr>
<tr>
<td>3.24</td>
<td>Output power for three loading conditions: current limited (A), voltage-limited (B), and optimum loading (C).</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>Piecewise linear approximation of the device output characteristics in the case of constant (a) and linear (b) transconductance.</td>
<td></td>
</tr>
<tr>
<td>3.26</td>
<td>Class A and B operating conditions for purely resistive loading.</td>
<td></td>
</tr>
<tr>
<td>3.27</td>
<td>Increasing device maximum current by scaling the number of gate fingers (a) or device unit gate width (c) from a basic device (b).</td>
<td></td>
</tr>
<tr>
<td>3.28</td>
<td>Effect of device unit gate width scaling for a fixed total periphery (1.2 mm). Solid and dashed lines indicate 18 and 14 GHz, respectively.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Project methodology</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>BPF Design Process</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Lumped-element lowpass prototype networks for all pole</td>
<td></td>
</tr>
</tbody>
</table>

filters including Butterworth, Chebyshev, and maximally flat time-delay responses with (a) a ladder network structure and (b) its dual.

4.4 Lumped-element lowpass prototype filters for elliptic function response with (a) series–parallel resonant branches and (b) its dual with shunt series-resonant branches

4.5 Lumped-element lowpass prototype filters for generalized Chebyshev response with (a) with shunt series-resonant branches and (b) its dual with series–parallel-resonant branches

4.6 (a) Richards” transformation (b) Chebyshev lowpass filter characteristic using the Richards transformation.

4.7 Correspondence between short-circuited and open circuited transmission-line sections and lumped elements.

4.8 (a,b) Kuroda”s transformations of the first kind; (c,d) Kuroda”s transformations of the second kind.

4.9 Definition of (a) impedance (K) and (b) admittance (J) inverters

4.10 Lowpass prototype filter with (a) impedance inverters and (b) admittance inverters.

4.11 Bandpass filters with (a) impedance inverters and (b) admittance inverters.

4.12 Generalized bandpass filters including distributed resonators with (a) impedance inverters and (b) admittance inverters.

4.13 First order BPF response

4.14 3rd order BPF response

4.15 5th order BPF response

4.16 LPF prototype

4.17 Lumped Element BPF

4.18 BPF using transmission lines

4.19 The Response for filter in Figure 4.15
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>Typical block diagram of a single stage RF PA</td>
<td>96</td>
</tr>
<tr>
<td>4.21</td>
<td>Obtaining the IV curve for transistor</td>
<td>97</td>
</tr>
<tr>
<td>4.22</td>
<td>Simulation results for transistor</td>
<td>97</td>
</tr>
<tr>
<td>4.23</td>
<td>S parameters for the transistor</td>
<td>98</td>
</tr>
<tr>
<td>4.24</td>
<td>Output match</td>
<td>99</td>
</tr>
<tr>
<td>4.25</td>
<td>Input match</td>
<td>99</td>
</tr>
<tr>
<td>4.26</td>
<td>PA schematic</td>
<td>100</td>
</tr>
<tr>
<td>4.27</td>
<td>Front end schematic</td>
<td>101</td>
</tr>
<tr>
<td>4.28</td>
<td>Simulation results</td>
<td>101</td>
</tr>
<tr>
<td>4.29</td>
<td>Output power result</td>
<td>102</td>
</tr>
<tr>
<td>4.30</td>
<td>Simulated vs. expected</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

BPF Bandpass Filter
CBS Central Base Station
DWDM Dense Wavelength Division Multiplexing
FM Frequency Modulation
FP Fabry-Perot
IMDD Intensity Modulation / Direct Detection
LAN Local Area Network
LPF Lowpass Filter
LD Laser Diode
MMF Multi-Mode Fiber
MZI Mach Zehnder Interferometer
MZM Mach Zehnder Modulator
OIL Optical Injection Locking
PA Power Amplifier
RAP Radio Access Point
RBS Radio Base Station
RF Radio Frequency
RoF Radio-over-Fiber
SMF Single Mode Fiber
WLAN Wireless Local Area Network
CHAPTER 1

INTRODUCTION

1.1 Introduction

For the future provision of broadband, interactive and multimedia services over wireless media, current trends in cellular networks to reduce cell size to accommodate more users and to operate in the microwave/millimeter wave (mm-wave) frequency band to avoid spectral congestion in lower frequency bands. It demands a large number of radio access points to cover service area and cost-effective RAP is a key to success in the market. This requirement has led to the development of system architecture where such as signal routing/processing, handover and frequency functions allocation are carried out at a radio base station (RBS), rather than at the radio access point (RAP). Furthermore, such a centralized configuration allows sensitive equipment to be located in safer environment and enables the cost of expensive components to be shared among several RAPs. An attractive alternative for linking a RBS with RAPs in such a radio network is via an optical fiber network, since fiber has low loss, is immune to EMI and has broad bandwidth. The transmission of radio signals over fiber, with simple optical-to-
electrical conversion, followed by radiation at remote antennas, which are connected to a central RBS, has been proposed as a method of minimizing costs. The reduction in cost can be brought about in two ways. Firstly, the remote antenna RAP or radio distribution point needs to perform only simple functions and it is small in size and low in cost. Secondly, the resources provided by the RBS can be shared among many antenna RAPs. This technique of modulating the radio frequency (RF) subcarrier onto an optical carrier for distribution over a fiber network is known as “Radio over Fiber” (RoF) technology.

To be specific, the RoF network typically comprises a central RBS, where all switching, routing, medium access control (MAC) and frequency management functions are performed, and an optical fiber network, which interconnects a large number of functionally simple and compact antenna RAPs for wireless signal distribution. Since RoF technology was first demonstrated for cordless or mobile telephone service in 1990, a lot of research efforts have been made to investigate its limitation and develop new, high performance RoF technologies. Their target applications range from mobile cellular networks, wireless local area network (WLAN) at mm-wave bands, and broadband wireless access networks to road vehicle communication (RVC) networks for intelligent transportation system. Due to the simple RBS structure, system cost for deploying infrastructure can be dramatically reduced compared to other wireline alternatives. In addition to the advantage of potential low cost, RoF technology has the further benefit of transferring the RF signal to and from a RBS that can allow flexible network resource management and rapid response to variations in traffic demand due to its centralized network architecture.

In summary, some of its important characteristics are described below:

i. The system control functions, such as frequency allocation, modulation and demodulation scheme, are located within the RBS, simplifying the design of the RAP. The primary functions of the RBSs are optical/RF conversion, RF amplification, and RF/optical conversion.
ii. Due to simple RAP structure, its reliability is higher and system maintenance becomes simple.

iii. In principle, optical fiber in RoF is transparent to radio interface format (modulation, radio frequency, bit rate and so on) and protocol. Thus, multiple services on a single fiber can be supported at the same time.

iv. Large distances between the RBS and the RAP are possible.

On the other hand, to meet the explosive demands of high-capacity and broadband wireless access, millimeter-wave (mm-wave) radio links (26-100 GHz) are being considered to overcome bandwidth congestion in microwave bands such as 2.4 or 5 GHz for application in broadband micro/picocellular systems, fixed wireless access, WLANs, and ITSs.

The larger RF propagation losses at these bands reduce the cell size covered by a single RBS and allow an increased frequency reuse factor to improve the spectrum utilization efficiency. Recently, considerable attention has been paid in order to merge RoF technologies with mm-wave band signal distribution. The system has a great potential to support cost-effective and high capacity wireless access. The distribution of radio signals to and from RBSs can be either mm-wave modulated optical signals (RF-over-fiber), or lower frequency subcarriers (IF-over-fiber). Signal distribution as RF-over-fiber has the advantage of a simplified RAP design but is susceptible to fiber chromatic dispersion that severely limits the transmission distance. In contrast, the effect of fiber chromatic dispersion on the distribution of intermediate-frequency (IF) signals is much less pronounced, although antenna RBSs implemented for RoF system incorporating IF-over-fiber transport require additional electronic hardware such as a mm-wave frequency local oscillator (LO) for frequency up- and downconversion. These research activities fueled by rapid developments in both photonic and mm-wave technologies suggest simple BSs based on RoF technologies will be available in the near future. However, while great efforts have been made in the physical layer, little attention has been paid to upper layer architecture. Specifically, centralized architecture of RoF networks implies the
possibility that resource management issues in conventional wireless networks could be efficiently addressed. As a result, it is required to reconsider conventional resource management schemes in the context of RoF networks.

1.2 Objective

The objective of this project is to design and simulate a front-end design of low power radio access point for radio over fiber technology. It is important to study and identify all the objectives to carry out the study.

1.3 Scope of the work

In this report, the main concerned is RoF architecture and to do this will follow these steps:

i. Design and simulate the Power Amplifier
ii. Design and simulate the Band-Pass Filter
iii. Simulation using Microwave Office

1.4 Thesis outline

The remaining part of this report is divided into four chapters as detailed as follow:

Chapter 2 gives an overview of Radio over Fiber (RoF) technology. It also gives an introduction about the importance of RoF.

Chapter 3 will talk about Radio Access Point (RAP) and its main components and will focus on two parts which are the Band-pass Filter (BPF) and the Power Amplifier (PA)
Chapter 4 describes the methodology and project implementation of this report. Simulation results are presented and discussed in this chapter.

Chapter 5 contains the conclusion and will go through some ideas that will improve the project in future work.