New formulation of production media for submerged cultivation of Aspergillus niger for production of pectinase

Noorhamizah Suhaimi1, Roslinda Abd Malek1, Solleh Ramli1, Mona A. Esawy3, Nor Zalina Othman1, Hesham A. El Enshasy1,2
1Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81210 Skudai Johor, Malaysia;
2Bioprocess Development Department, Mubarak City for Scientific Research and Technology Applications (MuCSAT), New Burg Al Arab, Alexandria, Egypt;
3Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki, Giza, Egypt

INTRODUCTION

Pectinase is a generic term that used from derivation of the pectin. Pectin is a complex class of carbohydrates polymer which composed of members galacturonic acid that linked through the α-1→4 glycosidic linkage and it is widely found in the primary cell walls or at the middle lamella of higher plants. Furthermore, Among different biofactories of pectinases, the filamentous fungi provide a potentially high yielding and relatively cheap option and the genus of Aspergillus has been used with a success as a production host.

Therefore, the objective of this research is to develop industrial production media and a cultivation strategy for the production and secretion of pectinases in a semi-industrial scale by A. niger. In this study, the submerged cultivation was chose as a cultivation strategy for the production and secretion of pectinase in a semi-industrial scale by A. niger.

METHODOLOGY

STAGES 2

Development of master and working cell banks

1) Master cell bank
2) Working cell bank

STAGES 1

Cell cultivation in liquid media

1) Shake flasks media screening
2) Shake flasks media growth study
3) Studies of different medium composition

RESULT AND DISCUSSION

Figure 1: Cell dry weight and pectinase activity for six different media under screening process (30˚C and 200 rpm)

Figure 2: Cell dry weight for six different carbon source under screening process (30˚C and 200 rpm)

Figure 3: Pectinase activity for six different carbon source under different medium composition (30˚C and 200 rpm)

This work present the best carbon source for the production of pectinolytic enzyme in submerged fermentation was apple pectin based on the total enzyme produced and its biomass production.

CONCLUSION

The highest total enzyme was obtained from apple pectin as a carbon sources, 48.78568 U mL\(^{-1}\) followed by 35.85549 U mL\(^{-1}\) with lactose, 16.73879 U mL\(^{-1}\) with dry peel citrus pectin, 10.07444 U mL\(^{-1}\) with sucrose (as a control) and citrus pectin and the lowest total enzyme was obtained from glucose as a carbon sources, 3.09373 U mL\(^{-1}\).

Whereas, the biomass production showed maximum cell mass was 0.629 g L\(^{-1}\) with citrus pectin, compared with 0.2715 g L\(^{-1}\) with sucrose, 0.225 g L\(^{-1}\) with lactose, and 0.1615 g L\(^{-1}\) with glucose, 0.124 g L\(^{-1}\) with apple pectin and 0.0975 g L\(^{-1}\) with dry peel citrus pectin.

The highest total enzyme was obtained from apple pectin as a carbon sources, 48.78568 U mL\(^{-1}\) followed by 35.85549 U mL\(^{-1}\) with lactose, 16.73879 U mL\(^{-1}\) with dry peel citrus pectin, 10.07444 U mL\(^{-1}\) with sucrose (as a control) and citrus pectin and the lowest total enzyme was obtained from glucose as a carbon sources, 3.09373 U mL\(^{-1}\).

Whereas, the biomass production showed maximum cell mass was 0.629 g L\(^{-1}\) with citrus pectin, compared with 0.2715 g L\(^{-1}\) with sucrose, 0.225 g L\(^{-1}\) with lactose, and 0.1615 g L\(^{-1}\) with glucose, 0.124 g L\(^{-1}\) with apple pectin and 0.0975 g L\(^{-1}\) with dry peel citrus pectin.