Odeh Sabbah, Thabit Sulaiman and Selamat, Ali and Selamat, Md. Hafiz and Ibrahim, Roliana and Hamido, Fujita (2015) Hybridized term-weighting method for dark web classification. In: Software and Information Science, Iwate Prefectural University, 2015, Japan.
Full text not available from this repository.
Official URL: https://www.researchgate.net/publication/282586569...
Abstract
The role of intelligence and security informatics based on statistical computations is becoming more significant in detecting terrorism activities proactively as the extremist groups are misusing many of the obtainable facilities on the Internet to incite violence and hatred. However, the performance of statistical methods is limited due to the inadequate accuracy produced by the inability of these methods to comprehend the texts created by humans. In this paper, we propose a hybridized feature selection method based on the basic term-weighting techniques for accurate terrorism activities detection in textual contexts. The proposed method combines the feature sets selected based on different individual feature selection methods into one feature space for effective web pages classification. UNION and Symmetric Difference combination functions are proposed for dimensionality reduction of the combined feature space. The method is tested on a selected dataset from the Dark Web Forum Portal and benchmarked using various famous text classifiers. Experimental results show that the hybridized method efficiently identifies the terrorist activities content and outperforms the individual methods. Furthermore, the results revealed that the classification performance achieved by hybridizing few feature sets is relatively competitive in the number of features used for classification with higher hybridization levels. Moreover, the experiments of hybridizing functions show that the dimensionality of the feature sets is significantly reduced by applying the Symmetric Difference function for feature sets combination.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | dark web forum portal, hybridization |
Subjects: | Q Science > QP Physiology |
Divisions: | Computing |
ID Code: | 63289 |
Deposited By: | Widya Wahid |
Deposited On: | 17 May 2017 07:46 |
Last Modified: | 21 Aug 2017 00:19 |
Repository Staff Only: item control page